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Abstract In structural design optimization involving
transient responses, time integration scheme plays a crucial
role in sensitivity analysis because it affects the accuracy
and stability of transient analysis. In this work, the
influence of time integration scheme is studied numerically
for the adjoint shape sensitivity analysis of two benchmark
transient heat conduction problems within the framework
of isogeometric analysis. It is found that (i) the explicit
approach (β = 0) and semi-implicit approach with β< 0.5
impose a strict stability condition of the transient analysis;
(ii) the implicit approach (β = 1) and semi-implicit
approach with β > 0.5 are generally preferred for their
unconditional stability; and (iii) Crank–Nicolson type
approach (β = 0.5) may induce a large error for large
time-step sizes due to the oscillatory solutions. The
numerical results also show that the time-step size does
not have to be chosen to satisfy the critical conditions for
all of the eigen-frequencies. It is recommended to use β �
0:75 for unconditional stability, such that the oscillation
condition is much less critical than the Crank–Nicolson
scheme, and the accuracy is higher than a fully implicit
approach.

Keywords isogeometric shape optimization, design-
dependent boundary condition, transient heat conduction,
implicit time integration, adjoint method

1 Introduction

Designing structures under thermal loadings is an
important issue in practical engineering problems [1,2].
Numerical design optimizations for such problems often
involve design sensitivity analysis, which is demonstrated
in numerous articles, mostly for steady state heat
conduction problems, such as in Refs. [3–7] with topology
optimizations and in Refs. [8–10] with shape optimiza-
tions.
Structural design sensitivity analyses involving transient

thermal responses have been studied since the late 1970s
with the work of Ref. [11], where approximation concepts
were adopted and only critical time points were used.
Following this, some fundamental technical issues for
thermal sensitivity analyses were discussed in Ref. [12],
which include the computational efficiency of explicit and
implicit approaches. It was demonstrated that the implicit
approaches are computationally more efficient than the
explicit approach, because the critical stability condition
required in the latter results in relatively small time-steps.
There are a few works in literature, e.g., Refs. [13,14],
adopting an explicit time integration scheme, though
mostly utilized for simple heat conduction problems. Most
design sensitivity analyses involving transient responses
adopt either the semi- or fully implicit approach, e.g., in
Refs. [15,16] with a Crank–Nicolson type semi-implicit
approach, in Refs. [17,18] with general implicit
approaches, and in Refs. [19,20] with a fully implicit
approach. In Refs. [9,10,21–26], variational continuum
adjoint methods for shape sensitivity analysis of transient
heat conduction problems are presented without elaborat-
ing on the time integration schemes. There are also cases
where the problems associated with typical time integra-
tion approaches may not appear, e.g., in Ref. [27] where
fully analytical solution can be obtained, or in Refs.
[28,29] where precise time integration scheme is used.
In general, analytical structural shape sensitivity analy-

sis can be complicated (see Refs. [8,30,31]). To this end,
isogeometric analysis (IGA) can significantly reduce the
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difficulties of performing shape sensitivity analysis, due to
its ability to preserve exact geometrical features and high-
order continuities [32,33]. These features are attractive for
the development of an integrated design frame work for
curved beams (e.g., in Refs. [34–37]), shells (e.g., in Refs.
[38,39]) and general curved structures (e.g., in Refs. [40–
45]). The ease of achieving multiple resolutions, and the
high order shape functions of IGA, also promote the
development of topology optimization, e.g., in Refs. [46–
52]. A generalized shape optimization method combining
level set method and finite cell method [53] for structural
designs using IGA can be found in Refs. [54,55]. More
information of IGA-based design optimization can be
found in a recent review in Ref. [56].
The IGA reduces the numerical error induced by spatial

discretizations in a shape sensitivity analysis. However, for
time-dependent problems, the time integration scheme has
a critical influence on the accuracy of sensitivity. Such
time-dependent problems include the design of lattice
structures incorporating heat conduction considerations
[57,58], to give interesting thermal behaviors [59]. In this
work, the partially and fully implicit time integration
schemes for shape sensitivity analysis of transient heat
conduction problems are studied numerically within the
framework of IGA. The findings provide a reference on the
appropriate time integration schemes for problems with
transient responses, which also include design optimiza-
tion problems in the nonlinear deformation, e.g., Ref. [60].

2 Problem statement and adjoint shape
sensitivity analysis

The problem considered is the design of a given structure
made from an isotropic material with linear thermal
conduction properties, with domain Ωs and boundary Γs

as shown in Fig. 1. The variable s denotes the design stages
that are sequentially modified from the referential/initial
designΩ0. The location function of a material point p inΩs

is denoted as x½p,   s�. The temperature at location x, time t
and design stage s is denoted by �½x,   t;   s�. A general
design objective functional defined over a time interval
T ¼ ½0,   T � can be characterized as

J :¼ !
T

0
&½t� !

Ωs
ψω½�½x, t; s��dΩ

�

þ!
Γs
ψγ½�½x, t; s�,q½x, t; s��dΓ

�
dt, (1)

in which the time characteristic function &½t� is defined as

&½t� ¼ 1, if   t 2 T & � T ,

0, otherwise,

(
(2)

and q½x, t; s� is the heat flux on the boundary.
The transient heat conduction problem within a time

interval T ¼ ½0,T � is governed by

l½�½x, t�� :¼ �c
∂�½x, t�
∂t

– kr2� x, t½ � –Q x, t½ � ¼ 0 ðx, tÞ 2 Ωs � T ,

�½x, t� ¼ �̂½x, t� ðx, tÞ 2 Γs
� � T ,

q½x, t�⋅n½x� ¼ – kr�½x, t�⋅n½x� ¼ – q̂½x, t� ðx, tÞ 2 Γs
q � T ,

q½x, t�⋅n½x� ¼ – kr�½x, t�⋅n½x� ¼ – qe½x, t� ¼ hð�½x, t� – �e½t�Þ ðx, tÞ 2 Γs
e � T ,

�½x, 0� ¼ �0½x�  ðx, 0Þ 2 Ωs,

8>>>>>>>>><
>>>>>>>>>:

(3)

where c > 0, � > 0, and k > 0 are the heat capacity, mass
density, and thermal conductivity, respectively, Q denotes
the body heat generation rate of each volume unit, q ¼
– kr� and q ¼ – q⋅n are the heat flow inside Ωs and heat
flux through Γs, respectively, n represents the unit outward

normal vector on the boundary, h denotes the heat
convection coefficient at ambient environment, �e is the
ambient temperature, �0½x� represents the initial tempera-
ture field in the domain, andr andr2 are the gradient and
the Laplacian operators, respectively. The problems

Fig. 1 Schematics of initial design at s ¼ 0 (left) and updated design at s (right).

280 Front. Mech. Eng. 2020, 15(2): 279–293



considered in this work have an essential boundary
condition �̂ defined over Γs

�, a natural boundary condition
q̂ defined over Γs

q and a Robin boundary condition defined
over Γs

e.
The governing equation in Eq. (3) can be treated as

equality constraint of the optimization problem with design
objective formulated in Eq. (1). To satisfy these equality
constraints imposed over the entire domain and time, we
introduce an augmented functional

eJ ½s� ¼ J ½s� þ!
T

0
hl½��,#iΩsdt, (4)

in which # ¼ #½x, t� is the adjoint temperature field with
the equality constraint nested in

hl½��,#iΩs ¼ !
Ωs

�c
∂�
∂t
#þ kr�⋅r# –Q#

� �
dΩ

–!
Γs
q#dΓ ¼ 0: (5)

With the constraint satisfied, we have J ¼ eJ . The
transient adjoint temperature field can be solved with the
following adjoint problem

�c
∂#
∂τ

– kr2# –Q* ¼ 0, Q* ¼ – &ψω,� ðx, τÞ 2 Ωs � T ,

# ¼ #̂, #̂ ¼ &ψγ,q ðx,τÞ 2 Γs
� � T ,

q*⋅n ¼ – q̂*, q̂* ¼ – &ψγ,� ðx, τÞ 2 Γs
q � T ,

q*⋅n ¼ – q*e ¼ hð# –#eÞ, #e ¼ –
&ψγ,�

h
þ &ψγ,q ðx, τÞ 2 Γs

e � T ,

#½x, 0� ¼ 0 ðx, 0Þjt¼T 2 Ωs   ,

8>>>>>>>>>><
>>>>>>>>>>:

(6)

in which τ ¼ T – t is adjoint time, Q* is adjoint volumetric
heat supply, #̂ and q̂* are adjoint Dirichlet and Neumann
boundary conditions, respectively, and #e is the ambient

temperature. Eventually, the shape sensitivity with respect
to parameter s can be derived as

dJ
ds

¼ !
T

0
!

Ωs
–Q##dΩþ!

Γs
q

ð&ψγ,q –#Þ q̂# þ rq̂⋅nð Þνnð ÞdΓ
� �

dt

þ!
T

0
!

Γs
�

ð&ψγ,� – q*Þ�̂#dΓ –!
Γs
e

hð&ψγ,q –#Þðr�⋅nÞνndΓ
� �

dtdt

þ!
T

0
!

Γs
&ψω – �c

∂�
∂t
#þ kr�⋅r# –Q#

� �
νndΓdt

þ!
T

0
!

Γs

�
&
�
ψγ,�ðr�⋅nÞ –ψγκ

�
– qr#⋅nþ ðq#Þκ

�
νndΓdt: (7)

For problems with no design-dependent boundary
conditions and unit volume heating source, the sensitivity
presented in Eq. (7) may be expressed simply as [16,61]

dJ
ds j�̂#,   q̂#,  rq̂⋅n,  Q#¼0

¼ !
Γs !

T

0
gdt

� �
⋅νdΓ, (8)

where

g ¼ &ψω þ �c
∂�
∂t
#þ kr�⋅r# –Q#

�

– γehð&ψγ,q –#Þðr�⋅nÞ þ &
�
ψγ,�ðr�⋅nÞ –ψγκ

�

∂�
∂t

– qr#⋅nþ ðq#Þκ
�
n, (9)

with

γe ¼
1, 8x 2 Γe,

0, otherwise:

(
(10)

It should be noted that with slightly proper modifica-
tions, the presented shape sensitivity framework can be
applicable to the popular level-set-based topology optimi-
zations [62,63].

3 IGA for transient heat conduction
problems

The basic idea of IGA is to discretize the temperature field
using non-uniform rational B-splines (NURBS) shape
functions RI , i.e.,
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� ¼
X
I

RI�I ¼ R⋅θ, (11)

with �I as the temperature control variables, such that a
system of discrete equations can be derived from the weak
formulation of Eq. (3) or (6) as

C
∂θ
∂t

þ Kθ ¼ f , (12)

in which C and K are capacitance and conductance
matrices, respectively, θ is the vector of unknown nodal
temperature, and f is heat flux vector. This discretization
approach is the basic concept of IGA, which integrates
CAD modeling and finite element analysis (FEM).
Introducing a parameter β 2 ½0, 1�, the temperature

discretization of Eq. (12) in the time domain can be
written as

C
θtþΔt – θt

Δt
þ K

�
βθtþΔt þ ð1 – βÞθt

�
¼ f : (13)

The special cases of β = 0, 0.5, and 1, correspond to
fully explicit (forward Euler), semi-implicit (Crank–
Nicolson-type) and fully implicit (backward Euler)
schemes, respectively. The transient primary and adjoint
problems are solved with this isogeometric framework in
order to determine the fields required for shape sensitivity
analysis.

4 Numerical error induced by time
integration schemes

The numerical error of adjoint shape sensitivity analysis
from structural analysis is induced mainly by the
discretization in space to approximate the temperature
field using polynomial basis functions, and in time due to
the time integration schemes. The spatial numerical error
can be reduced by decreasing the mesh size at a cost of
increasing computational time. To investigate the extent of
numerical error arising from time discretization in a
transient sensitivity analysis, it is necessary to discuss on
the accuracy, stability and oscillations induced by the time
integration scheme.

4.1 Accuracy

The time discretization scheme used in Eq. (13) is a
generalized trapezoidal rule. The temperature variation in a
time-step is approximated as

�tþΔt – �t

Δt
¼ ð1 – βÞ _�t þ β _�

tþΔt
: (14)

Using Taylor series expansion, we have

�tþΔt ¼ �t þ Δt _�
t þ Δt2

2
€�
t þO½Δt3�, (15)

and

_�
tþΔt ¼ _�

t þ Δt€�
t þO½Δt2�: (16)

From Eq. (15), it can be obtained that

�tþΔt – �t

Δt
¼ _�

t þ Δt
2
€�
t þO½Δt2�: (17)

The truncation error can thus be obtained from the
difference between Eqs. (16) and (17) as

�tþΔt – �t

Δt
– ð1 – βÞ _�t þ β _�

tþΔt
� �

¼ 1

2
– β

� �
Δt€�

t þO½Δt2�: (18)

This indicates that (i) the numerical error of the
temperature rate _� is in the order of Δt when β≠0:5 and
Δt2 when β ¼ 0:5; and (ii) as β approaches 0.5, the
magnitude of truncation error generally becomes smaller.
In general, if oscillations do not occur in the numerical

solution, the Crank–Nicolson scheme (β ¼ 0:5) induces
the lowest truncation error. However, when the time-step is
large, oscillating solutions may develop, which may induce
significant errors.

4.2 Stability

The truncation error at each time-step accumulates in time.
This leads to the issue of stability, of which the modal
analysis is able to give an indication. In modal analysis, a
separation of variable is imposed on the time-dependent
temperature field θ½x, t� in terms of an orthonormal basis
defined in space, τi½x� and the corresponding temporal
basis functions fi½t�, such that,

θ½x,   t� ¼
Xn
i¼1

fi½t�τi½x�, (19)

in which n corresponds to the dimension of matrices K and
C.
Bearing in mind that the orthonormal basis τi½x� satisfy

8i≠j, τTi Kτj ¼ τTi Cτj ¼ 0, (20)

and substituting Eq. (19) to Eq. (12), we obtain

τTj Cτj _f½t� þ τTj Kτjf½t� ¼ τTj f : (21)

Denoting

cj ¼ τTj Cτj, kj ¼ τTj Kτj, and fj ¼ τTj f , (22)

we have

cj _fj½t� þ kjfj½t� ¼ fj½t�, (23)

in which cj, kj, and fj½t� are the generalized heat
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capacitance, generalized heat conductance and generalized
heat flux for the jth natural mode, respectively. Compared
to the coupled equations in Eq. (12), Eq. (23) is decoupled
and thus facilitates stability analysis.
Assuming the temperature field θ½x, t� in the form of

θ½x, t� ¼ τ½x�e – αt with e as the Napier’s constant (e �
2.71828), and ignoring the load vector (external excita-
tion) f , the system of equations in Eq. (12) becomes

C _θ þ Kθ ¼ ðK – αCÞτe – αt ¼ 0: (24)

For the global capacitance matrix C, there exists a lower
triangular matrix L such that C ¼ LLT. From Eq. (24), we
obtain the following eigen problem

K – αI
� �

LTτ ¼ 0, with    K ¼ L – 1KL –T: (25)

The n� n matrix K has n real non-negative eigenvalues
(α1,   α2,   :::,   αn) that correspond to n eigenvectors
τ i ¼ LTτk . One can easily derive that Kτi ¼ αiCτi.
Referring to Eq. (22), it can be obtained that

aj ¼
kj
cj
: (26)

Eventually, Eq. (23) can be re-written as

_fj½t� þ αjfj½t� ¼
fj½t�
cj

: (27)

Substituting the time differentiating scheme in Eq. (13)
into Eq. (27),

ftþΔt
j –ft

j þ αjΔt
�
βftþΔt

j þ ð1 – βÞft
j

�
¼ Δtfj

cj
, (28)

which can be rearranged to give

ftþΔt
j ¼ 1 – ð1 – βÞαjΔt

1þ βαjΔt
ft
j þ

Δt
1þ βαjΔt

fj
cj
: (29)

To ensure that ftþΔt
j remains bounded in time, the

recurrence factor should satisfy

1 – ð1 – βÞαjΔt
1þ βαjΔt

����
����£1,   8j: (30)

Note that the eigenvalues of a positive matrix are
positive. The stability condition can be obtained as

ð1 – 2βÞαjΔt£2,   8j, (31)

which indicates that the recurrence in Eq. (29) is
unconditionally stable if 0:5£β£1, and conditionally
stable if 0 £ β < 0:5. For the conditionally stable cases,
the critical time-step for stability is given by

Δtsta ¼
2

ð1 – 2βÞα , (32)

in which α ¼ minðαjÞ, 8j.

4.3 Oscillations

Non-physical oscillatory results may occur depending on
the discretization in time and space. For the temporal
discretization, when the recurrence factor in Eq. (29) is

negative, i.e.,
1 – ð1 – βÞαjΔt
1þ βαjΔt

< 0, the solution oscillates.

The oscillations can reduce the accuracy for the thermal
analysis and thus lead to a large error for the sensitivity
analysis, especially when time-step size is large. The
critical time-step size of a given eigenvalue αj is
1 – ð1 – βÞαjΔt > 0, i.e.,

Δt£Δtosc ¼
1

ð1 – βÞαj
: (33)

In literature such as Refs. [64,65], it is suggested to use a

time-step size smaller than
1

ð1 – βÞα with α³αj, 8  j, to
avoid the oscillatory solutions. However, this is not always
true. Oscillatory results may still develop when smaller
time-step sizes are used, which will be demonstrated later.
In a typical modal analysis, the overall thermal responses
are dominated by the low frequency modes corresponding
to low eigenvalues αj. This is also indicated in the
recurrence factor in Eq. (29) where a larger recurrence
factor is associated with the low frequency modes (smaller
αj). A time-step size that guarantees a certain number of
non-oscillatory low frequency modes can produce a
reasonably good solution since the contributions of the
high frequency modes may not be too significant.
Oscillatory solutions cannot be avoided simply by using

smaller time-step sizes, because the spatial discretization
have an important role as well. For a continuum media, the
solution comprises of an infinite number of frequencies.
However, in a numerical approach, spatial discretization
limits the extent where the high frequency modes can be
captured. If the time-step is in the order of the (high)
frequencies that cannot be captured by the spatial
discretization, oscillations will occur. This problem is
also explained in terms of non-dimensionalization of the
transient heat conduction equation in Eq. (3) (see Ref. [66])
and it is recommended to choose a time-step size using

Δt³
Δx2�c
k

, (34)

with Δx as characteristic spatial mesh size. These
oscillations caused by the high frequencies are demon-
strated in the numerical example later. Nevertheless, in
most cases, the contributions of the high frequency modes
are negligible, particularly so with sufficiently small spatial
mesh size.
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5 Numerical studies

5.1 Minimum boundary problem

5.1.1 Problem description

The plate shown in Fig. 2(a) is first heated up to a given
temperature and then left in a low-temperature environ-
ment to cool down. It is desired to minimize the heat
dissipation speed by varying boundary Γ2 for the same
amount material used. The optimal solution for the
minimum boundary problem is to have a circular outer
boundary Γ2. The problem can be expressed as

J ¼ !
T

0
!

Γ2

hð� – �eÞdΓdt, (35)

with the volume fixed.

The design time is chosen to be T ¼ 300 s. For
simplicity, only a quarter of the plate is parametrized, as
depicted in Fig. 2(b), using NURBS with knot vectors

ξ ¼ 0  0  0 
1

3
 
1

2
 
2

3
  1  1  1

	 

and η ¼ ½0  0  0  1  1  1�, and con-

trol points shown in Table 1. The locations of six control
points, denoted as CI , I = 1, 2, …, 6, are chosen as design
variables. Due to symmetry, control point C1 is restricted
to move only horizontally while C6 only vertically.

5.1.2 Stability and oscillations in the transient analysis

The analysis model is refined with standard k-refinement

approach using knot vectors
1

20
,  

2

20
,   :::,  

19

20

	 

and

1

10
,  

2

10
,   :::,  

9

10

	 

in the two orthonormal index direc-

tions, respectively. This eventually produce an isogeo-
metric model with 288 control points, leading to matrices
C and K with a dimension of 288� 288. Following Eq.
(25), the largest eigenvalue for matrix K is 422.22. The
critical time-step size of the stability condition in Eq. (32)
versus the time integration scheme coefficient β is plotted
in Fig. 3, which shows that the time-step size needs to be
very small to ensure the analysis stability for β < 0:5.
When the time-step size Δt > 0:00948 s with β ¼ 0:25, the
transient analysis of the heat conduction will become
unbounded, which leads to failure of the sensitivity
analysis.

The 288 eigenvalues of matrix K are depicted in
Fig. 4(a) with the corresponding critical time-step sizes for
the oscillatory conditions in Eq. (33) of β ¼ 0.5 and β ¼
0.75. A zoom in on the eigenvalues smaller than 20 are
shown in Fig. 4(b). It is obvious that the critical time-step
size with β ¼ 0.75 is twice of that with β ¼ 0.5. When
time-step size is Δt ¼ 1 s, the non-oscillatory eigenmodes
correspond to α < 2 for β ¼ 0.5 and α < 4 for β ¼ 0.75.
When time-step size is Δt ¼ 0:1 s, the non-oscillatory
eigenmodes corresponds to α < 20 for β ¼ 0.5 and α < 40
for β ¼ 0.75. The temperature histories of initial time-steps
at points A and C1 with different time-step sizes are plotted
in Fig. 5 for β ¼ 0:5 and Fig. 6 for β ¼ 0:75, respectively.
It can be observed that (i) the oscillations of temperature
for β ¼ 0:5 are much more noticeable than those for
β ¼ 0:75; and (ii) even with a time-step size that is smaller
than the critical values of all eigenvalues, the oscillations
still persist, as depicted in Figs. 5(n) and 6(n) and
explained in Section 4.3.

5.1.3 Referential sensitivity calculation

Using a relatively small time-step Δt = 0.01 s, the

Fig. 2 The initial plate design and the NURBS parameterization
(values in m) [16,20]. Problem parameters are: �0½x� ¼ 100 °C,
8x 2 Ωs, �e ¼ 0 °C, � ¼ 7800 kg/m3, c ¼ 420 J/(kg$°C), k ¼ 20
W/(m$°C) and h ¼ 50 W/(m2$°C).

Fig. 3 Critical time-step size of the stability condition versus the
time integration scheme coefficient β.
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sensitivity analysis, termed GI
f for design control point xI ,

is computed using finite difference (FD) method for β =
0.5, 0.75, and 1, respectively:

GI
f :¼

J ½xI þ δx� –J ½xI �
δx

, (36)

where δx is the perturbation of the locations of design
control points. The FD computation for β < 0:5 is omitted
due to the unrealistic solutions caused by the instability.
The results presented in Table 2, show a close match

between the three cases. The referential sensitivity analysis
is calculated using the average value:

G
I
f ¼

1

3
ðGI

f 1 þ GI
f 2 þ GI

f 3Þ, (37)

where GI
f 1, G

I
f 2, and GI

f 3 are the FD gradient for β = 0.5,
0.75, and 1, respectively. The relative difference of Gfi

comparing to the referential sensitivity analysis is
calculated using

Dfi ¼
Gfi –G f

maxG f

: (38)

The L2 norm of Dfi shows the magnitude of the
difference between calculated sensitivity and the referen-
tial sensitivity. The L2 norms of the relative difference
for Gf 1, Gf 2, and Gf 3 are 1:2924� 10 – 5, 1:6588� 10 – 5,
and 2:5184� 10 – 5, respectively, which provides a
quantification of the close match between the three
cases.

5.1.4 Numerical adjoint sensitivity analysis convergence
with respect to the number of time-steps for different β

For β = 0.5, 0.75, and 1, the adjoint shape sensitivity is

computed for time-step sizes Δt ¼ 60, 30, 15, 10, 5, 3, 2, 1,
0.5, 0.3, 0.1, and 0.01 s, corresponding to 5, 10, 20, 30, 60,
100, 150, 300, 600, 1000, 3000, and 30000 time-steps,
respectively. The L2 norms of the relative difference for the
different numbers of time-steps are depicted in Fig. 7,
showing all the three cases converge to a small value. It is
also clear that the case of β ¼ 0:75 has an overall better
performance than other two cases. The larger error
associated with β ¼ 0:5 is mainly due to the oscillatory
solutions induced by the time integration scheme, as
demonstrated earlier in Section 5.1.2.
The computational time of the adjoint sensitivity

analysis for each time-step size on a Dell laptop with a
four core CPU of i7-6600U is listed in Table 3. It can be
found that as the step-size decreases, the computational
cost increases dramatically, mainly caused by the increase
of analysis time. This indicates that using time integration
schemes with β< 0.5 is not preferable as it requires a very
smaller time-step size to keep the analysis stability.

5.1.5 Numerical error of adjoint sensitivity analysis with
respect to β at a given time interval discretization

To further investigate the numerical error of adjoint shape
sensitivity with respect to β, the adjoint shape sensitivity is
computed for Δt ¼ 10, 3, and 0.3 s (corresponding to 30,
100, and 1000 time-steps), respectively, with different
values of β ranging from 0.5 to 1. The numerical error
versus coefficient β is plotted for these three cases with
different time-step sizes in Fig. 8. For all three cases, it is
observed that the numerical error increases when the value
of β increases from 0.52 to 1. When β ¼ 0:5, the numerical
errors for the two coarser time discretizations are relatively
big due to the oscillatory solutions. A larger value of β can
help to reduce the error of the shape sensitivity analysis
caused by the oscillatory solutions.

Fig. 4 Critical time-step size of the oscillatory conditions for (a) all 288 eigenvalues and (b) the first 87 eigenvalues smaller than 20, with
β ¼ 0.5 and 0.75, respectively.
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5.2 Plunger shape design problem

5.2.1 Problem description

Consider a plunger designed to form a television glass bulb
panel as listed in Fig. 9 [16,20,67]. The model is
parametrized with knot arrays ξ ¼ ½0,   0,  0,  0:2,  0:4,  0:5,
0:7,   1,   1,   1� and η ¼ ½0,   0,   0,   1,   1,   1�, and control
points listed in Table 4. The heat convection coefficient
are h1 ¼ 3:15� 10 – 4 W/(mm2$°C) on Γ1 and h3 ¼
2:88� 10 – 4 W/(mm2$°C) on Γ3. Other related parameters
are k ¼ 27:52� 10 – 3 W/(mm2$°C), �c ¼ 2:288� 10 – 3

J/(mm3$°C) and T ¼ 500 s.
The ambient temperature of boundary Γ3, which contact

the molten glass, is assumed to be �e3 ¼ 1000 °C, while the

ambient temperature of boundary Γ1, which contact the
cooling fluid, is assumed to be �e1 ¼ 0 °C. Temperature
difference along the fixed boundary Γ3 affects the quality
of the television bulb, which makes it necessary to design
boundary Γ1 such that the temperature difference along
boundary Γ3 can be minimized. For this problem, an
objective functional is introduced as

J ¼ !
T

0
!

Γ3

ð� – ~�Þ2dΓdt, (39)

where the average temperature along Γ3, ~�½t�, is computed
using

~� ¼ 1

jΓ3j !Γ3

�dΓ: (40)

Fig. 5 Temperature oscillations at point A and C1 with different time-step sizes and β ¼ 0.5 for the first few iterative steps.
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Fig. 6 Temperature oscillations at point A and C1 with different time-step sizes and β ¼ 0.75 for the first few iterative steps.

Table 1 Initial locations of the design control points for the minimum boundary problem [16,20]

Iði, jÞ
Location

Weight Iði, jÞ
Location

Weight
xI1 xI2 xI1 xI2

(1, 1) 0.0100 0.0000 1.00 (4, 2) 0.0091 0.0121 0.85

(2, 1) 0.0100 0.0026 0.90 (5, 2) 0.0039 0.0150 0.90

(3, 1) 0.0080 0.0061 0.85 (6, 2) 0.0000 0.0150 1.00

(4, 1) 0.0061 0.0080 0.85 (1, 3) 0.0200 0.0000 1.00

(5, 1) 0.0026 0.0100 0.90 (2, 3) 0.0200 0.0100 1.00

(6, 1) 0.0000 0.0100 1.00 (3, 3) 0.0238 0.0213 1.00

(1, 2) 0.0150 0.0000 1.00 (4, 3) 0.0213 0.0238 1.00

(2, 2) 0.0150 0.0039 0.90 (5, 3) 0.0100 0.0200 1.00

(3, 2) 0.0121 0.0091 0.85 (6, 3) 0.0000 0.0200 1.00
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5.2.2 Stability and oscillations in the transient analysis

The analysis model is refined with standard k-refinement

approach using knot vectors
1

50
,  

2

50
,   :::,  

49

50

	 

and

1

8
,  
2

8
,   :::,  

7

8

	 

in the two orthonormal index directions,

respectively. This eventually produces an isogeometric
model with 520 control points and matrices C and K with a
dimension of 520� 520. Following Eq. (25), the max-
imum eigenvalue for matrix K is 62.67. The critical time-
step size of the stability condition in Eq. (32) versus the
time integration scheme coefficient β is plotted in Fig. 10,
where it can be observed that the time-step size needs to be
very small to ensure the analysis stability for β < 0:5.
When the time-step size Δt > 0:01778 s with β ¼ 0:25, the
transient analysis of the heat conduction will become

Table 2 Sensitivity analysis using FD with Δt ¼ 0:01 s for different β and the referential sensitivity of the minimum boundary problem

CI Component
FD

Referential FD
β ¼ 0:5 β ¼ 0:75 β ¼ 1

C1 1 135874.5067 135876.4566 135887.5961 135879.5198

C2 1 243335.5767 243333.5103 243350.4778 243339.8549

2 –37170.7865 –37162.2082 –37166.9958 –37166.6635

C3 1 897323.9019 897326.7759 897308.0330 897319.5703

2 306189.0384 306194.4444 306182.1844 306188.5557

C4 1 306189.1548 306194.2916 306176.7857 306186.7440

2 897323.3635 897312.5441 897306.3377 897314.0818

C5 1 –37165.4896 –37167.1631 –37163.8816 –37165.5115

2 243336.8791 243328.4244 243347.0800 243337.4611

C6 2 135881.9864 135871.1306 135886.7594 135879.9588

Fig. 7 The L2 norm of the relative difference of the adjoint
sensitivity analysis versus number of time-steps for the minimum
boundary problem.

Table 3 Computational time of different time-step sizes for the
minimum boundary problem

Time-step size/s Number of time-steps Computational time/s

60.00 5 0.4633

30.00 10 0.5676

15.00 20 0.6906

10.00 30 0.7631

5.00 60 1.1828

3.00 100 1.7065

2.00 150 2.0199

1.00 300 3.7158

0.50 600 6.8297

0.30 1000 11.2075

0.10 3000 36.3381

0.01 30000 429.7075

Fig. 8 The L2 norm of the relative difference of the adjoint
sensitivity analysis versus β for the minimum boundary problem.
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unbounded, which leads to failure of the sensitivity
analysis.
The 520 eigenvalues of matrix K are depicted in

Fig. 11(a) with the corresponding critical time-step sizes
for the oscillatory conditions Eq. (32) of β ¼ 0.5 and 0.75.
A zoom in on the eigenvalues smaller than 20 are shown in
Fig. 11(b). It is obvious that the critical time-step sizes of
the majority non-oscillatory eigenmodes are bigger than
0.1 s.

5.2.3 Referential sensitivity analysis calculation

Similarly, the FD sensitivity is computed for β = 0.5, 0.75,
and 1 with a perturbation of δxi ¼ 10 – 6 and time-step size
of Δt ¼ 0:05 s. The FD computation for β < 0:5 is omitted
due to the unrealistic solutions caused by the instability.
The results are presented in Table 5, which shows that

the sensitivities of these four cases are relatively close. The
referential sensitivity analysis is calculated using the same

approach as in Section 5.1.3. The L2 norm of the relative
difference for Gf 1, Gf 2, and Gf 3 are 0:9862� 10 – 4,

Fig. 9 NURBS parameterization of the initial plunger model (values in mm) [16,20].

Table 4 Initial locations of the design control points for the plunger design problem [16,20]

Iði, jÞ
Location

Weight Iði, jÞ
Location

Weight
xI1 xI2 xI1 xI2

(1, 1) 0.00 100.00 1.00 (5, 2) 90.00 20.00 1.00

(2, 1) 0.00 80.00 1.00 (6, 2) 145.00 20.00 1.00

(3, 1) 0.00 30.00 1.00 (7, 2) 200.00 20.00 1.00

(4, 1) 0.00 0.00 0.71 (1, 3) 30.00 100.00 1.00

(5, 1) 30.00 0.00 1.00 (2, 3) 30.00 80.00 1.00

(6, 1) 140.00 0.00 1.00 (3, 3) 30.00 65.00 1.00

(7, 1) 200.00 0.00 1.00 (4, 3) 30.00 45.00 1.00

(1, 2) 15.00 100.00 1.00 (5, 3) 70.00 45.00 1.00

(2, 2) 15.00 80.00 1.00 (6, 3) 120.00 45.00 1.00

(3, 2) 15.00 65.00 1.00 (7, 3) 200.00 45.00 1.00

(4, 2) 15.00 20.00 1.00

Fig. 10 Critical time-step size of the stability conditions versus
the time integration scheme coefficient β.
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0:2142� 10 – 4, and 1:0319� 10 – 4, respectively, which
conform the close match of the three cases and the average
gradient G f can be used as the referential gradient.

5.2.4 Numerical adjoint sensitivity analysis convergence
with respect to the number of time-steps for different β

For β = 0.5, 0.75, and 1, the adjoint shape sensitivity is
computed for time-step sizes Δt ¼ 25, 10, 5, 2.5, 1, 0.5,
0.25, 0.1, and 0.05 s, corresponding to 20, 50, 100, 200,
500, 1000, 2000, 5000, and 10000 time-steps, respectively.
The L2 norms of the relative difference versus the number
of time-steps are plotted in Fig. 12, where it can be
observed that all three cases converge to a relatively small
value. It is also clear that the case of β ¼ 0:5 has an overall
better performance than other two cases.

The computational time of the adjoint sensitivity
analysis for each time-step size on a Dell laptop with a
four core CPU of i7-6600U is listed in Table 6. It can be
found that as the step-size decreases, the computational
cost increases dramatically, mainly caused by the increase
of analysis time. Similarly, this indicates that using time
integration schemes with β< 0.5 is not preferable as it
requires a very smaller time-step size to keep the analysis
stability.

5.2.5 Numerical error of adjoint sensitivity analysis with
respect to β at a given time interval discretization

To further investigate the numerical error of adjoint shape
sensitivity with respect to β, the adjoint shape sensitivity is
computed for Δt ¼ 10, 1, and 0.1 s (corresponding to 50,

Fig. 11 Critical time-step size of the oscillatory conditions for (a) all 520 eigenvalues and (b) the first 445 eigenvalues smaller than 20,
with β ¼ 0.5 and 0.75, respectively.

Table 5 Sensitivity analysis using FD with t ¼ 0:05 s for different β and the referential sensitivity of the plunger design problem

CI Component
FD

Referential FD
β ¼ 0:5 β ¼ 0:75 β ¼ 1

C1 1 –6.2906�105 –6.2891�105 –6.2885�105 –6.2894�105

2 2.0000�10 3.0000�10 1.0000�10 2.0000�10

C2 1 –3.2439�105 –3.2434�105 –3.2422�105 –3.2432�105

2 3.4358�105 3.4351�105 3.4350�105 3.4353�105

C3 1 2.0760�106 2.0759�106 2.0758�106 2.0759�106

2 1.1210�106 1.1210�106 1.1210�106 1.1210�106

C4 1 8.6030�104 8.6030�104 8.6010�104 8.6020�104

2 –6.2714�105 –6.2713�105 –6.2714�105 –6.2714�105

C5 1 2.0000�10 1.0000�10 1.0000�10 2.0000�10

2 1.5853�106 1.5852�106 1.5849�106 1.5851�106
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500, and 5000 time-steps), respectively, with different
values of β ranging from 0.48 to 1. The numerical error
versus coefficient β is plotted for these three cases with
different time-step sizes in Fig. 13. From Fig. 13, it can be
seen that for all three cases, the numerical error increases
when the value of β increases from 0.5 to 1.

6 Conclusions

In this work, we investigate the numerical error of time
integration scheme in adjoint shape sensitivity analysis for
transient heat conduction problems. The accuracy, stability
and oscillations in transient analysis, which are the main
causes of numerical errors in time integration, are briefly
discussed. The study is computed using IGA for adjoint
shape sensitivity analysis of two benchmark transient heat
conduction problems with design-dependent boundary
conditions. In general, time integration approaches with
coefficient β < 0:5 are not recommended due to numerical

stability concerns; Crank–Nicolson approach with β ¼ 0:5
may induce large error because of oscillatory solutions;
semi-implicit approaches with β > 0:5 are preferred; and
fully implicit approach with β ¼ 1 has a lower accuracy
than the semi-implicit approaches. Hence, a value around
of β � 0:75 is recommended.
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