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Abstract The level set method (LSM), which is
transplanted from the computer graphics field, has been
successfully introduced into the structural topology
optimization field for about two decades, but it still has
not been widely applied to practical engineering problems
as density-based methods do. One of the reasons is that it
acts as a boundary evolution algorithm, which is not as
flexible as density-based methods at controlling topology
changes. In this study, a level set band method is proposed
to overcome this drawback in handling topology changes
in the level set framework. This scheme is proposed to
improve the continuity of objective and constraint
functions by incorporating one parameter, namely, level
set band, to seamlessly combine LSM and density-based
method to utilize their advantages. The proposed method
demonstrates a flexible topology change by applying a
certain size of the level set band and can converge to a clear
boundary representation methodology. The method is easy
to implement for improving existing LSMs and does not
require the introduction of penalization or filtering factors
that are prone to numerical issues. Several 2D and 3D
numerical examples of compliance minimization problems
are studied to illustrate the effects of the proposed method.

Keywords level set method, topology optimization,
density-based method, level set band\

1 Introduction

The successful topology optimization of continuums
inspired from the study of the optimal thickness distribu-
tion of elastic plates [1] has led to the successive
development of several topology optimization models,
such as the homogenization method [2], solid isotropic
material/microstructure with penalization (SIMP) method
[3–5], rational approximation of material property method
[6], evolutionary structural optimization (ESO)/bidirec-
tional ESO (BESO) [7–9], level set method (LSM) [10–
14], independent-continuous mapping method [15], mov-
ing isosurface threshold method [16], stiffness spreading
method [17,18], and moving morphable component/void
method [19,20]. The most mature method is SIMP, which
has been successfully implemented in commercial soft-
ware systems, such as OptiStruct, Tosca, and ANSYS.
SIMP has been widely used worldwide, especially after
Sigmund published the 99-line MATLAB code [21]. It
provides an efficient way for new researchers to accept and
start their work in topology optimization for continuums.
ESO, which was first proposed by Xie and Steven [7], uses
a similar idea to that of SIMP. The idea is to find an
appropriate way of material distribution in the design
domain. Later, Refs. [8,9,22] proposed BESO, which
solves the drawback of ESO that a material cannot be
added back into a structure after it is deleted. ESO/BESO
has a clear concept of updating a structure to achieve
optimum design, and it is easy to understand and
implement. It has also been widely studied and imple-
mented in the topology optimization tool Ameba.
LSM [10–14,23–30], which is borrowed from computer

graphics and image-processing fields, was first implemen-
ted in topology optimization around 2000 [11,12]. It uses a
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different idea based on the method of front tracking to
drive the boundary of a structure iteratively to obtain the
optimum design. It has received wide attention since it was
first introduced into the topology optimization field and
became popular in a short time due to its advantages
[13,14]. For example, it always provides clear structural
boundaries or material interfaces, making it suitable for
optimization problems related to geometric control, and it
does not require the introduction of a penalty factor in
contrast to SIMP; therefore, it is more stable when solving
dynamic optimization problems [31]. However, LSM is
developed from a method based on the boundary evolution
concept. The iterative updating of a structure during
optimization is always generated from boundaries rather
than from the entire domain as in density-based methods.
Consequently, it lacks nucleation capacity and involves
strong initial design-dependent problems.
To overcome these drawbacks, we analyze the funda-

mental scheme of LSM to evaluate its difficulties in
handling topology changes and compare the differences
between the conventional LSM (CLSM) and the varia-
tional LSM, which is called zero LSM (ZLSM) in this
paper. The comparison demonstrates that the latter is more
recommended for topology optimization in practical
applications because it has the ability of nucleation and
less stringent requirements on meshes compared with the
former. A level set band method is proposed to improve the
capability of LSMs in handling topology changes. The
method is easy to implement by involving only one
parameter, the level set band, and does not require the
introduction of penalization or filtering factors that are
prone to numerical issues. This proposal may pave the way
for the wide acceptance of level set-based topology
optimization method in practical engineering applications.
The remainder of this paper is organized as follows. The

basic concept of LSM is introduced and a comparison
between CLSM and ZLSM is presented in Section 2. The
level set band method, which is a new method with a
variable level set band, is proposed in Section 3. The
optimization model is introduced in Section 4 and the
method is studied and evaluated with several numerical
examples in Section 5. Finally, conclusions are provided in
Section 6.

2 LSM for topology optimization

LSM was first proposed by Osher and Sethian [10] for
interface tracking. It has been successfully implemented in
computer graphics and image segmentation fields before
introducing into the topology optimization field [23,24].
The concept of a 2D design, which is represented with a
level set function, is illustrated in Fig. 1.
The basic idea of LSM is to define a one dimension

higher surface, i.e., the level set function Φ, and use the
zero level set of the function to represent the boundary of

an object and control the evolution of the boundary by
updating the level set surface, as illustrated in Fig. 1. The
definitions of the boundary and the different parts of the
domain are given as follows:

Φðx, tÞ > 0 8x 2 Ωn∂Ω,
Φðx, tÞ ¼ 0 8x 2 ∂Ω,

Φðx, tÞ < 0 8x 2 DnΩ,

8><
>: (1)

where x 2 R2 or R3 denotes a point in the design domain
D � R2 or R3, Ω and ∂Ω are the solid part and boundary of
the object, respectively, and t is the pseudo time to
represent the updating iteration steps during the evolution
of the level set function.

2.1 Conventional level set method

In CLSM, i.e., the earliest proposed LSM [23,24], the
name “LSM” consists of a systematic methodology to trace
the front of an interface in an implicit way in a fixed Euler
grid mesh. This methodology includes a discrete way to
solve the Hamilton–Jacobi (H–J) equation by implement-
ing upwind scheme, ENO, or WENO [32,33], the re-
initialization process to recreate a signed distance level set
function [24,34], and the velocity extension approach [35]
to extend the boundary velocity to the entire evolution
domain or a narrow band area around the boundary to
alleviate the computation cost. This methodology can be
considered a conventional way to implement LSM in
related problems. The approaches have been summarized
in two classical books [23,24]; LSM has been well
developed in computer graphics, as demonstrated by the
brilliant animations and its successful implementation in
the film industry. However, the application of LSM in the
field of topology optimization has remained at the
academic level for a long time, and its potential has not
been fully exploited due to several limitations. In the
following part, the basic concept of CLSM is schematically
discussed, and its inherent limitations are analyzed.
In CLSM, a level set function is updated by solving H–J

equation given in Eq. (2), which is a partial differential
equation with spatial derivative rΦ and temporal
derivative ∂Φ=∂t:

Fig. 1 Basic concept representing a boundary ∂Ω with a zero
level set.
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_Φ � ∂Φ
∂t

–VnjrΦj ¼ 0, (2)

where Vn in topology optimization is usually obtained
using the sensitivity analysis based on the theory of shape
derivative by applying the finite element method (FEM) to
solve the state and adjoint equations [14]. The “ – ” in
Eq. (2) depends on the outside positive normal direction of
Vn, which is determined by the level set representation
model given in Eq. (1). If Φðx,  tÞ> 0 is defined as the
outside part, then “ – ” should be changed to “þ”.
Although CLSM has been introduced into the topology

optimization field for a long time, it is still not as well
understood by most people as density-based methods. The
updating scheme of CLSM should be demonstrated with a
diagram, as shown in Fig. 2, where the level set function is
updated with one small time step Δt. _Φ in Eq. (2) consists
of two parts, which are ð∂Φ=∂tÞΔt and VnjrΦjΔt. The two
parts are illustrated in Fig. 2(a). The equation _Φ ¼ 0 is
always satisfied in each step. Therefore, the two parts are
cancelled each other out, and a point on the level set
surface Φ of the nth time step pn moves horizontally to
point pn +1 in the next time step. Here, Vn denotes the
normal velocity on point pn. Figure 2(b) depicts that all
points in the level set function move in a horizontal
direction when solving H–J equation. This condition can
be used to explain an important drawback of CLSM that it
cannot create new holes inside, i.e., lacking nucleation
capability. Figure 3 illustrates several cases of updating of
a level set surface, which means it can become steeper
(Case 1) or flatter (Case 2) than before. Case 3 can never
occur because the top part of the level set function cannot
move downward to make a concave pit, as shown in Fig. 3.
Case 4, in which the level set function is “pulled up”, also
cannot happen due to the same reason. Figure 3
demonstrates a theoretical situation, but in practical
numerical implementations, Δt is not an infinitesimal
value. The numerical errors may occasionally result in
Cases 3 and 4 if the re-initialization scheme is not applied
to recreate the signed distance level set function frequently.

As mentioned above, CLSM is inherently lacking in the
ability of nucleation capacity and is often criticized
because it can induce the initial design-dependent problem,
which means the final optimal design may heavily rely on
the initial design. In the literature, researchers include
numerous holes in the initial design to alleviate this
problem. No widely recognized method exists for guiding
people on how to establish the initial design. This
drawback can be overcome by incorporating other
nucleation schemes, such as topological derivatives [13],
but CLSM still hardly handles topological changes
naturally as density-based methods do.

2.2 Zero level set method

When CLSM was introduced into the topology optimiza-
tion field, a set of variational LSMs, such as a method
based on dynamic implicit surface function [36,37],
piecewise constant LSM [38], LSM with a reaction–
diffusion equation [39], the topology representation
function [40], parameterized LSM [41–45], and other
methods [46], was developed to overcome the drawbacks
of CLSM. Most of these methods can be considered
“LSM”, but they do not follow the solution procedure of
CLSM. We suggest that these variational LSMs, which
also use the zero level set to represent the boundary of
design but do not exactly follow the set of conventional
numerical manipulations to update the level set function,
can be called “ZLSMs” to distinguish them from CLSM.
These ZLSMs are all laudable attempts to explore the
practical implementations of LSMs and provide valuable
experiences and references for the endless further
explorations.
The key point of these ZLSMs is that they also use a

clear boundary to represent a design during the optimiza-
tion process. Nonetheless, the numerical operation for
level set updating is different. Away to realize ZLSMs is to
revise Eq. (2) into Eq. (3) by directly removing the spatial
difference term jrΦj:

Fig. 2 Updating scheme for the level set function by solving Hamilton–Jacobi equation. (a) Two components for updating Φ; (b) all
points move horizontally.
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dΦ

dt
–Vn ¼ 0: (3)

Thus, the updating of the level set function Φ only
depends on the boundary normal velocity Vn. The original
H–J equation becomes an ordinary differential equation.
The updating scheme of the revised Eq. (3) can be
illustrated as Fig. 4.
In accordance with Fig. 4, Vn indicates the vertical

velocity of each point on the level set surface. The physical
meaning of Vn has changed, and the notation Vn becomes
unsuitable for it. The meaning of Vn in this model is similar
to the sensitivity in density-based methods. The calculation
of Vn can be borrowed from SIMP or ESO/BESO models.
If jrΦj ¼ 1 is held with re-initialization as CLSM always
executes, the effects of Vn in those models become the
same. We keep using notation Vn in Eq. (3) for
convenience to compare Eqs. (2) and (3). Although the
inherent updating logic of Eqs. (2) and (3) relatively differ
in accordance with Figs. 2 and 4, their convergence
conditions are equivalent, i.e., Vn equals zero due to the
nonzero property of jrΦj along the boundary. Therefore,
we can use the same Vn to update the level set function in
CLSM and ZLSM.
In our opinion, ZLSM may be more suitable for

topology optimization than CLSM. The reasons that
support our opinion are as follows. First, ZLSM naturally
has nucleation capability, which can greatly alleviate the

initial design-dependent problems, compared with CLSM.
Second, ZLSM is more adaptable to miscellaneous meshes
than CLSM. ZLSM uses an ordinary differential equation
to update the level set function and has less complexity
than the partial differential equation-driven CLSM, which
is more convenient to be solved in a structured grid. Thus,
ZLSM can be easily implemented in practical engineering
problems in complex design domains and with unstruc-
tured meshes. A reasonable way in a commercial software
system can be easily realized by sharing the same set of
mesh with finite element analysis (FEA). The sensitivity
analysis of ZLSM for certain problems can also be directly
borrowed from density-based methods, and this point can
make it easier to be implemented and accepted by people,
such as for topology optimization on curved shell
structures and sophisticated mathematical tools are needed
for CLSM [47]. The characteristics of the “customized”
LSM in topology optimization can be summarized as it
should be well connected to FEM and can be implemented
as easily as the SIMP or ESO/BESO methods. Its
advantages can be further developed.
Although ZLSM overcomes certain drawbacks of

CLSM, the boundary evolution-based strategy in the
level set-based model remains less natural than density-
based methods in dealing with topological changes. In
density-based methods, the topological optimization
problem is transformed into a size optimization problem,
and the topological change becomes a continuous process

Fig. 3 Possible and impossible updated level set functions by solving Hamilton–Jacobi equation.

Fig. 4 Updating scheme of a zero level set method. (a) Updating scheme of Φ for Eq. (3); (b) all points move vertically.
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[3,4]. In the level set-based method, the topological change
is a discrete process. The objective and constraint functions
in the feasible space are not as continuous as in the density-
based methods, which involve more difficulties in handling
the topology optimization. This condition may also be
considered a limitation of LSM; consequently, it is difficult
to be commercialized. At this point, the density-based
methods have predominant advantages in topology
optimization. This issue has inspired us to introduce a
density interpolation scheme to provide similar continuity
in the level set-based method. In this study, we propose a
new method that can improve the continuity of objective
and constraint functions by using the high-dimensional
information of the level set function. This method provides
a simple way to combine the advantages of density-based
and level set-based methods for realizing a natural
topology evolution as a density-based method and a clear
boundary representation solution.

3 Level set band method

In this section, a level set band method, which can be
considered a combination of LSM with a density-based
method to utilize the advantages of both methods, is
proposed. This method follows, but is not restricted by, the
parameterized LSM [43] by incorporating a new para-
meter, i.e., level set bandΦb, which is the distance between
a user-defined upper bound Φu and a lower bound Φl.

Φb ¼ Φu –Φl: (4)

The upper bound Φu and lower bound Φl do not mean
the maximum and minimum values of the level set
function, respectively, but indicate a range between
which the densities of the elements should be interpolated
with the values of the level set function. In this method, the
density of each element in the structure and sensitivity
analysis depend on its nodal values of the level set
function. In the numerical implementation, the level set
function value Φi in the middle of the ith element by
interpolation can be adopted. Thus, the density of the ith
element �i can be calculated as

�i ¼ HðΦiÞ, (5)

where H 2 ff : R↕ ↓Rþg is the Heaviside function; here, it
is numerically approximated as [14]

HðxÞ ¼
1 x³Δ,

3ð1 – εÞ
4

x

Δ
–

x3

3Δ3

� �
þ 1þ α

2
–Δ£ x < Δ,

ε x < –Δ,

8>>><
>>>:

(6)

where ε is a small value indicates the lower bound density
of void material and we can define Δ ¼ Φu ¼ –Φl and
Φb ¼ 2Δ.

Figure 5 presents the schematic of the proposed method.
Figure 5(a) shows the interpolated density distribution for
FEA with the level set function when Φb is adequately
large, and Fig. 5(b) illustrates the density distribution when
Φb is smaller. Thus, the design is determined by a narrow
band boundary. If Φb decreases to zero, the design is then
determined by the zero level set, where Φ ¼ 0. The
optimization model becomes a ZLSM.
In the proposed method, the strategy is to gradually

reduce the width of the level set band Φb during the
optimization process, as shown in Fig. 5. When Δ is
sufficiently large, as shown in Fig. 5(a), all of the level set
function values fall into the band Φb. The density of each
element is thus a projection of the related level set function
value, similar to a definition of a density-based method,
such as SIMP, where the design variables are defined as the
density � and the upper and lower bounds are fixed at 1 and
0 (usually, a small value ε instead), respectively. The
strategy in SIMP is that the density of each element is
forced to approach the upper or lower bounds (1 and 0)
with a penalization scheme. Then, a black-and-white
optimal design can be obtained. Unlike SIMP, the
proposed method has variable upper and lower bounds in
mapping the level set function. The distance between the
upper and lower bounds is defined as a density band
Φb ¼ 2Δ, which is represented in Eq. (4), and it is reduced
gradually during the optimization process. When Δ
becomes a considerably small value or zero, as shown in
Fig. 5(b), the design is defined by the zero level set, and
only the densities of the elements in an excessively small
region around the boundary need to be calculated with the
projection function Eq. (5). This method becomes an LSM.
The density-based method in the initial stage finally
converges to an LSM by assigning the parameter Δ ¼
Φb=2 to a large value to start the optimization with a
density-based method and then gradually decreasing the
value of Δ during the optimization iteration process. We
can combine the density-based method and LSM by
involving only one parameter Δ to utilize the advantages of
both methods. The density-based method presents flex-
ibility in topology change and is minimally dependent on
the initial design; LSM has clearly defined boundaries.
A general way to implement the level set-based method

can be considered the case with a small band between the
upper and lower bounds, as shown in Fig. 5(b). LSM is
usually applied to a fixed Euler grid. The mesh and
boundary are difficult to be conformed, and the elements
around the boundary are usually cut through by the zero
level set. An accurate way to calculate the contribution of
the stiffness of “half” elements is using the extended FEM
[48–50]; another simpler but with lower accuracy way is to
use an approximate density to represent the stiffness
contribution of the element around the boundary [43]. The
latter can be considered a means to interpolate the density
of elements falling into the band or cut by the boundaries,
as illustrated in Fig. 5(b), where the level set band is
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defined as a very small value. The proposed method can be
considered an extension of this scheme to a wide space
range around the boundary and to the entire optimization
process over time. This method can be implemented in a
simple manner by implementing a slight modification on
the 88-line MATLAB code of parameterized LSM with
radial basis functions [43]. However, this method is not
limited to the parametric way but can also be used to the
discrete way in the level set framework. The proposed
level set band method not only can be combined with
ZLSM, as demonstrated in this paper, but also can be
implemented in the CLSM framework. Compared with

ZLSM, the proposed method needs further efforts in
handling complex design problems.
The level set band decreases from a large value to a

small value. The proposed model reveals a gradual change
from a density-based method to a level set-based method.
An example of an intermediate solution is provided to
illustrate the level set band method in Fig. 6, in which the
level set band Φb ¼ 2Δ ¼ 7 (the length of the finite
element is 1), and the density distribution is obtained on
the basis of the level set surface. The level sets on the upper
and lower bounds are also plotted. They approach the same
design as the zero level set after the level set band Φb

Fig. 5 Density interpolation scheme of the level set band method by gradually reducing Φb. (a) Case with a large level set band between
the upper and lower bounds in the beginning stage; (b) case with a small level set band after convergence.

Fig. 6 Illustration of the level set band method with an intermediate optimal example (Δ ¼ Φb=2 ¼ 3:5).
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decreases to zero. From the viewpoint of the level set-
based model, the proposed method can be considered an
extended LSM by replacing the zero level set with a
variable level set band. From another viewpoint, the level
set band method can be considered a variation of a density-
based method by replacing the fixed band of the density
distribution between 0 and 1 with an alterable value. In this
model, penalization and filtering mechanisms, as in SIMP,
need not be introduced; related numerical issues [51,52] no
longer need to be processed. Figure 7 provides a schematic
explanation of this point and shows how the proposed
method can be considered a combination of the density-
based method and LSM.
Similar concepts by changing the level set isosurface

were also evaluated in previous studies. In the moving
isosurface threshold method, which was proposed in Ref.
[16], a variational isosurface threshold for response
surface, which has a similar definition to that of the
parameter Δ ¼ Φb=2 in this study for the level set surface,
is applied to adjust the boundary design and determined by
the Karush–Kuhn–Tucker condition. The level set-based
method [53] uses different layers of a unique characteristic
level set function to represent different designs for
optimizing connectable graded microstructures. This
concept can also be used in minimum distance control
[54]. In the SIMP-based model, different density projec-
tions can be obtained to conduct robust topology
optimization by implementing different threshold values
[55]; this process is similar to applying different levels in
the density distribution function [56]. The BESO-based
model [57] also involves a level set isosurface, which is
iteratively determined by the upper and lower bounds. The
two bounds approach almost the same value after
convergence. The smooth boundaries are always clearly
determined to separate the design domain into black and
white parts during the optimization process, and the
intermediate density elements only occur along the
boundaries on the elements that are cut by the zero level
set. The numerical examples indicate that the method
illustrates similar properties to those of ZLSM because it
adopts the zero level set to represent the design, although it
comes from the BESO method. All of these successful
implementations of the level set concept demonstrate its

tremendous potential; it deserves further development in a
future study.

4 Optimization scheme

The optimization model of the level set-based method can
be defined as

minΦ J ðu,ΦÞ ¼!
D
f ðuÞHðΦÞdΩ

s:t:

aðu,  v, ΦÞ ¼ lðv, ΦÞ, 8v 2 U ,

G Φð Þ ¼
!

D
HðΦÞdΩ

!
D
dΩ

–Vmax£0,

u ¼ u0 in Γu,

C : εðuÞ$n ¼ τ in Γτ ,

8>>>>>>>>><
>>>>>>>>>:

(7)

where J is the objective function for a specific physical
type described by f, u is the displacement field, ε is the
linearized strain tensor, C is the elasticity tensor, v is the
adjoint displacement in the space U of the kinematically
admissible displacement fields, GðΦÞ is the volume
constraint to limit material usage, Vmax is the maximum
allowable volume fraction of the design domain, u0, n, and
τ are the given displacement, the boundary unit normal
vector and traction, respectively, and Γu and Γτ are the
Dirichlet and Neumann boundaries, respectively. The
energy bilinear form aðu,  v, ΦÞ and the load linear form
lðv, ΦÞ are defined as

aðu,  v, ΦÞ ¼ !
D

�
εðuÞ : C : εðvÞ

�
HðΦÞdΩ, (8)

lðv,ΦÞ ¼ !
Γτ

τ$vdΓþ!
D
b$vHðΦÞdΩ, (9)

where b represents the body force.
In the framework of CLSM, the sensitivity analysis

based on shape derivative [13,14] can be used to derive the
normal velocity Vn along the moving boundary in the
steepest descent direction.

Fig. 7 Level set band method can be considered a variation of the density-based method and the LSM by replacing the fixed bands Φb

with an alterable one.
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Vn ¼ – f ðuÞ – εðuÞ : C : εðvÞ

þ b$vþ
�
rðτ$vÞ$n

�
þ κðτ$vÞ – l, (10)

where κ ¼ r$n is the curvature around the boundary, l is
the Lagrange multiplier to control the volume constraint,
and it can be calculated with the augmented Lagrange
multiplier method [43,58] or bisectional method [21]. For a
compliance minimization problem f ðuÞ ¼ εðuÞ : C : εðuÞ
without body force and boundary traction, the velocity can
be simplified as

Vn ¼ εðuÞ : C : εðuÞ – l: (11)

With the velocity Vn obtained in Eq. (11), the CLSM of
Eq. (2) or ZLSM of Eq. (3) can be used to update the level
set function until convergence to realize the topology
optimization. This velocity is meaningful only along the
boundary in CLSM because only the variation on the
boundary can affect the objective function. In the proposed
level set band method (Fig. 8), the evolution of the level set
function of the solid part does not influence the objective
function and volume constraint given that the changed part
does not fall into the level set band, as shown in Fig. 8(b).
The sensitivity with respect to the level set function can be
considered zero, but updating the level set function at
that interior area has the potential to change the objective
function and the topology of the design, as shown in
Fig. 8(c). This diagram also illustrates the scheme that the
existing level set band makes the topology change a
continuous procedure. In CLSM or ZLSM, the topology
change is always a discontinuous procedure and may cause
numerical issues, such as oscillation or local optimal.
In this model, the velocity Vn is extended to the entire

design domain by directly calculating the velocity with Eq.
(11) over the design domain. This process can be
considered a “natural velocity extension” approach applied
in most level set-based topology optimization models
[14,41]. Thus, the level set function can be updated in the
entire design domain, and the nucleation capability is
easily realized. This approach is unlike the conventional
way to extend the velocity in CLSM to keep the level set
function a signed distance function as applied in the
computer graphics field [10,34].
On the basis of Eq. (3), the level set function can be

updated based on ZLSM with the first-order difference
scheme as

Φiþ1 ¼ Φi þ V i
n$Δt, (12)

where the superscripts i and i+ 1 indicate the iteration
steps, and Δt is the time step size. In this study, the
evolution of the level set function is realized by updating
the coefficients in the parameterized LSM [43]. Readers
can refer to Ref. [43] and the provided code for a detailed
implementation approach. This scheme can also be
implemented on the basis of CLSM by updating the level
set function with Eq. (2) to obtain an accurate boundary
evolution solution. Nevertheless, the related numerical
manipulations of CLSM should be adopted, and the
nucleation capability will be missing.

5 Numerical examples

In this section, several examples are analyzed to illustrate
the effects of the proposed method. Please note the
numerical examples in this paper are dimensionless. The
basic parameters follow the 88-line MATLAB code [43],
including Young’s elasticity modulus E ¼ 1 for solid
material, E ¼ 10 – 9 for void material, and Poisson’s ratio
� ¼ 0:3. The used radial basis functions are multiquadratic
spline with c ¼ 10 – 4. Only the mean compliance mini-
mization problem is studied, but this method can be easily
applied to other problems, such as compliance mechanism
design and material design problems. The convergence
condition is set to be the same as in the 88-line MATLAB
code that in all of the last nine steps, the mean compliance
M satisfies the following criterion:

jMi –Mi – jj
Mi

< 3� 10 – 4,        j ¼ 1,  2,  :::,  9, (13)

where the subscript of M means the iterative step number.

5.1 Cantilever beam

The first example is shown in Fig. 9. A short cantilever
beam is given, in which the left side is fixed. Concentrated
force F ¼ 1 is applied vertically downward at the middle
point at the right side. The size of the design domain is 80�

Fig. 8 Two cases of variation in the level set function without and with changing the objective function. (a) Original level set function;
(b) the objective function is unchanged (Case 1); (c) the objective function is changed (Case 2).
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40, and 80� 40 four-node bilinear square elements are used
to perform FEA. The total volume fraction is set as 50%.
Figure 10 shows the iterative designs of the structure in

Steps 1, 10, 20, 30, 50, and 109 (converged). Figure 10(a)
shows the zero level set of the designs, Fig. 10(b) depicts
the density distributions of the designs, Fig. 10(c)
illustrates the level sets of the upper and lower bounds
(red is the upper bound, and blue is the lower bound), and
Fig. 10(d) indicates the level set functions and the upper
and lower bound planes during the optimization. The
initial value of Δ is 5 and decreases by 0.1 at each step to
the minimum value of 0.5 after 45 steps.Fig. 9 Design domain and boundary conditions of a cantilever beam.

Fig. 10 Optimization iteration process of the 2D cantilever beam with decreasing Δ from 5 to 0.5 by 0.1 at each step (from top to bottom:
Steps 1, 10, 20, 30, 50, and 109). (a) Zero level set; (b) density distribution; (c) level sets on the lower and upper bound planes; (d) level set
function and the lower and upper bound planes.
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The initial value of the level set function Φ is given as
– 3£Φ£3, and the initial design is filled with gray
elements, as shown in Fig. 10(b). In the first figure of
Fig. 10(c), the initial level set function does not touch the
upper and lower bounds (�5), and thus, no red or white
area exists. After several iterations, the values of the level
set function and Δ change, as shown in the second figure in
Fig. 10(d). The red part in Fig. 10(c) indicates the area
where the density is 1, and the white part indicates the area
where the density is ε. Figure 10(a) indicates the zero level
set, but it is not the real design because the real finite
element model for analysis is given by Fig. 10(b). This

problem converges after 109 iterations and then the final
zero level set becomes consistent with the finite element
model, as depicted in Figs. 10(a) and 10(b). The level sets
on the upper and lower bound planes almost perfectly
coincide because the distance between the upper and the
lower bounds is very small (Φb ¼ 2Δ ¼ 1).
The iteration process of this example can be considered a

model of the density-based method; if the initial value of Δ
is set to a small value (e.g., 0.5), the iteration process then
becomes a zero level set model. The results are given in
Fig. 11, and the iteration numbers are 1, 10, 20, 30, 50, and
131. Figure 11(b) depicts that the design has few gray

Fig. 11 Optimization iteration process of the 2D cantilever beam with fixed Δ ¼ 0:5 (from top to bottom: Steps 1, 10, 20, 30, 50, and
131). (a) Zero level set; (b) density distribution; (c) level sets on the lower and upper bound planes; (d) level set function and the lower and
upper bound planes.
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elements around the boundary from the initial design to the
final design. The zero level set is almost the same as the
density distribution. Figure 11(c) also shows that the level
sets on the upper and lower bound planes are almost
coincident from the start to the end. Compared with the
optimization process shown in Fig. 10, this case can be
considered a zero level set model because the clear
boundary is always given. Therefore, boundary-related
problems, such as gravity or hydraulic pressures, can be
easily handled.
In the following part, the same problem is solved with

different initial designs to illustrate the initial design-
dependent issue of the proposed method. Figures 12(a) and
12(b) show the case with decreasing Δ from 5 to 0.5 by 0.1

at each step, and Figs. 12(c) and 12(d) show the case with
fixed Δ ¼ 0:5. Figures 12(a) and 12(c) are the zero level
sets during the iteration, and Figs. 12(b) and 12(d) are the
corresponding density distributions. In the two cases, the
initial density of each element is 0.5.
Figure 12 demonstrates that the density distributions and

topologies in the intermediate steps of the two cases are
relatively different. In Figs. 12(a) and 12(b), the topology
change is driven by the density variation in the earlier
stage, in which Figs. 12(a) and 12(b) can be considered a
density-based model. In Figs. 12(c) and 12 (d), the density
distribution is almost black and white everywhere during
the optimization process; this can be considered a zero
level set model with nucleation. The only difference

Fig. 12 Optimization process of the cantilever beam problem with uniformly distributed initial density. (a) Zero level set: Δ decreases
from 5 to 0.5 by 0.1 at each step, and the iteration steps are 1, 10, 20, 30, 50, and 149 (from top to bottom); (b) density distribution:
Δ decreases from 5 to 0.5 by 0.1 at each step, and the iteration steps are 1, 10, 20, 30, 50, and 149 (from top to bottom); (c) zero level set:
fixed Δ ¼ 0:5, and the iteration numbers are 1, 10, 20, 30, 50, and 126 (from top to bottom); (d) density distribution: fixed Δ ¼ 0:5, and the
iteration numbers are 1, 10, 20, 30, 50, and 126 (from top to bottom).
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between the two methods is the value of Δ or Φb. The
comparison in this example clearly illustrates the most
important characteristic of the proposed model, i.e., the
density-based method and LSM can be connected with
only one parameter Δ. If Δ decreases from a large value to a
small value, this model becomes a density-based model; if
Δ is set as a small value from the beginning to the end, this
model becomes a zero level set model. The penalization
and density filter are not needed to be specifically applied
in this model.

5.2 Different Δ updating schemes for a simply supported
beam problem

In the following part, a simply supported beam, shown in
Fig. 13, is evaluated with the same method to illustrate the
convergence property of the proposed method. The beam
size is 160 � 40 and is discretized to 160 � 40 Q4
elements. On the basis of the symmetry of the problem,

only the right half part of the design is optimized.
The simply supported beam problem generally varies in

terms of the topology of the final designs. In this part,
different initial designs and three Δ updating Schemes (a),
(b), and (c) are imposed to provide a clearer understanding
of the proposed model as described in Figs. 14(a), 14(b),
and 14(c), respectively. Here, three Δ updating schemes are
implemented. Scheme (a) uses a fixed Δ value of 0.01 in
the overall optimization process; Schemes (b) and (c) use
decreasing Δ values with different reductions. Δ0 denotes
the initial Δ value, dΔ denotes the reduction value of Δ in
each iteration, and minΔ denotes the minimum value of Δ.
N indicates the total iteration number when the optimiza-
tion convergences, andMCmeans the mean compliance of
the design.
As shown in Fig. 14, in each problem, the upper figure is

the initial design, and the lower figure is the final design
after convergence. In each updating scheme, three
randomly generated initial designs are used to examine
the algorithm, and the last one is a fixed initial design with
three holes inside. The iteration numbers and objective
functions are provided in Fig. 14. These data are plotted in
Fig. 15, in which the distribution of the final results can be
clearly studied.
From the previous study, Scheme (a) can be considered a

ZLSM. Based on the results shown in Figs. 14 and 15, it
can be found with the random initial design, the results
show that this scheme needs relatively more iteration steps
and obtains high objective function values. When given an
appropriate initial design, the scheme obtains the best
result. This observation shows that ZLSM generally needs
a proper initial guess; otherwise, it may not achieve a good

Fig. 13 Design domain and boundary conditions of a simply
supported beam.

Fig. 14 Optimal results of the simply supported beam with different initial designs and three schemes. (a) Δ ¼ Δ0 ¼minΔ ¼ 0:01;
(b) Δ0 ¼ 5, dΔ ¼ – 0:1, minΔ ¼ 0:01; (c) Δ0 ¼ 5, dΔ ¼ – 0:05, minΔ ¼ 0:01.
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result. This condition is considered the initial design-
dependent problem. The nucleation capability can greatly
alleviate this problem, but the initial guess is still important
for level set-based models.
Schemes (b) and (c) involve the density distribution

stage that makes them close to a density-based optimiza-
tion model. Scheme (b) uses a larger reduction of Δ in each
iteration and shows faster convergent speed compared with
those of Scheme (c). A gradual decrease in Δ can generate
a reasonable final design, as demonstrated in Fig. 15; all of
the final designs using Scheme (c) have low final mean
compliances. Another observation is that the initial design
for the density-involved schemes is also important because
it accelerates the convergence greatly in Scheme (b). In
Scheme (c), the results are adequately good, and the
improvement is thus not obvious.

This numerical study can be concluded with the
following suggestion: If an appropriate initial design can
be easily obtained, Schemes (a) and (b) should be chosen;
otherwise, a small value for decreasing the level set band as
in Scheme (c) should be selected to obtain a reasonable
design by sacrificing some efficiency.

5.3 3D cantilever beam

This method can also be applied to 3D models without
difficulties. Figure 16 illustrates the optimization iteration
process of a 3D cantilever beam optimization problem. The
left side of the beam is fixed, and a downward force is
applied at the middle point of the bottom line of the right
side. The structure is discretized with 60 � 30 � 10
elements. The volume fraction is set at 20%. Δ is set at 5 at
the start and decreased by 0.1 each step to 0.5. Figure 16(a)
is the zero level set of the design at Steps 1, 15, 30, and
130. The corresponding density distributions are shown in
Fig. 16(b) by the way provided by Ref. [59]. The initial
design has a uniformly distributed density of 0.5. The
iteration process can be considered a density-based model.
In the end, only a small number of elements are gray
around the boundary. The iteration process illustrates that
the topology change can be easily realized, and a clear
boundary can be obtained without implementing any
penalization and filter schemes.

6 Conclusions

In this paper, a comparison between CLSM and ZLSM for
solving structural topology optimization problems is
schematically discussed. ZLSM, which can be easily
applied and solved with minimal numerical issues, is

Fig. 15 Comparison of the objective functions and the total
iteration steps of the simply supported beam problem with
different initial designs and Δ values.

Fig. 16 Implementation of the proposed method in the optimization of a 3D cantilever beam. (a) Zero level set of the 3D cantilever beam
problem (left to right: Steps 1, 15, 30, and 130); (b) density distribution of the 3D cantilever beam problem (left to right: Steps 1, 15, 30,
and 130).
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suggested in practical implementations. We propose the
level set band method to learn from density-based methods
with a remarkable flexibility change in topology and
improve the level set-based method by introducing a level
set band Φb, which utilizes the high-dimensional informa-
tion of the level set function to improve the continuity of
the objective and constraint functions in handling topology
changes. The density and the level set-based methods can
be seamlessly combined by changing the value of Φb
gradually. The proposed model with a large value of the
level set band illustrates the property of the density-based
model and is highly flexible in handling topology change.
When the size of the level set band is decreased, this
method becomes similar to an LSM, which can provide
clear boundaries or a black-and-white design, without
involving penalization. Thus, the parameter, level set band,
can be used to connect the density-based method and LSM.
In another aspect, this algorithm shows that the two
methods have no essential difference. Numerical examples
with random initial designs are used to evaluate the
convergence property of the proposed method. If the initial
design is unclear, the level set band can be slowly
decreased to obtain a highly reasonable design with lesser
efficiency; otherwise, the size of the level set band can be
decreased rapidly to accelerate the convergence process.
2D and 3D examples are solved to illustrate the
effectiveness of the proposed method.
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