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Abstract A ferroelectric liquid crystal polarization
rotator (FLCPR) has been widely used in polarization
measurement due to its fast and stable modulation
characteristics. The accurate characterization of the
modulation performance of FLCPR directly affects the
measurement accuracy of the instrument based on liquid
crystal modulation. In this study, FLCPR is accurately
characterized using a self-developed high-speed Stokes
polarimeter. Strong linear and weak circular birefringence
are observed during modulation processes, and all the
optical parameters of FLCPR are dependent on driving
voltage. A dual FLCPR-based Mueller matrix polarimeter
is designed on the basis of the Stokes polarimeter. The
designed polarimeter combines the advantages of the high
modulation frequency of FLCPR and the ultrahigh
temporal resolution of the fast polarization measurement
system in the Stokes polarimeter. The optimal configura-
tion of the designed polarizer is predicted in accordance
with singular value decomposition. A simulated thickness
measurement of a 24 nm standard SiO2 thin film is
performed using the optimal configuration. Results show
that the relative error in thickness measurement caused by
using the unsatisfactory modulation characteristics of
FLCPR reaches up to – 4.34%. This finding demonstrates
the importance of the accurate characterization of FLCPR
in developing a Mueller matrix polarizer.

Keywords ferroelectric liquid crystal polarization rotator
(FLCPR), dual liquid crystal Mueller matrix polarizer,
design and optimization

1 Introduction

A polarimeter is a powerful tool that can determine the
optical properties of a sample by measuring the change in
polarization state of polarized light after it interacts with
the sample. Given its advantages of high precision,
noncontact, and high stability, a Mueller matrix polari-
meter has been widely used in many fields, such as in
semiconductor thin film structure and periodic nanostruc-
ture measurements [1–4], new material research [5,6], and
biological and chemical engineering [7–10]. Compared
with the traditional Mueller matrix polarimeter, the high
temporal resolution Mueller matrix polarimeter based on
liquid crystal modulation developed in recent years has
gained increasing attention in the field of real-time
measurement due to its advantages of having no mechan-
ical rotating parts, high time resolution, and accurate and
stable output of polarized light [11]. Furthermore, the most
representative ferroelectric liquid crystal polarization
rotator (FLCPR), which has ultrahigh modulation fre-
quency, high purity linearly polarized light output, and
high extinction ratio, has been widely used in rapid
polarization measurements [12].
Many scholars have recently conducted detailed

research on the construction and optimization of polari-
meters based on liquid crystal polarization rotators.
Ladstein et al. [13] designed and constructed the first
near-infrared (NIR) spectroscopic Mueller matrix ellips-
ometer based on FLCPR using the eigenvalue calibration
method. Garcia-Caurel et al. [14] developed fast spectro-
scopic measurements of a complete Mueller matrix with 1
nm resolution ranging from the visible to the NIR regions
using a charge coupled device (CCD) array coupled to a
dispersion grid. Peinado et al. [11] designed Stokes and
Mueller polarimeters based on FLCPR panels. The work
mentioned in the preceding references was performed by
assuming ideal optical polarizing components, in which
FLCPR is modeled as a uniaxial birefringent wave plate
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with two stable optical axis orientations switchable by a
squared electrical signal. However, azimuth deviation and
retardance fluctuation occur during the use of FLCPR,
reducing measurement accuracy. The resolution of a
polarimeter is mostly limited by the time resolution of
the detector, and the modulation performance of FLCPR
cannot be fully demonstrated. Furthermore, the duration is
in dozens of microseconds for several rapid processes,
such as high-speed impact [15], laser transient heating
[16], and molecular reaction [17]. However, the traditional
Mueller matrix polarimeter with a temporal resolution of
several tens of milliseconds cannot capture these rapid
processes [18]. Therefore, FLCPR should be accurately
characterized before constructing an instrument. Accord-
ingly, a Mueller matrix polarimeter with high temporal
resolution and based on FLCPRs should be developed.
The accurate characterization of the modulation perfor-

mance of FLCPR directly affects the measurement
accuracy of an FLCPR-based polarimeter. Therefore, we
first used a self-developed high-speed Stokes polarimeter
to accurately characterize the dynamic modulation perfor-
mance of FLCPR. Then, a Mueller matrix polarimeter with
dual FLCPRs was designed. The designed polarimeter
combines the advantages of the high-frequency modula-
tion characteristics of FLCPR and the high temporal
resolution demodulation characteristics of division-of-
amplitude methods. The configuration optimization of
the designed polarimeter was obtained using the eigenva-
lue method. Lastly, the measurement error due to the
undesired modulation characteristics of FLCPR in the
standard SiO2 film thickness measurement experiment was
evaluated.

2 Modulation principle of FLCPR

FLCPR consists of two glass substrates coated with
transparent indium tin oxide (ITO) as the conductive
layer on one side of the glass surface. The surface of ITO
was then coated with a layer of polyimide as the alignment

layer. The middle of the two alignment layers was filled
with ferroelectric liquid crystal molecules (FLCMs). Phase
retardance can be modulated by controlling the distance of
the intermediate [19]. The structure and modulation
principle of FLCPR are illustrated in Fig. 1.
In general, FLCPR can be considered a wave plate with

an optical axis along the direction of the FLCM director. A
typical FLCPR utilizes the fast response characteristics of a
ferroelectric liquid crystal material to control the switching
of FLCMs between the two directions of the relative angle
θ by changing the driving voltage applied to the ferro-
electric liquid crystal optical shutter while maintaining the
same retardance [20]. The most common configuration is
FLCPR with a retardance of δ = 180° or δ = 90° (similar to
a half-wave plate or a quart-wave plate) and a relative
rotation angle of θ = 45°. However, the set phase
retardance is related to wavelength, and the aforemen-
tioned configuration is only effective at a specific design
wavelength [21].

3 Characterization of FLCPR

To further understand the modulation performance of
FLCPR and correctly use FLCPR, we must measure and
characterize the orientation of FLCMs, the phase retar-
dance δ, and the relative rotation angle θ prior to using
FLCPR. We selected a 50.8 mm achromatic FLCPR
(AFLCPR; FPA-200-1020) produced by Meadowlark
Optics at a design wavelength of 1020 nm with a phase
retardance of 180°. In contrast with ordinary FLCPR,
AFLCPR consists of an FLCPR sandwiched between two
half-wave plates with optical axes parallel to each other
[22].
At present, FLCPR is generally placed between two

polarizers whose optical axes are orthogonal to each other
in existing methods for measuring the physical parameters
of FLCPR [21], as shown in Fig. 2. The azimuth φ1 of the
first polarizer varies between 0° and 180°, and the azimuth
φ2 of the second polarizer is maintained at 90° relative to

Fig. 1 Schematic of the structure and modulation principle of FLCPR: (a) and (b) at different driving voltages represent the two possible
stable states in FLCPR. GS: Glass substrate; ITO: Thin conductive layer; PI: Polyimide layer; AL: Alignment layer; FLC: Ferroelectric
liquid crystal; P: Spontaneous polarization; n: LC molecular director; and q: Tilt angle of FLC.
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φ1. Then, the transmitted light intensities I1 and I2 at each
azimuth are measured when FLCPR is under two stable
states. We can calculate the retardance δ and the relative
rotation angle θ of FLCPR using the variation law of the
measured light intensities I1 and I2. However, polarizers P1
and P2 should be rotated multiple times, introducing
measurement errors due to the rotation of optical elements.
The entire process involves intermittent measurement, and
the continuous modulation property of FLCPR cannot be
observed. Moreover, FLCPR is considered a wave plate
with a constant retardance and a relative rotation angle of
45° in this characterization method. However, all the
physical parameters of FLCPR will change with the
modulation signal instead of only the relative rotation
angle changing in the described characterization method.
In addition, we found that FLCPR not only exhibits linear
birefringence (LB) but also circular birefringence (CB)
during modulation.
To compensate for the shortcomings of existing

characterization methods, we propose a characterization
model based on the Mueller matrix form that can
simultaneously characterize the LB and CB of FLCPR.
This model can be expressed as Eq. (1). All the optical
parameters of FLCPR are dependent on driving voltage in
the proposed characterization model.

MAFLCPR ¼ A$MHWPðβ,δHWPÞ$MFLCPRðα,δFLCPR,χÞ

$MHWPðβ,δHWPÞ, (1)

where MAFLCPR is the Mueller matrix of AFLCPR, MHWP

is the Mueller matrix of half-wave plates, and MFLCPR is
the Mueller matrix of FLCPR [23–25]. A is the relative
transmittance of FLCPR, β is the azimuth of the half-wave
plates, δHWP is the retardance of the half-wave plates, α is
the azimuth of FLCPR, δFLCPR is the retardance of FLCPR,
and γ is the optical rotation angle of FLCPR. To simplify
the expression, we define χ= α + γ.

MHWP ¼

1 0 0 0

0 cosð4βÞsinðδHWP=2Þ2 þ cosðδHWP=2Þ2 sinð4βÞsinðδHWP=2Þ2 – sinð2βÞsinðδHWPÞ
0 – sinð4βÞsinðδHWP=2Þ2 – cosð4βÞsinðδHWP=2Þ2þcosðδHWP=2Þ2 cosð2βÞsinðδHWPÞ
0 sinð2βÞsinðδHWPÞ cosð2βÞsinðδHWPÞ cosðδHWPÞ

0
BBBBB@

1
CCCCCA
,

(2)

MFLCPR ¼

1 0 0 0

0 cosð2χÞcosð2αÞ – sinð2χÞsinð2αÞcosðδFLCPRÞ sinð2χÞcosð2αÞ – cosð2χÞsinð2αÞcosðδFLCPRÞ – sinð2αÞsinðδFLCPRÞ
0 cosð2χÞsinð2αÞ – sinð2χÞcosð2αÞcosðδFLCPRÞ cosð2χÞcosð2αÞcosðδFLCPRÞþsinð2χÞsinð2αÞ cosð2αÞsinðδFLCPRÞ
0 sinð2χÞsinðδFLCPRÞ – cosð2χÞsinðδFLCPRÞ cosðδFLCPRÞ

0
BBBB@

1
CCCCA
:

(3)

To measure the continuous modulation characteristics of
FLCPR in real time, the self-developed Stokes polarimeter
with six parallel detection channels is used in the dynamic
characterization experiments of FLCPR. Applying the

concept of modular design [26], the Stokes polarimeter
consists of three parts: A polarization state generator
(PSG), a sample stage, and a fast polarization measurement
system (FPMS), as shown schematically in Fig. 3. In the

Fig. 2 Schematic of FLCPR measurement methods in the literature. P: Polarizer; HWP: Half-wave plate; FLCPR: Normal ferroelectric
liquid crystal polarization rotator; AFLCPR: Achromatic ferroelectric liquid crystal polarization rotator; PMT: Photomultiplier tube.
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PSG part, the light source used is a 5 mW red (632.8 nm)
He–Ne laser (THORLABS). The PSG can achieve the
light output of an arbitrary polarization state with the
combination of linear polarizers and wave plates. FPMS
based on the principle of spatial division of amplitude can
detect all the Stokes parameters of the probing light in
several nanoseconds. Moreover, the polarimeter can be
used under various measurement configurations with a
rotatable base and a flexible sample stage, which can be
composed of different displacement and tilt platforms [27–
29]. Lastly, the influence of temperature is not considered
in our experiments because the experiments are performed
in a clean room with constant temperature and humidity.
To illustrate the continuous modulation characteristics of

FLCPR, a square wave signal with a modulation period of

1 s and an amplitude of 10 voltage peak-peak is used as the
modulation signal. Several results are shown in Fig. 4, in
which all the optical parameters of FLCPR are dependent
on driving voltage. Furthermore, we confirm the LB
property and weak CB property during the modulation
processes of FLCPR. To clearly illustrate the variation of
the related optical parameters, we extract the optical
parameters of FLCPR in two different stable states at time
points 0.5 and 1 s. The extracted results are provided in
Table 1.
The extracted results presented in Table 1 show that the

relative rotation angle is 46.17°, which is 1.17° larger than
the ideal configuration of 45°. Furthermore, the retardance
is 262.20° and 260.40° in the two stable states. The
difference between the two states is 1.80°. Given that the

Fig. 3 Six-channel Stokes polarimeter. (a) Light path diagram. P1 and P2: Polarizers; C1 and C3: Quart-wave plate; C2: Half-wave plate;
NPBS1: 70:30 (R:T) non-polarizing beam splitter; NPBS2: 50:50 (R:T) non-polarizing beam splitter; PBS: Polarization beam splitter;
DAQ: Oscilloscope; PC: Personal computer; SC: Signal controller; PMT: Photomultiplier tube. (b) Self-developed Stokes polarimeter
prototype.

Fig. 4 Real-time measurement of FLCPR with the self-developed Stokes polarimeter.
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designed wavelength of AFLCPR is 1020 nm, the relative
transmittance is only approximately 0.5 under the
wavelength of 633 nm. Furthermore, the relative transmit-
tance is not constant during the dynamic measurement
experiment. The relative transmittance changes by 0.063 in
the two different states of FLCPR. In addition, the optical
rotation angle of FLCPR varies within the range of �4°
between the two stable states, demonstrating the existence
of the weak CB property in the modulation process of
FLCPR. In summary, the aforementioned extracted results
confirm the correctness of the proposed characterization
model and inference. That is, FLCPR exhibits not only the
LB property but also the weak CB property in the
modulation processes. All the optical parameters of
FLCPR vary with driving voltage.

4 Optimization of the dual FLCPR-based
Mueller matrix polarimeter

At present, the self-developed high-speed Stokes polari-
meter, which has a temporal resolution of several
nanoseconds, can simultaneously measure all the Stokes
vectors of the probe light. Given that the polarizer is
rotated by mechanical components to output polarized
light with different polarization states, the temporal
resolution of the Mueller matrix measurement remains
low. Therefore, by combining the high modulation
frequency of FLCPR and the ultrahigh temporal resolution
of FPMS, we design a Mueller matrix polarimeter with
dual FLCPRs based on the self-developed Stokes polari-
meter, as shown in Fig. 5. In particular, two FLCPRs with a
retardance of 90° and 180° at the design wavelength of
633 nm are added to the original polarization generator,
and the other parts remain unchanged. The temporal
resolution of the Mueller matrix measurement is no longer
limited by the temporal resolution of the detector but
primarily limited by the modulation frequency of FLCPRs.
The design scheme is expected to achieve sub-millisecond
temporal resolution in Mueller matrix measurement.

To identify all the 16 elements of the sample Mueller
matrix, the designed Mueller matrix polarimeter should
output light with at least four linearly independent
polarization states. The measurement matrix B of the
Mueller matrix polarimeter, which consists of intensity
detected by six photomultiplier tubes (PMTs), can be
generally represented by multiplying the modulation
matrix W of the polarization generator, the sample Muller
matrix M, and the demodulation matrix A of the analyzer
system [13,30], as shown in Eq. (4).

B¼ I1 I2 I3 I4 I5 I6½ �T ¼ AMW , (4)

where the column vector ofW consists of the Stokes vector
of incident light, as shown in Eq. (5).

S1 ¼ Rð – α2ÞM reðδFLCPR2
ÞRðα2ÞRð – α1ÞM reðδFLCPR1

Þ

$Rðα1ÞRð – �pÞMpRð�pÞ 1 0 0 1½ �T, (5a)

S2 ¼ Rð – α2ÞM reðδFLCPR2
ÞRðα2ÞRð – α1 – 45°Þ

$M reðδFLCPR1
ÞRðα1 þ 45°Þ

$Rð – �pÞMpRð�pÞ 1 0 0 1½ �T, (5b)

S3 ¼ Rð – α2 – 45°ÞM reðδFLCPR2
ÞRðα2 þ 45°ÞRð – α1Þ

$M reðδFLCPR1
ÞRðα1Þ

$Rð – �pÞMpRð�pÞ 1 0 0 1½ �T, (5c)

S4 ¼ Rð – α2 – 45°ÞM reðδFLCPR2
ÞRðα2 þ 45°Þ

$Rð – α1 – 45°ÞM reðδFLCPR1
ÞRðα1 þ 45°Þ

$Rð – �pÞMpRð�pÞ 1 0 0 1½ �T, (5d)

Table 1 Optical parameters extracted for FLCPR

Time point α/(° ) dFLCPR/(° ) A γ/(° )

0.5 s 16.30 262.20 0.5745 2.37

1 s – 29.87 260.40 0.5122 ‒3.75

Δ 46.17 1.80 0.0630 5.12

Fig. 5 Schematic of the Mueller matrix polarimeter based on dual FLCPRs.
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W ðα1, α2, �pÞ¼ S1 S2 S3 S4½ �, (5e)

where δFLCPR1
and δFLCPR2

are the retardance of the two
FLCPRs, and δFLCPR1

= 90° and δFLCPR2
= 180°, α1 and α2

are the azimuths of the two FLCPRs, θp is the azimuth of
the polarizer P2, Mre is the Mueller matrix of the retarder,
and R is the rotation matrix.
In FPMS, two non-polarizing beam splitters (NPBSs)

and three polarizing beam splitters (PBSs) divide the input
light into six branch lights. A linear relationship exists
between the first Stokes vector component S(0) and light
intensity. Therefore, the demodulation matrix A of FPMS
consists of the first-row vector of the Mueller matrix of the
six branch lights.

a1 ¼ 1 0 0 0½ �$ΛPBS$ΓNPBS55$ΛNPBS73, (6a)

a2 ¼ 1 0 0 0½ �$ΓPBS$ΓNPBS55$ΛNPBS73, (6b)

a3 ¼ 1 0 0 0½ �$ΛPBS$½Rð – αc2Þ$M reðδc2Þ$Rðαc2Þ�

$ΛNPBS55$ΛNPBS73, (6c)

a4 ¼ 1 0 0 0½ �$ΓPBS$½Rð – αc2Þ$M reðδc2Þ$Rðαc2Þ�

$ΛNPBS55$ΛNPBS73, (6d)

a5 ¼ 1 0 0 0½ �$ΛPBS$½Rð – αc3Þ$M reðδc3Þ$Rðαc3Þ�

$ΓNPBS73, (6e)

a6 ¼ 1 0 0 0½ �$ΓPBS$½Rð – αc3Þ$M reðδc3Þ$Rðαc3Þ�

$ΓNPBS73, (6f )

Aðαc2, αc3Þ ¼ a1 a2 a3 a4 a5 a6½ �T, (6g)

where Λ and Γ represent the reflection and transmission
matrices, respectively, Mi (i = C2, C3, PBS, NPBS73,

NPBS55) is the Mueller matrix of the corresponding
optical elements, αc2 and αc3 are the azimuth of the wave
plates C2 and C3 and can vary between 0° and 360°. The
Mueller matrices of PBSs and NPBSs are obtained in the in
situ calibration process [27].
To promote noise immunity and reduce the error caused

by the matrix operation, we perform the configuration
optimization of the designed Muller matrix polarimeter by
defining a merit, called a condition number, which can be
used to assess the noise immunity of the polarimeter. The
condition number c(X) of a matrix X is equal to the ratio of
the largest over the smallest of the singular values of X
[31,32]. Therefore, we have to minimize the values of c(A)
and c(W) to find the optimized configuration of the
designed polarimeter.
In the Mueller matrix polarimeter with dual FLCPRs, the

azimuth θp of the polarizer P2, and the azimuths α1 and α2
of the two FLCPRs are adjustable in the polarization
generator, and the azimuths αc2 and αc3 of the wave plates
C2 and C3 are adjustable in FPMS. Therefore, the
configuration of the designed polarimeter aims to essen-
tially find a set of (α1, α2, θp) and (αc2, αc3) to minimize
c(W) and c(A). The physical parameters of FLCPR change
minimally based the measurement results of ALFCPR. To
simplify the configuration procedure, all configuration
optimization processes will be conducted in the ideal state
of FLCPR. Thus, the relative rotation angle of FLCPR is
45°, the relevant physical parameters remain unchanged in
two states, and the CB effect is neglected. Using the
configuration optimization method based on a conditional
number, we optimize the configuration of PSG and FPMS
within the range of (α1, α2, θp)2[0°, 90°] and (αc2, αc3)2
[0°, 180°]. The results are presented in Figs. 6 and 7.
As shown in the optimization results of PSG in Fig. 6(a),

the azimuth of FLCPR2 barely affects the value of c(W).
Then, we find the minimum value of c(W) with the pair (α2,
θp). The results are presented in Fig. 6(b). When the
azimuths of polarizer P2 and FLCPR1 satisfy the relation-
ship in Eq. (7a), c(W) will reach the minimum value of
2.0000. The polarized light produced by PSG is linearly

Fig. 6 Diagram of the configuration optimization of PSG: (a) Relationship between (α1, α2, qp) and c(W); (b) relationship between
(α1, qp) and c(W). The value of c(W) spans from two to infinity. Thus, the area with c(W)> 20 is displayed in the same color to achieve a
clear depiction of the position of the smallest c(W).
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correlated when the azimuths of polarizer P2 and FLCPR1

satisfy the relationship in Eq. (7b). The value of c(W) is
infinite. Therefore, we should prevent PSG from outputting
polarized light near this configuration.

�p ¼ α1 þ 22:5°þ k$90°   ðk 2 ZÞ, (7a)

�p ¼ α1 þ l$22:5°þ m$90°    l ¼ 0, 2, 3; m 2 Zð Þ:
(7b)

The optimization results of FPMS shown in Fig. 7
indicate that c(A) reaches the minimum value of 2.4796
when αc2 and αc3 satisfy Eq. (8). The azimuths αc2 and αc3
of the wave plates in FPMS take the values near the
recommended value to enhance noise immunity and
improve the stability of the polarimeter.

ðα2, α3Þ ¼ ð25:4°þ q$45°, 32:7°Þ  ðq 2 ZÞ, (8a)

ðα2, α3Þ ¼ ð25:4°þ q$45°, 153:7°Þ  ðq 2 ZÞ: (8b)

5 Evaluation of measurement errors

The retardance, which remains unchanged during the
modulation process, and the relative rotation angle of
FLCPR are measured in advance in the existing literatures.
However, all the optical parameters of FLCPR vary with
driving voltage in accordance with the measurement
results of AFLCPR. Errors caused by changes in
transmittance can be avoided by normalizing the measured
light intensity. Weak CB effects exert negligible effects on
the measurement results. However, retardance varies by

approximately �2° between the two stable states. If we
disregard the change in retardance similar to that in the
literature, then the measurement accuracy of the instrument
will be reduced. To diminish the influence of the undesired
modulation performance of FLCPR on measurement
accuracy, the measurement error caused by the fluctuation
of retardance should be evaluated.
For example, we simulate the thickness measurement

error caused by the fluctuation of the retardance in the
thickness measurement experiment of a 24 nm standard
SiO2 film sample. The simulation experiment is performed
under the optimal configuration obtained in Section 4, i.e.,
(α1, α2, θp) = (22.5°, 45°, 45°) and (αc2, αc3) = (25.4°,
32.7°), with an incident angle of 51° in the reflection
measurement mode. When the modulation matrix W and
the demodulation matrix A are determined through the
calibration process, the ellipsometry parameters (ψ, D) can
be obtained using Eq. (9).

Mðψ,ΔÞ ¼ A – 1BW – 1: (9)

The thickness of the film can be calculated from the
measured ellipsometry parameters via library matching
operation. Given that the measured matrix B is obtained in
real time, thickness variation can be determined using the
designed Mueller matrix polarimeter. The thickness
measurement error of the simulation experiment is
shown in Fig. 8.

The simulation results shown in Fig. 8 indicate that the
maximum thickness measurement error is – 1.045 nm in
the thickness measurement experiment of the 24 nm
standard SiO2 film sample, indicating that the relative
measurement error reaches up to – 4.35%. However, the
retardance fluctuation of FLCPR1 exerts minimal effect on
thickness measurement. The retardance fluctuation of

Fig. 7 Diagram of the configuration optimization of FPMS.
Relationship between (αc2, αc3) and c(A).

Fig. 8 Thickness measurement error in SiO2 film measurement
caused by the retardance change of FLCPR.
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FLCPR2 is the primary factor that causes the thickness
measurement error. Therefore, a change in the retardance
of FLCPR must be accurately measured when developing
FLCPR-based polarimeters to reduce errors caused by the
unsatisfactory modulation property of FLCPR.

6 Conclusions

The accurate characterization of the modulation perfor-
mance of FLCPR directly affects the measurement
accuracy of polarimeters based on FLCPRs. In this work,
the accurate characterization of FLCPR using a self-
developed high-speed Stokes polarimeter proves that all
the optical parameters of FLCPR are dependent on driving
voltage. Furthermore, FLCPR exhibits not only the LB
property but also the weak CB property. Then, we design a
Mueller matrix polarimeter with dual FLCPRs based on
the self-developed Stokes polarimeter. The designed
polarimeter combines the advantages of the high modula-
tion frequency of FLCPR and the ultrahigh temporal
resolution of FPMS. Furthermore, we obtain the optimal
configuration of the designed polarimeter by minimizing
the number of conditions. Lastly, we evaluate the
measurement error caused by the fluctuation of retardance
in the simulated thickness measurement of a 24 nm
standard SiO2 film sample under optimal configuration.
The maximum relative thickness measurement error of
– 4.35% indicates that the retardance change between the
two stable states of FLCPR is crucial.
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