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Abstract This paper presents a dynamic and static error
transfer model and uncertainty evaluation method for a
high-speed variable-slit system based on a two-
dimensional orthogonal double-layer air-floating guide rail
structure. The motion accuracy of the scanning blade is
affected by both the moving component it is attached to
and the moving component of the following blade during
high-speed motion. First, an error transfer model of the
high-speed variable-slit system is established, and the
influence coefficients are calculated for each source of
error associated with the accuracy of the blade motion.
Then, the maximum range of each error source is
determined by simulation and experiment. Finally, the
uncertainty of the blade displacement measurement is
evaluated using the Monte Carlo method. The proposed
model can evaluate the performance of the complex
mechanical system and be used to guide the design.

Keywords air-floating guide rail, error transfer model,
driving and following structure, dynamic error, uncertainty
evaluation, Monte Carlo method

1 Introduction

Rapid advances in the semiconductor industry have led to
the need for high-throughput photolithography systems
that can produce semiconductor devices with enhanced
performance at higher speeds. Therefore, the exposure
system used in photolithography processes must provide

high productivity, a low critical dimension, and a high
overlay [1–4]. The optical illumination system of the
lithography exposure machine is shown in Fig. 1. The
high-speed variable slit system (HSVSS) is an important
part of the optical illumination system. As shown in Fig. 1,
the generated laser light propagated along the beam line
and red arrows indicate the direction of laser propagation.
The variable attenuator can adjust laser power and the
integrator rod can homogenize laser exposure. On the path
of laser propagation, energy sensor can detect laser power
for precise power control and the HSVSS controls the
position and size of the exposed area by driving a set of
blades. Finally, the laser is exposure on the spot sensor
through a series of optical lens. During the exposure
process, the scanning blades are synchronized with the
mask to prevent the beam from illuminating areas outside
of the specified exposure field. Therefore, rapid accelera-
tion and high precision of the blade movements are
required. The performance of the HSVSS directly affects
the performance of the lithography exposure machine and
the quality of the resulting semiconductor chip.
Mechanical systems in lithography exposure machine

usually require demanding functional requirements and
performance index in a limited design space. Its functional
requirements and performance indexes depend on the
design of complex mechanical system. Based on the
requirements of the optical illumination system, the four
blades of the HSVSS must move along the same plane with
high acceleration and at high speed. This requires each
blade in the HSVSS to have two degrees of freedom. To
meet these design requirements, a “driving and following”
structure based on a two-dimensional orthogonal double-
layer air-floating guide rail must be used as the motion
transmission mechanism of the HSVSS. The key issue in
the design of the HSVSS is the ability to drive the blades
with high dynamic accuracy within such a complex
structure. Establishing a dynamic and static error propaga-
tion model of the HSVSS and analyzing the influence of
each error source on the blade displacement error can
provide guidance for error compensation and determine
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how error should be distributed in the design of the system
[5–7]. However, error values cannot be obtained through
experiments and simulations. Therefore, estimating the
uncertainty of the blade displacement measurement is
necessary to evaluate the system’s performance [8–11].
Proposing different error modeling methods for different
mechanical systems has become a hot research topic in the
field of precision machinery.
Error modeling of precision mechanical systems has

been extensively researched in the past. The homogeneous
transformation matrix [12,13] and Denavit–Hartenberg
transformation matrix [14] are widely used. Tang et al. [15]
introduced a systematic approach to calculate the straight-
ness and angular kinematic errors based on measurements
of the guideway surface and fitting curve. Chen et al. [16]
proposed a comprehensive error analysis method to
uncover how geometric error propagates through every
motion axis, and to identify the error parameters with the
greatest impact on the tool posture error at the end of the
kinematic chain. Tian et al. [17] presented a general
systematic approach based on linear mapping for model-
ling the geometric error of machine tools due to
manufacturing and assembly errors. Zhao et al. [18], Li
et al. [19], Chen et al. [20], and Liu et al. [21] established
error transformation models of five-axis machine tools, and
proposed various methods of analyzing the error source
sensitivity and identifying errors. Andolfatto et al. [22] and
Liu et al. [23] evaluated the mechanical performance of a
five-axis machine tool and an H-drive stage with an air
bearing, respectively, and used the Monte Carlo method
(MCM) in their analyses to assess measurement accuracy.
The error propagation models of structures in the above

methods are either single-chain models or simple double-
chain models [20]. Every blade in the HSVSS has two sets
of structures (driving and following), each with two
degrees of freedom. The error transmission of the driving
structure and the following structure interact with each
other. Furthermore, every blade should have high accuracy

during high acceleration and at high speed. Therefore, it is
necessary to develop a specific method for modelling the
error and uncertainty of these unique structures.
An error analysis method for the HSVSS during high

acceleration and high speed is proposed in this paper. First,
an error transfer model of the HSVSS is established based
on the theory of multi-body systems and the influence
coefficient is calculated for each source of error. Then, the
maximum error range of is obtained for each error value
either using a finite element simulation or experimentally.
Finally, the displacement measurement uncertainty results
of the blades are evaluated using the MCM.

2 Driving and following structures of the
HSVSS

As shown in Fig. 2, the HSVSS of the step-and-scan
lithography exposure machine adjusts the exposure area by
controlling the movements of four blades. Blades of the
HSVSS form rectangular windows of different sizes at
different positions. The red dots in Fig. 2 represent the
center of the optical system, and the four blades are
labelled as Y1, X1, Y2, and X2. During the exposure
process, Blades X1 and X2 move in a stepwise motion
along X direction, and Blades Y1 and Y2 scan along Y
direction. To prevent light leakage from affecting the
exposure quality, the four blades must remain on the same
plane and have high motion accuracy during high
acceleration and at high speed.
When the four blades are in the same plane, they cannot

overlap, and every blade must move in two degrees of
freedom at high speed and with high precision. The motion
guiding mechanism of the blade is a two-dimensional
orthogonal double-layer air-floating guide rail, as shown in
Fig. 3. In this structure, the rail fixed to the basic mounting
plate is referred to as the driving air-floating guide rail and
the rail connected to the blade is called the air-floating

Fig. 1 Schematic diagram of the optical illumination system. HSVSS: High-speed variable slit system.
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guide driven rail. Two perpendicular rails (driving rail and
driven rail) are attached to the air-floating guide sleeve.
The two air-floating guide rails and the air-floating guide
sleeve can move relative to one another at high speed.
As shown in Fig. 4, the entire system consists of four

blades and their guiding mechanism. The blade is installed
on the blade holder and the blade holder is fixed on the
driven rail. Adjacent blade holders are connected by
linkage mechanism consisting of a magnet, two bearings,
and a limiting device. Taking Blade Y1 as an example,
when the blade moves along Y direction on the driving rail,
it carries Blade X2 on the driven rail along the Y direction,
as shown in Fig. 5. During this movement, Blade Y1 is the
driving blade and Blade X2 is the following blade.

Fig. 3 Schematic diagram of two-dimensional orthogonal
double-layer air-floating guide rail.

Fig. 4 Schematic diagram of blades and linkage mechanism.

Fig. 2 Schematic drawing of the rectangular window.
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Bearings on the blade holder of Blades X2 and Y1 roll
along the holder of Blades X1 and Y2, respectively, and
the magnets add a preload between the bearings and blade
holders. Thus, the motion error of the blade is mainly
caused by the error of the moving component that it is
attached to as well as the moving component of the next
blade. Kinematic relationships of the blades are presented
in Table 1.

The overall structure of the HSVSS is shown in Fig. 6.
The system is comprised of linear motors, air-floating
guide rails, and moving components. The measurement

feedback module is a linear scale grating ruler. The driving
guide rail of the double-layer two-dimensional orthogonal
air-floating guide rail is fixed on a basic mounting plate and
the sleeve is directly driven by the linear motor. To achieve
high control accuracy, a gravity compensation device is
applied to the guide rail moving along Y direction and fixed
behind the basic mounting plate.

3 Integrated error propagation model of the
HSVSS

3.1 Error propagation model

The HSVSS is a mechanical system composed of several
rigid bodies. The topology of the system can be described
using a low-order array. Based on the previous section, it
can be concluded that the motion error of the blade is
caused by the error of the moving component the blade is
attached to and the moving component of the following
blade. As shown in Fig. 7(a), the single blade displacement

Fig. 5 Schematic illustration of motion of the driving blade and following blade (Blade Y1).

Table 1 Kinematic relationships of blades

Driving blade Following blade Motionless blade

Y1 X2 X1, Y2

Y2 X1 X2, Y1

X1 Y1 X2, Y2

X2 Y2 X1, Y1

Fig. 6 Photograph of the overall HSVSS structure.
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output module consists of a fixed base (basic mounting
plate), driving air-floating guide rail, air-floating guide
sleeve, driven air-floating guide rail, blade, following air-
floating guide sleeve, and driving guide rail of the
following part. The topology is shown in Fig. 7(b).
The geometric motion model of the HSVSS can be

established according to its topology, and motion errors
can be substituted into the model. First, the basic mounting
plate coordinate system CS0, the driving air-floating guide
rail coordinate system CS1, the air-floating guide sleeve
coordinate system CS2, the driven air-floating guide rail
and blade coordinate system CS3, the driving guide rail of
following part CS1′, and the following air-floating guide
sleeve coordinate system CS2′ are established. Then the
transfer characteristic matrixes are established under ideal
conditions and actual conditions. The transfer character-
istic matrix represents the coordinate transformation
between adjacent rigid bodies. Information on the position
of the blade in the basic mounting plate coordinate system
under ideal conditions and actual conditions can be
expressed, and an expression for the blade position error
can be obtained.
As shown in Fig. 8, rigid bodies B1, B2, …, Bk, Bk+1 are

in ideal positions B1-ideal, B2-ideal, …, Bk-ideal, Bk+1-ideal,
respectively, under ideal conditions. Due to motion errors,
rigid bodies B1, B2, …, Bk, Bk+1 are in real positions

B1-real, B2-real, …, Bk-real, Bk+1-real under real conditions.
The ideal coordinate transformation matrix is defined as
iT kþ1

k and the error matrix is defined as eT kþ1
k . The

coordinate transformation matrixes, error matrixes in the
HSVSS and types of errors between adjacent rigid bodies
are shown in Tables 2 and 3.
Coordinate (xs, ys, zs) denotes the origin of each part in

the low-order body coordinate system in the static state.
The relationships for converting between the coordinate
systems are 0-1 (CS0-CS1), 1-2 (CS1-CS2), 2-3 (CS2-CS3),
0-1′ (CS0-CS1′), 1′-2′ (CS1′-CS2′), and 2′-3 (CS2′-CS3). The
ideal position coordinate of point P on the blade in the
basic mounting plate coordinate system is obtained by
ideal coordinate transformation matrixes and it is
expressed as:

Pideal ¼ iT 1
0

iT 2
1

iT 3
2½xp, yp, zp, 1�T: (1)

Due to errors, the position coordinate of point P on the
blade in the basic mounting plate coordinate system under
actual conditions is obtained by ideal coordinate transfor-
mation matrixes and actual coordinate transformation
matrixes. Based on geometric motion model of the
HSVSS, the actual position of the blade is affected by
the air-floating rail to which it belongs and the following
blade that it is connected to. As shown in Fig. 7(b), 0-1-2-3

Fig. 7 Schematic illustrations of (a) the motion module structure of single blade and (b) its topology.

Fig. 8 Error description of adjacent rigid bodies.
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(CS0-CS1-CS2-CS3) and 0-1′-2′-3 (CS0-CS1′-CS2′-CS3) are
two separate coordinate transfer chains. The influences of
geometric errors from two coordinate transfer chains on the
actual position of point P are independent of each other.
Therefore, the actual position coordinate of point P can be
expressed as

Preal ¼ eT 1
0

iT 1
0

eT 2
1

iT 2
1

eT 3
2

iT 3
2½xp, yp, zp, 1�T

þ eT 1í
0

iT 1í
0

eT 2í
1í

iT 2í
1í

eT 3
2í

iT 3
2½xp, yp, zp, 1�T: (2)

The position error of point P on the blade in the basic
mounting plate coordinate system is

ΔP ¼ Preal –Pideal: (3)

3.2 Analysis of influence of error sources on the displace-
ment error

The influence coefficient of the error sources on the
displacement error of the blade can be obtained by taking
the partial derivative of each error term with respect to
ΔP ¼½Δxi,Δyi,Δzi,0�T, as follows:

KxiðδjÞ ¼
∂Δxi
∂δj

, (4)

KyiðδjÞ ¼
∂Δyi
∂δj

, (5)

Table 2 Coordinate transformation matrices and error matrices of blade moving along the Y direction (unit: m)

Adjacent rigid body
Coordinate transformation
matrix under ideal condition

Error matrix Type of error

0-1

iT1
0 ¼

1 0 0 xs

0 1 0 ys

0 0 1 zs

0 0 0 1

2
66664

3
77775

eT1
0 ¼

1 – δRz0-1 δRy0-1 δx0-1

δRz0-1 1 – δRx0-1 δy0-1

– δRy0-1 δRx0-1 1 δz0-1

0 0 0 1

2
66664

3
77775

Assembly error

1-2

iT2
1 ¼

1 0 0 xs

0 1 0 ys þ y

0 0 1 zs

0 0 0 1

2
66664

3
77775

eT2
1 ¼

1 – δRz1-2 δRy1-2 δx1-2

δRz1-2 1 – δRx1-2 δy1-2

– δRy1-2 δRx1-2 1 δz1-2

0 0 0 1

2
66664

3
77775

Measurement error,
dynamic error, and
straightness error

2-3

iT3
2 ¼

1 0 0 xs þ x

0 1 0 ys

0 0 1 zs

0 0 0 1

2
66664

3
77775

eT3
2 ¼

1 – δRz2-3 δRy2-3 δx2-3

δRz2-3 1 – δRx2-3 δy2-3

– δRy2-3 δRx2-3 1 δz2-3

0 0 0 1

2
66664

3
77775

Assembly error, straight-
ness error, dynamic error,

and thermal error

0-1′

iT1í
0 ¼

1 0 0 xs

0 1 0 ys

0 0 1 zs

0 0 0 1

2
66664

3
77775

eT1í
0 ¼

1 – δRz0-1# δRy0-1# δx0-1#

δRz0-1# 1 – δRx0-1# δy0-1#

– δRy0-1# δRx0-1# 1 δz0-1#

0 0 0 1

2
66664

3
77775

Assembly error

1′-2′

iT2í
1í ¼

1 0 0 xs þ x

0 1 0 ys

0 0 1 zs

0 0 0 1

2
66664

3
77775

eT2í
1í ¼

1 – δRz1#-2# δRy1#-2# δx1#-2#

δRz1#-2# 1 – δRx1#-2# δy1#-2#

– δRy1#-2# δRx1#-2# 1 δz1#-2#

0 0 0 1

2
66664

3
77775

Straightness error

2′-3

T3
2í ¼

1 0 0 xs

0 1 0 ys þ y

0 0 1 zs

0 0 0 1

2
66664

3
77775

eT3
2í ¼

1 – δRz2#-3 δRy2#-3 δx2#-3

δRz2#-3 1 – δRx2#-3 δy2#-3

– δRy2#-3 δRx2#-3 1 δz2#-3

0 0 0 1

2
66664

3
77775

Assembly error and
straightness error
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KziðδjÞ ¼
∂Δzi
∂δj

, (6)

where i represents X1, X2, Y1, and Y2, and dj represents
the jth error source.
The optical axis of the optical system is set as origin of

the coordinate system. The travel range of blade moving
along X direction is�22 mm and it can be expressed on the
X-axis as [–0.022 m, 0.022 m]. The travel range of blade
moving along Y direction is �30 mm and it can be
expressed on the Y-axis as [–0.030 m, 0.030 m]. The
maximum window formed by four blades is 28 mm in the
X direction and 20 mm in the Y direction during the blade
scanning process. The window is shown in Fig. 9(a), and
point P is the center point of the window. The influence
coefficient of error sources on the displacement error of the

blade is different when the blade is in different positions.
Therefore, the influence coefficient of error sources is
analyzed when the window formed by blades is at different
positions in this paper. Nine points P1–P9 are taken and
their positions and their coordinates are shown in Fig. 9(b).
These nine points are different positions of the window
center. When the window center is at P1, P2 or P3, Blade
Y1 is at the top of its travel range; when the window center
is at P7, P8 or P9, Blade Y2 is at the bottom of its travel
range; when the window center is at P1, P4 or P7, Blade X2
is at the leftmost end of its travel range; and when the
window center is at P3, P6 or P9, Blade X1 is at the
rightmost end of its travel range.
The coordinate transformation matrixes under ideal

condition and error matrixes of four blades are shown in
Table 4, and the values of matrixes are shown in Table 5.

Table 3 Coordinate transformation matrices and error matrices of blade moving along the X direction (unit: m)

Adjacent rigid
body

Coordinate transformation
matrix under ideal condition

Error matrix Types of error

0-1

iT1
0 ¼

1 0 0 xs

0 1 0 ys

0 0 1 zs

0 0 0 1

2
66664

3
77775

eT1
0 ¼

1 – δRz0-1 δRy0-1 δx0-1

δRz0-1 1 – δRx0-1 δy0-1

– δRy0-1 δRx0-1 1 δz0-1

0 0 0 1

2
66664

3
77775

Assembly error

1-2

iT2
1 ¼

1 0 0 xs þ x

0 1 0 ys

0 0 1 zs

0 0 0 1

2
66664

3
77775

eT2
1 ¼

1 – δRz1-2 δRy1-2 δx1-2

δRz1-2 1 – δRx1-2 δy1-2

– δRy1-2 δRx1-2 1 δz1-2

0 0 0 1

2
66664

3
77775

Measurement error
and straightness error

2-3

iT3
2 ¼

1 0 0 xs

0 1 0 ys þ y

0 0 1 zs

0 0 0 1

2
66664

3
77775

eT3
2 ¼

1 – δRz2-3 δRy2-3 δx2-3

δRz2-3 1 – δRx2-3 δy2-3

– δRy2-3 δRx2-3 1 δz2-3

0 0 0 1

2
66664

3
77775

Assembly error,
straightness error, and

thermal error

0-1′

iT1í
0 ¼

1 0 0 xs

0 1 0 ys

0 0 1 zs

0 0 0 1

2
66664

3
77775

eT1í
0 ¼

1 – δRz0-1# δRy0-1# δx0-1#

δRz0-1# 1 – δRx0-1# δy0-1#

– δRy0-1# δRx0-1# 1 δz0-1#

0 0 0 1

2
66664

3
77775

Assembly error

1′-2′

iT2í
1í ¼

1 0 0 xs

0 1 0 ys þ y

0 0 1 zs

0 0 0 1

2
66664

3
77775

eT2í
1í ¼

1 – δRz1#-2# δRy1#-2# δx1#-2#

δRz1#-2# 1 – δRx1#-2# δy1#-2#

– δRy1#-2# δRx1#-2# 1 δz1#-2#

0 0 0 1

2
66664

3
77775

Straightness error

2′-3

T3
2í ¼

1 0 0 xs þ x

0 1 0 ys

0 0 1 zs

0 0 0 1

2
66664

3
77775

eT3
2í ¼

1 – δRz2#-3 δRy2#-3 δx2#-3

δRz2#-3 1 – δRx2#-3 δy2#-3

– δRy2#-3 δRx2#-3 1 δz2#-3

0 0 0 1

2
66664

3
77775

Assembly error and
straightness error
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Fig. 9 (a) Definition and (b) positions of window center.

Table 4 Coordinate transformation matrices and error matrices of blade (unit: m)

Adjacent rigid bodies
Coordinate transformation matrix under ideal

condition
Error matrix

0-1

iT1
0 ¼

1 0 0 lx0

0 1 0 ly0

0 0 1 lz0

0 0 0 1

2
66664

3
77775

eT1
0 ¼

1 – δRz0-1 δRy0-1 δx0-1

δRz0-1 1 – δRx0-1 δy0-1

– δRy0-1 δRx0-1 1 δz0-1

0 0 0 1

2
66664

3
77775

1-2

iT2
1 ¼

1 0 0 lx1

0 1 0 ly1

0 0 1 lz1

0 0 0 1

2
66664

3
77775

eT2
1 ¼

1 – δRz1-2 δRy1-2 δx1-2

δRz1-2 1 – δRx1-2 δy1-2

– δRy1-2 δRx1-2 1 δz1-2

0 0 0 1

2
66664

3
77775

2-3

iT2
1 ¼

1 0 0 lx2

0 1 0 ly2

0 0 1 lz2

0 0 0 1

2
66664

3
77775

eT3
2 ¼

1 – δRz2-3 δRy2-3 δx2-3

δRz2-3 1 – δRx2-3 δy2-3

– δRy2-3 δRx2-3 1 δz2-3

0 0 0 1

2
66664

3
77775

0-1′

iT1í
0 ¼

1 0 0 lx0#

0 1 0 ly0#

0 0 1 lz0#

0 0 0 1

2
66664

3
77775

eT1í
0 ¼

1 – δRz0-1# δRy0-1# δx0-1#

δRz0-1# 1 – δRx0-1# δy0-1#

– δRy0-1# δRx0-1# 1 δz0-1#

0 0 0 1

2
66664

3
77775

1′-2′

iT2í
1í ¼

1 0 0 lx1#

0 1 0 ly1#

0 0 1 lz1#

0 0 0 1

2
66664

3
77775

eT2í
1í ¼

1 – δRz1#-2# δRy1#-2# δx1#-2#

δRz1#-2# 1 – δRx1#-2# δy1#-2#

– δRy1#-2# δRx1#-2# 1 δz1#-2#

0 0 0 1

2
66664

3
77775

2′-3

iT3
2í ¼

1 0 0 lx2#

0 1 0 ly2#

0 0 1 lz2#

0 0 0 1

2
66664

3
77775

eT3
2í ¼

1 – δRz2#-3 δRy2#-3 δx2#-3

δRz2#-3 1 – δRx2#-3 δy2#-3

– δRy2#-3 δRx2#-3 1 δz2#-3

0 0 0 1

2
66664

3
77775
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Parameters a and b in matrixes taking different values
indicated that the center of the window is at to different
points, and the corresponding relation is shown in Table 6.
Point P on the blade is taken in the CS3 coordinate system
and the coordinate values of point P on the four blades are
shown in Table 7.

According to Eq. (2), the actual position of point P on
the blade in the basic mounting plate coordinate system
can be calculated. According to Eq. (3), the deviation ΔP
¼ ½Δx,Δy,Δz, 0�T between the actual position and the ideal
position of point P can be calculated. Finally, according to
Eqs. (4)–(6), the influence coefficient of error sources of
every error source in the error matrixes of the four blades at
different positions on error components Δx, Δy, and Δz of
ΔP are calculated, and bar graphs are made as shown in
Figs. 10–13, where (a), (b), and (c) are influence coefficient
diagrams of the Δx, Δy, and Δz, respectively. Numbers
along x-axis in Figs. 10–13 indicate the window centers
P1–P9. Numbers along y-axis indicates that Δx, Δy, and Δz
are influenced by 36 error sources, respectively, and the
numbers of error sources are 1 to 36, where
1–6: Offset errors between adjacent bodies along x-axis;
7–12: Offset errors between adjacent bodies along

y-axis;
13–18: Offset errors between adjacent bodies along

z-axis;
19–24: Rotation errors between adjacent bodies around

x-axis;
25–30: Rotation errors between adjacent bodies around

y-axis;
31–36: Rotation errors between adjacent bodies around

z-axis.
Based on the calculations and Figs. 10–13, a number of

conclusions can be drawn:
1) Offset errors have the greatest influence on the

Table 5 Values of coordinate transformation matrixes under ideal condition (unit: m)

Values of Blade Y1 Values of Blade Y2 Values of Blade X1 Values of Blade X2

lx0 = 0.0205 lx0 = 0.2495 lx0 = 0.125 lx0 = 0.145

ly0 = 0.127 ly0 = 0.179 ly0 = 0.215 ly0 = 0.091

lz0 = 0.02955 lz0 = 0.02955 lz0 = 0.03195 lz0 = 0.03195

lx1 = 0 lx1 = 0 lx1 = 0.09792+ b lx1 = –0.04991+ b

ly1 = 0.07342+ a ly1 = –0.03741+ a ly1 = 0 ly1 = 0

lz1 = 0 lz1 = 0 lz1 = 0 lz1 = 0

lz1 = –0.04395+ b lz1 = 0.03195+ b lz1 = –0.0165 lz1 = –0.0435

ly2 = 0.037 ly2 = –0.08041 ly2 = 0.05445+ a ly2 = –0.01845+ a

lz2 = 0.027 lz2 = 0.027 lz2 = 0.026 lz2 = 0.026

lx0# = 0.145 lx0# = 0.125 lx0# = 0.0205 lx0# = 0.2495

ly0# = 0.091 ly0# = 0.215 ly0# = 0.127 ly0# = 0.179

lz0# = 0.03195 lz0# = 0.03195 lz0# = 0.02955 lz0# = 0.02955

lx1# = –0.04991+ b lx1# = 0.09792+ b lx1# = 0 lx1# = 0

ly1# = 0 ly1# = 0 ly1# = 0.07342+ a ly1# = –0.03741+ a

lz1# = 0 lz1# = 0 lz1# = 0 lz1# = 0

lx2# = –0.11854 lx2# = 0.05853 lx2# = 0.18592+ b lx2# = –0.19791+ b

ly2# = 0.15242+ a ly2# = –0.11641+ a ly2# = 0.06903 ly2# = –0.06904

lz2# = 0.0246 lz2# = 0.0246 lz2# = 0.0284 lz2# = 0.0284

Table 6 Values of a and b when the blade is at different positions

Position a/m b/m

P1 0.000 0.000

P2 –0.018 0.000

P3 –0.036 0.000

P4 0.000 0.006

P5 –0.018 0.006

P6 –0.036 0.006

P7 0.000 0.012

P8 –0.018 0.012

P9 –0.036 0.012

Table 7 Coordinate values of the point P on the four blades in the CS3
coordinate

Blade Coordinate values/mm

Y1 (0.17284, –0.06242, 0.01955)

Y2 (0.06341, 0.11484, 0.01815)

X1 (–0.17284, 0.06242, 0.01955)

X2 (–0.06341, –0.11484, 0.01815)
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displacement error. They are mainly caused by errors in the
manufacture and assembly of HSVSS components.
2) Rotation errors in matrixes eT 1í

0 and eT 1
0 have a large

influence on the displacement error and are mainly due to
errors caused by installation of the driving air-floating
guide rail.
3) Rotation errors in matrixes eT 3

2 and eT 3í
2 have little

influence on the displacement error. They are due to errors
caused by installation of the blades on the blade holders,
installation of the air-floating guide sleeves, and movement
of the driven air-floating guide rail.

4 Analysis of blade displacement error
sources

When the blades are moving, the linear grating ruler can be
used as a measurement feedback module to control the
high-precision motion of the blades. Motion errors of the
blades can be divided into errors obtained using the
measurement feedback module and terrors from the motion
module. Error is expressed in the form of a six-degree-of-
freedom error vector δx, δy, δz, δRx, δRy, δRz

� �
, where

δx, δy, and δz represent the offset error in the X, Y, and Z

Fig. 10 The influence coefficient of error sources of Blade X1. (a) Δx of Blade X1; (b) Δy of Blade X1; (c) Δz of Blade X1.

Fig. 11 The influence coefficient of error sources of Blade X2. (a) Δx of Blade X2; (b) Δy of Blade X2; (c) Δz of Blade X2.
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directions, respectively, and δRx, δRy, and δRz represent the
rotation error in X, Y, and Z directions, respectively.

4.1 Measurement feedback module error

Errors obtained by the measurement feedback module
include the assembly error, thermal error, and measurement
error.

4.1.1 Assembly error

When the linear grating ruler is not parallel to the axis of
the driving rail due to assembly errors, error will exist

between the measurement result and the actual position of
the measured object, as shown in Fig. 14.
Taking the blade moving along Y direction as an

example and the length of the linear grating ruler as 100
mm, the cosine errors caused by the assembly error of
linear grating ruler are

δyy1x ¼ LY1 – L#Y1 ¼ LY1ð1 – cos�x1Þ ¼ 0:5LY1�
2
x1, (7)

δyy1z ¼ LY1 – L#Y1 ¼ LY1ð1 – cos�z1Þ ¼ 0:5LY1�
2
z1: (8)

Maximum allowable errors of �x1 and �z1 are both 0.1
mrad. The maximal error caused by �x1 and �z1 are

Fig. 13 The influence coefficient of error sources of Blade Y2. (a) Δx of Blade Y2; (b) Δy of Blade Y2; (c) Δz of Blade Y2.

Fig. 12 The influence coefficient of error sources of Blade Y1. (a) Δx of Blade Y1; (b) Δy of Blade Y1; (c) Δz of Blade Y1.
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δyyx ¼ 0:5LY�
2
x ¼ 0:5� 0:1� ð0:0001Þ2 ¼ 0:5 nm, (9)

δyyz ¼ 0:5LY�
2
z ¼ 0:5� 0:1� ð0:0001Þ2

¼ 0:5 nm: (10)

The maximum assembly error of the blade moving along
the Y direction can be determined by summing δyyx and
δyyz, expressed as

δ1_y ¼ 0, 0:001 μm, 0, 0, 0, 0½ �: (11)

Similarly, the maximum assembly error of the blade
moving along X direction can be obtained. The length of
the linear grating ruler along the X direction is 80 mm,
therefore, the maximum assembly error can be expressed
as

δ1_x ¼ 0:0008 μm, 0, 0, 0, 0, 0½ �: (12)

4.1.2 Thermal error

The linear grating ruler used in this system is made of steel
with a thermal expansion coefficient αtherm ¼ 10 – 5 K–1.
Changes in temperature can cause variation in the grating
period constant:

Δd ¼ dαthermðt – t0Þ: (13)

The measurement error introduced in the total range is

δ2 ¼ NΔd: (14)

Ambient temperature of the HSVSS is 22 °C. According
to the simulation results, the maximum temperature of the
motor coil moving along the X direction is 24 °C and the
maximum temperature of the motor coil moving along the
Y direction is 28 °C. The temperature of the linear grating
ruler is the same as the temperature of the motor coil. The
length of the linear grating ruler along the X direction is
80 mm and the length of linear grating ruler along the
Y direction is 100 mm. The maximum thermal errors can be
expressed as

δ2_x ¼ 1:6 μm, 0, 0, 0, 0, 0½ �, (15)

δ2_y ¼ 0, 6 μm, 0, 0, 0, 0½ �: (16)

4.1.3 Measurement error

A laser interferometer can be used as a calibration tool. As
the blade moves, measurements are obtained using the
linear grating ruler and compared to those taken by the
interferometer. The maximum measurement errors can be
obtained as the maximum difference between the two
measurements. The results are presented in Fig. 15. The
maximum measurement error of the linear grating ruler
along the X direction is 1.1 μm and the maximum
measurement error of the linear grating ruler along Y
direction is 1.5 μm, expressed as

δ3_x ¼ 1:1 μm, 0, 0, 0, 0, 0½ �, (17)

δ3_y ¼ 0, 1:5 μm, 0, 0, 0, 0½ �: (18)

Assembly error, thermal error, and measurement error
are all in the same coordinate system, therefore, no
coordinate transformation is required. The total error
obtained by the measurement feedback module δm is

δm ¼ δ1 þ δ2 þ δ3: (19)

Fig. 14 Schematic of assembly errors of linear grating ruler.

Fig. 15 Measurement error of the linear grating ruler along the
(a) X and (b) Y directions, respectively.
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4.2 Motion module error

4.2.1 Assembly error of driving guide rail

Geometric error of the driving air-floating guide rail is
mainly caused by assembly errors, as shown in Fig. 16.
The offset of the guide rail center of mass from the ideal
position is expressed as the offset error of the rail, and the
angle between the rail edge and the ideal axis is the angular
error. The maximum assembly errors can be expressed as
follows:

δfab_x1 ¼ 3 μm, 3 μm, 0, 0, 0:018 μrad, 0:018 μrad½ �,
(20)

δfab_x2 ¼ 3 μm, 3 μm, 0, 0, 0:018 μrad, 0:018 μrad½ �,
(21)

δfab_y1 ¼ 3 μm, 3 μm, 0, 0:017 μrad, 0, 0:017 μrad½ �,
(22)

δfab_y2 ¼ 3 μm, 3 μm, 0, 0:017 μrad, 0, 0:017 μrad½ �:
(23)

4.2.2 Guide sleeve error

Error of guide sleeve of the two-dimensional double-layer
orthogonal air-floating guide rail is comprised of the
assembly error, straightness error of the guide rail, and
thermal error.

4.2.2.1 Assembly error

Owing to assembly errors of the two-dimensional double-
layer orthogonal air-floating guide rail, the driven guide
rail may not be perpendicular to the driving guide rail. The
maximum verticality error of the two-dimensional double-
layer orthogonal air-floating guide rail can be measured by
three coordinate machines: the verticality error of the air-
floating sleeve carrying Blade X1 is 1.4 μm; the verticality
error of the air-floating sleeve carrying Blade X2 is 1.5 μm;
the verticality error of the air-floating sleeve carrying Blade
Y1 is 2.3 μm; the verticality error of the air-floating sleeve
carrying Blade Y2 is 2.5 μm.
As shown in Fig. 17, rotation error about the Z-axis of

the driven guide rail is caused by verticality error. The
relationship between the rotation error and verticality error
is

δpar_rot ¼
δpar
l
: (24)

In the two-dimensional double-layer orthogonal air-
floating guide rails carrying Blades X1 and X2, l ¼ 33
mm. In the two-dimensional double-layer orthogonal air-
floating guide rails carrying Blades Y1 and Y2, l ¼ 33
mm. The rotation errors were calculated as

δpar_x1 ¼ 0, 0, 0, 0, 0, 0:042 μrad½ �, (25)

δpar_x2 ¼ 0, 0, 0, 0, 0, 0:045 μrad½ �, (26)

δpar_y1 ¼ 0, 0, 0, 0, 0, 0:053 μrad½ �, (27)

Fig. 16 Schematic illustration of the driving guide rail assembly error.
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δpar_y2 ¼ 0, 0, 0, 0, 0, 0:058 μrad½ �: (28)

4.2.2.2 Straightness error

The straightness error of the air-floating guide rail can be
measured using an autocollimator, and the experimental
setup is shown in Fig. 18. The measuring rail, shown in
Fig. 18, is the driving rail and belongs to the air-floating
guide rail carrying Blade X2. Results presented in Fig. 19
were obtained by collating measurements.

The black straight lines in Fig. 19 are obtained by
performing a least square fit on the obtained data. The
straightness error can be obtained by the difference
between experimental data and fitted straight line and it
can be expressed as:

δstr ¼dmax – dmin: (29)

According to the data, the straightness error along Z
direction is 0.007 μm and the straightness error along Y
direction is 0.003 μm.

δstr_x2_1 ¼ 0, 0:003 μm, 0:007 μm, 0, 0, 0½ �: (30)

Straightness errors of other guide rails were obtained
using the same method and the following values were
obtained:

δstr_x2_2 ¼ 0:003 μm, 0, 0:007 μm, 0, 0, 0½ �, (31)

δstr_x1_1 ¼ 0, 0:004 μm, 0:006 μm, 0, 0, 0½ �, (32)

δstr_x1_2 ¼ 0:005 μm, 0, 0:007 μm, 0, 0, 0½ �, (33)

δstr_y1_1 ¼ 0:008 μm, 0, 0:007 μm, 0, 0, 0½ �, (34)

δstr_y1_2 ¼ 0, 0:008 μm, 0:006 μm, 0, 0, 0½ �, (35)

Fig. 17 Schematic drawing of rotation error caused by verticality error.

Fig. 18 Experimental setup for measuring the air-floating guide rail straightness.

Fig. 19 Straightness error along the (a) Z and (b) Y directions when the guide rail is moving along the X direction, respectively.
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δstr_y2_1 ¼ 0:006 μm, 0, 0:007 μm, 0, 0, 0½ �, (36)

δstr_y2_2 ¼ 0, 0:006 μm, 0:008 μm, 0, 0, 0½ �: (37)

4.2.2.3 Thermal error

The expansive deformation of the air-floating sleeve after
an increase in the temperature of the motor coil can be
obtained using the finite element simulation method. In
this case, the ambient temperature was 22 °C, the
maximum temperature of the motor coil moving along Y
direction was 28 °C, and the maximum temperature of the
motor coil moving along X direction was 24 °C. Before the
simulation, the temperature of the contact surface between
the driving guide rail and the guide sleeve was the same as
the ambient temperature.
The position error between driving guide rail and driven

guide rail caused by the thermal deformation of guide
sleeve can be expressed as

δtherm_x ¼ – 0:002 μm, 0:082 μm, 0:023 μm, 0, 0, 0½ �,
(38)

δtherm_y ¼ 0:031 μm, 0:028 μm, 0:009 μm, 0, 0, 0½ �:
(39)

4.2.3 Dynamic error of scanning blade

4.2.3.1 Inertial force deformation error

During the acceleration of the scanning blade, the
mechanism of deformation will be inertial forces, leading
to deviation between the position of the blade and the
position detected by the linear grating ruler. Simulation
results are shown in Fig. 20. When the extension length of
the driven guide rail is maximum, the maximum error is

introduced by the scanning blade in the scanning direction
due to inertial force deformation and is approximately 8.3
μm, expressed as

δinertia force ¼ 0, 0, 8:3 μm, 0, 0, 0½ �: (40)

4.2.3.2 Error caused by air gap variation

Because the center of mass of the moving part is not on the
axis of the air-floating guide rail, an angle of deflection �
exists between the guide sleeve and the guide rail, and
appears during acceleration and deceleration of the
scanning blade, as shown in Fig. 21. The air gap between
the guide sleeve and the guide rail can modeled as four
elastic elements with a bearing capacity ofW1,W2,W3 and
W4, respectively, and the angular stiffness of the guide rail
is KW ð�Þ. The relationship between deflection angle of the
guide rail and bearing capacity is

� ¼ ðW1 –W2Þ – ðW3 –W4Þ
KW ð�Þ

: (41)

The angular stiffness of the air-floating guide rail can be
measured by experiment. The guide rail is placed
vertically, and a load is added to one side of the guide
sleeve. Height differences are measured when a load is
added and removed from between two sides of the guide
sleeve. The experimental data is presented in Table 8. The
empty state means there is no load on the guide sleeve, and
the full loaded state means the load required to deflect the
guide rail at the maximum angle. When the guide rail was
fully loaded, the torque was calculated to be 2.071 N$m
and the distance between position A and position B in the
table was 56 mm. The average of three measurements was
calculated and the maximum deflection angle of the rail
was calculated as 0.15 mrad.
When the driven guide rail had the longest extension

length and the scanning blade moved with the maximum
acceleration (10g, g: Gravitational acceleration), the torque

Fig. 20 Simulation results for the inertial force deformation.
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was calculated as 1.86 N$m. The relationship between the
torque and rotation angle was assumed to be linear in the
deflection range of the guide rail, and the deflection angle
of the guide rail was calculated to be 0.269 mrad. The
maximum deflection error caused by the change in air gap
due to acceleration or deceleration can be expressed as

δair_gap ¼ 0, 0, 0, 0, 0, 0:269 mrad½ �: (42)

5 Uncertainty evaluation

Measurement uncertainty is an important indicator used to
assess the dispersion of measured values. To describe the
motion accuracy of the HSVSS, the MCM can be used to
evaluate the blade displacement measurement uncertainty.
The MCM is a numerical method for assessing the
distribution propagation by repeatedly obtaining the
probability distribution of certain input variables. Input
samples can be obtained using the MCMmethod, based on
discrete point sampling of the input variable probability
distribution function (PDF). The input variable is propa-
gated to the output variable through measurement model.
Each set of discrete input samples corresponds to one
output point. The estimated values of the output variables,
including the interval, standard uncertainty, and other
related simulation results, can be obtained from the

discrete distribution of all output points.
The uncertainty and propagation of probability distribu-

tion can be evaluated using the MCM as follows:
(1) Define output Y;
(2) Determine how input variables X1, X2, ..., XN are

related to output Y;
(3) Establish a mathematical model of the relationship

between output Y and the input variables, Y = f(X1, X2, ...,
XN);
(4) Set PDF for Xi based on available information,

including the normal distribution, uniform distribution,
inverse sine distribution, and so on;
(5) Select the Monte Carlo test sample number M;
(6) Implement the MCM;
(7) Output the results;
(8) Report the results.
Before the HSVSS scanning process, the window

formed by the blades must be precisely positioned. It is
assumed that each of the four blades moves 6 mm in the
positive direction along the X direction and 18 mm along
the negative Y direction. Then, the transfer model can be
used to evaluate the displacement measurement uncer-
tainty of the blades within the range of errors and PDF of
errors. The distribution of errors is shown in Tables 9 and
10.
The error terms from rigid body 1 to rigid body 2, rigid

body 2 to rigid body 3, and rigid body 2′ to rigid body 3 are

Table 8 Experiment data of angle stiffness of the guide rail (unit: mm)

Number State Position A Position B Height difference

1 Empty 105.6492 105.6526 –0.0034

Full loaded 105.2295 105.2247 0.0048

2 Empty 105.5297 105.5340 –0.0043

Full loaded 105.1969 105.1929 0.0044

3 Empty 105.5192 105.5231 –0.0039

Full loaded 105.2017 105.1973 0.0044

Fig. 21 Schematic of the air gap variation of air-floating guide rail. (a) Deflecting guide rail sleeves; (b) the elastic model of air-floating
guide rail.
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composed of several error sources. Therefore, the relation-
ship between the error terms and error sources in Table 9
can be expressed as

eT2
1 ¼

1 – δRzstr δRystr δxstr

δRzstr 1 – δRxstr δystr

– δRystr δRxstr 1 δzstr

0 0 0 1

2
66664

3
77775

$

1 – δRzx δRyx δxx

δRzx 1 – δRxx δyx

– δRyx δRxx 1 δzx

0 0 0 1

2
66664

3
77775
, (43)

eT3
2 ¼

1 – δRzstr δRystr δxstr

δRzstr 1 – δRxstr δystr

– δRystr δRxstr 1 δzstr

0 0 0 1

2
66664

3
77775

Table 9 Lists of error source and PDF of Blades Y1 and Y2

Adjacent
rigid
body

Error source PDF
Error vector

Blade Y1 Blade Y2

0-1 Assembly
error of
driving
guide rail

Uniform δfab_y1 ¼ 3 μm, 3 μm, 0, 0:017 mrad, 0, 0:017 mrad½ � δfab_y2 ¼ 3 μm, 3 μm, 0, 0:017 mrad, 0, 0:017 mrad½ �

1-2 Straightness
error of
driving
guide rail

Uniform δstr_y1_1 ¼ 0:008 μm, 0, 0:007 μm, 0, 0, 0½ � δstr_y2_1 ¼ 0:006 μm, 0, 0:007 μm, 0, 0, 0½ �

Measure-
ment feed-
back module

error

Normal δy ¼ 0, 7:501 μm, 0, 0, 0, 0½ � δy ¼ 0, 7:501 μm, 0, 0, 0, 0½ �

Error caused
by air gap
variation

Arcsine δair-gap ¼ 0, 0, 0, 0, 0, 0:081 mrad½ � δair-gap ¼ 0, 0, 0, 0, 0, 0:081 mrad½ �

2-3 Verticality
error

Uniform δpar_y1 ¼ 0, 0, 0, 0, 0, 0:053 mrad½ � δpar_y2 ¼ 0, 0, 0, 0, 0, 0:058 mrad½ �

Thermal
error

Arcsine δtherm_y ¼ 0:031 μm, 0:028 μm, 0:009 μm, 0, 0, 0½ � δtherm_y ¼ 0:031 μm, 0:028 μm, 0:009 μm, 0, 0, 0½ �

Inertia force
deformation

error

Arcsine δinertia force ¼ 0, 8:3 μm, 0, 0, 0, 0½ � δinertia force ¼ 0, 8:3 μm, 0, 0, 0, 0½ �

Straightness
error of

driven guide
rail

Uniform δstr_y1_2 ¼ 0, 0:008 μm, 0:006 μm, 0, 0, 0½ � δstr_y2_2 ¼ 0, 0:006 μm, 0:008 μm, 0, 0, 0½ �

0-1′ Assembly
error of
driving
guide rail

Uniform δfab_x2 ¼ 3 μm, 3 μm, 0, 0, 0:018 mrad, 0:018 mrad½ � δfab_x1 ¼ 3 μm, 3 μm, 0, 0, 0:018 mrad, 0:018 mrad½ �

1′-2′ Straightness
error of
driving
guide rail

Uniform δstr_x2_1 ¼ 0, 0:003 μm, 0:007 μm, 0, 0, 0½ � δstr_x1_1 ¼ 0, 0:004 μm, 0:006 μm, 0, 0, 0½ �

2′-3 Verticality
error

Uniform δpar_x2 ¼ 0, 0, 0, 0, 0, 0:045 mrad½ � δpar_x1 ¼ 0, 0, 0, 0, 0, 0:042 mrad½ �

Straightness
error of

driven guide
rail

Uniform δstr_x2_2 ¼ 0:003 μm, 0, 0:007 μm, 0, 0, 0½ � δstr_x1_2 ¼ 0:005 μm, 0, 0:007 μm, 0, 0, 0½ �

Note: PDF, probability distribution function.
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$

1 – δRztherm δRytherm δxtherm

δRztherm 1 – δRxtherm δytherm

– δRytherm δRxtherm 1 δztherm

0 0 0 1

2
66664

3
77775
$

1 – δRzpar δRypar δxpar

δRzpar 1 – δRxpar δypar

– δRypar δRxpar 1 δzpar

0 0 0 1

2
66664

3
77775
, (44)

eT3
2í ¼

1 – δRzstr δRystr δxstr

δRzstr 1 – δRxstr δystr

– δRystr δRxstr 1 δzstr

0 0 0 1

2
66664

3
77775
$

1 – δRzpar δRypar δxpar

δRzpar 1 – δRxpar δypar

– δRypar δRxpar 1 δzpar

0 0 0 1

2
66664

3
77775
: (45)

The relationship between error terms and error sources in Table 9 can be expressed as

Table 10 Lists of error source and PDF of Blades X1 and X2

Adjacent
rigid body

Error source PDF
Error vector

Blade X1 Blade X2

0-1 Assembly
error of

driving guide
rail

Uniform δfab_x1 ¼ 3 μm, 3 μm, 0, 0, 0:018 mrad, 0:018 mrad½ � δfab_x2 ¼ 3 μm, 3 μm, 0, 0, 0:018 mrad, 0:018 mrad½ �

1-2 Straightness
error of

driving guide
rail

Uniform δstr_x1_1 ¼ 0, 0:004 μm, 0:006 μm, 0, 0, 0½ � δstr_x2_1 ¼ 0, 0:003 μm, 0:007 μm, 0, 0, 0½ �

Measurement
feedback

module error

Normal δx ¼ 2:7008 μm, 0, 0, 0, 0, 0½ � δx ¼ 2:7008 μm, 0, 0, 0, 0, 0½ �

2-3 Verticality
error

Uniform δpar_x1 ¼ 0, 0, 0, 0, 0, 0:042 mrad½ � δpar_x2 ¼ 0, 0, 0, 0, 0, 0:045 mrad½ �

Thermal error Arcsine δtherm_x ¼ – 0:002 μm, 0:082 μm, 0:023 μm, 0, 0, 0½ � δtherm_x ¼ – 0:002 μm, 0:082 μm, 0:023 μm, 0, 0, 0½ �
Straightness
error of driven
guide rail

Uniform δstr_x1_2 ¼ 0:005 μm, 0, 0:007 μm, 0, 0, 0½ � δstr_x2_2 ¼ 0:003 μm, 0, 0:007 μm, 0, 0, 0½ �

0-1′ Assembly
error of

driving guide
rail

Uniform δfab_y1 ¼ 3 μm, 3 μm, 0, 0:017 mrad, 0, 0:017 mrad½ � δfab_y2 ¼ 3 μm, 3 μm, 0, 0:017 mrad, 0, 0:017 mrad½ �

1′-2′ Straightness
error of

driving guide
rail

Uniform δstr_y1_1 ¼ 0:008 μm, 0, 0:007 μm, 0, 0, 0½ � δstr_y2_1 ¼ 0:006 μm, 0, 0:007 μm, 0, 0, 0½ �

2′-3 Verticality
error

Uniform δpar_y1 ¼ 0, 0, 0, 0, 0, 0:053 mrad½ � δpar_y2 ¼ 0, 0, 0, 0, 0, 0:058 mrad½ �

Straightness
error of driven
guide rail

Uniform δstr_y1_2 ¼ 0, 0:008 μm, 0:006 μm, 0, 0, 0½ � δstr_y2_2 ¼ 0, 0:006 μm, 0:008 μm, 0, 0, 0½ �

Note: PDF, probability distribution function.
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eT2
1 ¼

1 – δRzstr δRystr δxstr

δRzstr 1 – δRxstr δystr

– δRystr δRxstr 1 δzstr

0 0 0 1

2
66664

3
77775
$

1 – δRzy δRyy δxy

δRzy 1 – δRxy δyy

– δRyy δRxy 1 δzy

0 0 0 1

2
66664

3
77775

$

1 – δRzair-gap δRyair-gap δxair-gap

δRzair-gap 1 – δRxair-gap δyair-gap

– δRyair-gap δRxair-gap 1 δzair-gap

0 0 0 1

2
66664

3
77775
, (46)

eT3
2 ¼

1 – δRzstr δRystr δxstr

δRzstr 1 – δRxstr δystr

– δRystr δRxstr 1 δzstr

0 0 0 1

2
66664

3
77775
$

1 – δRztherm δRytherm δxtherm

δRztherm 1 – δRxtherm δytherm

– δRytherm δRxtherm 1 δztherm

0 0 0 1

2
66664

3
77775

$

1 – δRzpar δRypar δxpar

δRzpar 1 – δRxpar δypar

– δRypar δRxpar 1 δzpar

0 0 0 1

2
66664

3
77775
$

1 – δRzinertia force δRyinertia force δxinertia force

δRzinertia force 1 – δRxinertia force δyinertia force

– δRyinertia force δRxinertia force 1 δzinertia force

0 0 0 1

2
66664

3
77775
, (47)

eT3
2í ¼

1 – δRzstr δRystr δxstr

δRzstr 1 – δRxstr δystr

– δRystr δRxstr 1 δzstr

0 0 0 1

2
66664

3
77775
$

1 – δRzpar δRypar δxpar

δRzpar 1 – δRxpar δypar

– δRypar δRxpar 1 δzpar

0 0 0 1

2
66664

3
77775
: (48)

For the MCM, the number of samples was set as 106 and
a 95% confidence interval was selected. The simulated
displacement error distribution area of Blades X1, X2, Y1,
and Y2 are shown in Fig. 22.
In summary, the blade displacement measurements with

extended uncertainty (95% confidence interval) are:
The displacement measurement result of Blade X1 along

X and Y directions are 5:9835, 6:0165ð Þ mm and
– 18:0013, – 17:9987ð Þ mm, respectively; the displace-

ment measurement result of Blade X2 along X and Y
directions are 5:9752, 6:0248ð Þ mm and ( – 18.0151,
– 17.9849) mm, respectively; the displacement measure-
ment result of Blade Y1 along X and Y directions are
5:9941, 6:0009ð Þ mm and – 18:0164, – 17:9632ð Þ mm,
respectively; the displacement measurement result of
Blade Y2 along X and Y directions are 5:9975, 6:0025ð Þ
mm and – 18:0200, – 17:9572ð Þ mm, respectively.

6 Conclusions

The HSVSS is an important part of the optical illumination
system. In this paper, an error transfer model of the HSVSS
based on a double-layer two-dimensional orthogonal air-
floating guide was established, and the influence of each
source of error on the motion error of blade was analyzed.
At the same time, the maximum range of every error source
were obtained by simulation and experiment and the
displacement uncertainty of the blades were evaluated by
the MCM.
According to the results obtained using the proposed

error transfer model, the installation error of the driving rail
has the largest influence on the motion accuracy of the
blades in the HSVSS. Therefore, errors should be
minimized during the assembly process. Finally, based
on the results of the dynamic error analysis, increasing the
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Fig. 22 Simulated displacement distributions of the blades. Displacements of (a) Blade X1 along the X direction, (b) Blade X1 along the
Y direction, (c) Blade X2 along the X direction, (d) Blade X2 along the Y direction, (e) Blade Y1 along the X direction, (f) Blade Y1 along
the Y direction, (g) Blade Y2 along the X direction, and (h) Blade Y2 along Y direction.
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air gap stiffness of the air-floating guide rail can effectively
improve the dynamic accuracy of the blade at high
accelerations.
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