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Abstract Low-carbon manufacturing (LCM) is increas-
ingly being regarded as a new sustainable manufacturing
model of carbon emission reduction in the manufacturing
industry. In this paper, a two-stage low-carbon scheduling
optimization method of job shop is presented as part of the
efforts to implement LCM, which also aims to reduce the
processing cost and improve the efficiency of a mechanical
machining process. In the first stage, a task assignment
optimization model is proposed to optimize carbon
emissions without jeopardizing the processing efficiency
and the profit of a machining process. Non-dominated
sorting genetic algorithm II and technique for order
preference by similarity to an ideal solution are then
adopted to assign the most suitable batch task of different
parts to each machine. In the second stage, a processing
route optimization model is established to plan the
processing sequence of different parts for each machine.
Finally, niche genetic algorithm is utilized to minimize the
makespan. A case study on the fabrication of four typical
parts of a machine tool is demonstrated to validate the
proposed method.

Keywords Low-carbon manufacturing, carbon effi-
ciency, multi-objective optimization, two-stage scheduling,
job shop

1 Introduction

With rapid economic and technological development, the
contradiction between environmental pressure (e.g.,
energy shortage and carbon emissions) and economic
growth has become more severe. In 2014, the energy
consumption of China’s manufacturing industry was 2.45
billion tons of standard coal, accounting for 57% of the
total annual CO2 emissions [1]. The environment has
raised higher requirements for the manufacturing industry.
The low carbonization of manufacturing processes can
improve the social benefits and product competitiveness of
manufacturers and will bring about new opportunities for
the machinery manufacturing industry [2].
In mechanical manufacturing, job shop scheduling is

key to realizing the high efficiency, flexibility, and
reliability of the mechanical manufacturing system.
Scheduling optimization is a core technology of advanced
manufacturing and modern management [3]; it not only
allocates processing tasks but also affects the utilization
level of resources and energy of the job shop. Therefore,
adopting a scheduling strategy and considering the
collaborative optimization between traditional economic
indicators and low-carbon indicators are significant means
for manufacturers to realize low-carbon manufacturing
(LCM) [4].
In recent times, many attempts have been made to solve

the scheduling optimization problems for low-carbon
mechanical machining. In terms of energy saving, Mouzon
et al. [5,6] considered the energy consumption caused by
the unloading operation of machines and proposed a multi-
objective scheduling optimization model to minimize the
total energy consumption and makespan. Giglio et al. [7]
presented a mixed-integer programming formulation with
the aim of defining and solving an integrated lot sizing and
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energy-efficient job shop scheduling. Their proposed
method diminishes the energy consumption and idle
times of machines and reduces the overall cost of the job
shop. Salido et al. [8] applied job shop scheduling to
optimize energy efficiency and makespan and, conse-
quently, realize high energy efficiency of the machining
process. Li et al. [9] proposed a job shop scheduling
approach by integrating alternative routing assignment and
machine resource dispatching. They also introduced a
colored timed Petri net to model the dynamics of the
remanufacturing process. To diminish total carbon emis-
sions, Piroozfard et al. [10] established a low-carbon
scheduling model of a flexible mechanical job shop and
used an improved genetic algorithm (GA) to obtain the
optimal plan. Zhang et al. [11] focused on the carbon
footprint of the machining process and proposed a low-
carbon scheduling method to reduce the carbon emissions
of a mechanical job shop. Zhang et al. [12] considered the
relationship between among the parameters, carbon
emissions, and makespan of a manufacturing process and
put forward an integrated optimization model to find a low-
carbon scheduling scheme with fluctuation of cutting
parameters. Lei [13] presented a teaching-learning-based
optimization algorithm to minimize the total carbon
footprint and average tardiness of a flexible mechanical
job shop. Zhou et al. [14] proposed a low-carbon process
route optimization model based on process bill of material
and designed a multi-objective ant colony algorithm to
solve the proposed model.
A significant amount of research has been conducted in

the above areas, yet relatively few attempts have been
made to sufficiently analyze the scheduling correlation
between different levels of the job shop during the
mechanical machining process. Moreover, some studies
have not considered the effect of dividing sub-batches of
each processing machine on the final makespan under
multi-batch, multi-machine, and multi-process circum-
stances of the mechanical job shop. As a result,
optimization effectiveness and efficiency are usually
restricted. Given that processing cost, processing effi-
ciency, makespan, and carbon emissions are directly
affected by the scheduling scheme, determining how to
comprehensively utilize the scheduling optimization that
considers these performance indicators and realize low
carbonization of the mechanical machining process is
rarely reported as well. Thus, a more suitable low-carbon
scheduling strategy is urgently needed.
In this paper, a two-stage scheduling method with multi-

objective optimization of the job shop is presented to
enhance the carbon efficiency of a mechanical machining
process. Compared with previous works, the novelty of
this study is mainly manifested in three aspects. (1) The
study presents a novel low-carbon scheduling optimization
strategy framework that investigates the effect of the
scheduling process on carbon emissions and the schedul-
ing relationship of the mechanical job shop on each level.

(2) Economy carbon efficiency (ECEu) and processing
carbon efficiency (PCEu) of the process unit are defined,
which effectively integrates the processing performance
indicators with carbon emissions. This development has
not been achieved in prior works on low-carbon schedul-
ing. (3) Multi-objective two-stage scheduling optimization
models and their corresponding algorithms are proposed,
which maximize the division of batch task to ensure
optimal scheduling results and simplify the difficulty of
obtaining the optimal scheduling scheme.
The rest of the paper is organized as follows. Section 2

states the methodological framework for the two-stage
carbon efficiency scheduling optimization of the mechan-
ical machining process. Section 3 outlines the idea of the
carbon efficiency upgrading method, which contains the
definition of ECEu and PCEu, the low-carbon scheduling
optimization models, and their corresponding algorithms.
Section 4 presents the case study to demonstrate the
effectiveness and practicability of the method. Section 5
concludes with our work summary and future research
direction.

2 Statement of methodological framework

The machining process has multi-batch, multi-machine,
and multi-processing route characteristics, among many
others, and its job shop scheduling is to achieve the optimal
production objectives through the reasonable allocation of
resources and tasks under certain constraints, such as
processing craft, delivery time, and resources of job shop.
Low-carbon scheduling optimization of the job shop aims
to solve two problems: (1) Task assignment problem, or
how to reasonably choose the processing machines from
each process unit and assign tasks to each machine; and (2)
processing route arrangement problem, or how to optimize
the processing sequence arrangement of batch tasks on
each machine. The above analysis indicates that the
essence of this research is to solve the multi-batch low-
carbon scheduling of flexible mechanical job shop.
Compared with general scheduling optimization, low-

carbon scheduling of the mechanical job shop must be
considered seriously because of the following reasons.
(1) The processing efficiency and carbon emissions of each
machine are different even if these machines manufacture
the same parts. The machine with high processing
efficiency may also produce high carbon emissions, such
that the existing scheduling that considers processing
efficiency as the only objective may lead to increased
carbon emissions. (2) The carbon emissions of some
machines are several times higher than those of other
machines. However, due to the strong processing capacity
of these machines, such as the capability to process more
than one part at the same time, the processing costs are low.
Therefore, the scheduling that considers only the economic
objective will result in increased carbon emissions. (3) As
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the scrap rate of each machine is different and defective
parts influence the indirect carbon emissions of raw
material waste, total carbon emissions can be increased
without considering the processing qualification rate.
Therefore, systematic indicators to simplify the low-

carbon scheduling problem are required. In this paper, the
ECEu and PCEu of a process unit (i.e., a set of machine
tools that processes the same or similar process types, such
as cutting, grinding, and milling), as two effective
indicators to take systematic consideration of processing
efficiency, processing cost, processing qualification rate,
and carbon emissions in low-carbon scheduling, are
defined on the basis of Refs. [15–17] as follows:

ECEu ¼ VP

CP
, (1)

PCEu ¼ Q

CP⋅T
, (2)

where VP represents the machining profit of the process
unit (unit: CNY), CP is defined as the carbon emissions of
the process unit (unit: kg CO2e), ECEu reflects the
processing increment of the carbon emissions’ dynamic
change of the process unit (unit: CNY/(kg CO2e)), Q refers
to the amount of qualified parts of the process unit (unit:

piece), T is the processing time of the process unit (unit: s),
and PCEu describes the processing efficiency changes with
the carbon emissions of the process unit.
Three levels can be identified according to the

organization of the mechanical machining system. The
process chain level (top level) mainly receives production
tasks according to customer orders and consists of part set
(Wi, i ¼ 1, 2, :::,n), process chain set (Pi,s, s ¼ 1, 2, :::, f ),
and batch task set (Hi). In actual situations, the process unit
level (transition level) usually divides the various proces-
sing machines (Ml, l ¼ 1, 2, :::,m) into multiple specific
process units to accomplish machining tasks with similar
or same processes of parts according to the process chain
set. The machine level (bottom level) is mainly responsible
for the activities of processing machines, including the
states of standby, unload, and load of machines. Figure 1
shows the two-stage low-carbon scheduling framework
associated with the carbon efficiency indicators.
In the two-stage low-carbon scheduling framework, the

scheduling activities of each stage must be considered the
overall mechanical job shop system. Once the processing
craft of each part is determined in the process chain level
(top level), the information and data of process chains and
process units during low-carbon scheduling activities are
represented as the transfer or accumulation of the machine

Fig. 1 Two-stage low-carbon scheduling framework.
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level (bottom level). Therefore, the key to improving the
carbon efficiency of mechanical job shop is to measure
whether the scheduling activities in different stages will
affect the operation activities of machine tools. According
to the state set of machine tools in the bottom level, the
total processing task assignment of the job shop changes
the running time of the machine tools in different states,
which correspondingly results in the variation of carbon
efficiency parameters, including economic benefit, output,
and carbon emissions. In particular, the total processing
task assignment of the job shop in the top level acts on the
low-carbon optimization of machine tools on the bottom
level. Based on this outcome, the processing route
optimization for the batch task of each machine in the
bottom level acts on the makespan of the top level. Such
route optimization aims to change the sequence of assigned
batch tasks rather than the running state and time of the
machine tools. Thus, it can ensure the optimal carbon
efficiency of the job shop and further shorten the
production cycle. The method flow for the two-stage
low-carbon scheduling strategy is presented as follows:
(1) In the first stage, the ECEu and PCEu of the process

unit are regarded as the optimization objectives to integrate
the performance indicators of processing efficiency,
processing cost, processing qualification rate, and carbon
emissions. In addition, a task assignment optimization
model is established to select the suitable processing
machines from the process unit level and assign the
optimal batch task (Hl,i,s) to the machine level by using
non-dominated sorting genetic algorithm II (NSGA-II) and
technique for order preference by similarity to an ideal
solution (TOPSIS).
(2) In the second stage, a processing route optimization

model is presented to further divide the assigned batch task
Hl,i,s in the first stage into z sub-batches Hl,i,s,z,
z ¼ 1, 2, :::, y. The processing sequence of parts for each
machine is also planned to minimize the makespan. Niche
genetic algorithm (NGA) is utilized to finally obtain the
task schedule Gantt chart with the optimal carbon
efficiency performance.

3 Method and algorithm of carbon
efficiency upgrading

3.1 Task assignment model and algorithm

According to Eq. (2), a high PCEu value indicates less
carbon emissions, greater machining efficiency, and better
processing qualification rate of the mechanical machining
process. When the organizational characteristics of the
process unit in the transition level are considered, the
processing activities of different process units are found to
be relatively independent once the tasks are assigned, and

the accumulated carbon efficiency parameter data of each
process unit is the process chain data. Therefore, the
optimal task assignment result of each process unit ensures
the best carbon efficiency of the overall machining process.
The objective functions for maximizing ECEu and PCEu

are formulated respectively as follows:

f ð1Þ ¼ max
VPu

CPu ¼ max
X
l2 lu

X
i2 iu

X
s2 su

V val
l,i,s –V

scr
l,i,s –V

art
l,i,s –V

depr
l,i,s –V elec

l,i,s –V
aux
l,i,sXv

o¼1

CESl,i,s,oþ
Xq
h¼1

CEQl,i,s,hþ
Xw
k¼1

CEWl,i,s,kþCEEl,i,s

0
BBBB@

1
CCCCA,

(3)

f 2ð Þ ¼ max
Qu

CPuTu ¼ max
X
l 2 lu

X
i2 iu

X
s2 su

Ql,i,s

CPl,i,sTl,i,s
, (4)

where VPu andCPu are defined as the processing profit and
carbon emissions of process unit u, respectively, lu, iu, and
su are the machine set, part set, and process step set of

process unit u, respectively, V val
l,i,s, V

scr
l,i,s, V

art
l,i,s, V

depr
l,i,s , V

elec
l,i,s ,

and V aux
l,i,s refer to the value added by processing, scrap cost,

artificial cost, machine depreciation cost, electric energy
cost, and auxiliary resource cost of the machining during
process step Pi,s of part Wi on machine Ml, respectively,
and Qu is the processing amount of process unit u, when
the batch task Hi is determined without considering the
random factors, such as unqualified processing, where Qu

will be a constant. Moreover, Tu is the total machining time
of process unit u, Ql,i,s, CPl,i,s, and Tl,i,s are defined as the
production volume, carbon emissions, and processing time
of the machining during process step Pi,s of part Wi on
machine Ml; and CESl,i,s,o, CEQl,i,s,h, CEWl,i,s,k , and
CEEl,i,s are the carbon emissions generated by the oth
solid waste, hth fossil fuel, kth liquid waste, and electricity
consumption during process step Pi,s of part Wi on the
machine Ml. For the quantification of carbon emissions,
the common carbon equivalent coefficient method is
adopted [18]. According to the Intergovernmental Panel
on Climate Change, the carbon equivalent coefficient is
defined as the carbon emissions caused by a unit resource,
mainly obtained by converting the load energy of the
material into the coal equivalent and finally transform it
by using the carbon equivalent coefficient of standard
coal [19].
The constrains of functions f ð1Þ and f ð2Þ are also under

following considerations:
1) The production volume of process step Pi,s is the

batch task of process step Pi,sþ1, and the batch task must be
an integer, where [ ] is the integer notation.
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Qi,s ¼ Hi,sþ1 ¼
Xm
l¼1

½Hl,i,s⋅βl,i,s�, (5)

where βl,i,s is defined as the qualification rate of the process
step Pi,s of part Wi on machine Ml.
2) The sum of the batch task assigned to each machine

Hl,i,s must be in accordance with the task received on
process step Pi,s.

Hi,s ¼
Xm
l¼1

Hl,i,s: (6)

3) Each processing machine Ml can only process one
part machining on one process step at a time.

TSMl,i,s
≠TSMl,iþ ,sþ , i≠iþ, s≠sþ, (7)

where TSMl,i,s
represents the start time of the process step

Pi,s of part Wi on machine Ml.
4) At least one processing machine Ml can be used to

conduct the machining of process step Pi,s of part Wi.

fQi,sg≠Æ, Qi,s³0, Qi,s2 Z: (8)

5) After the machining of process unit u is completed,
the quantity of qualified products Qu

i , machining time PTu
i ,

and machining profit VPu
i should be superior to the

expected values of Qu0
i , PTu0

i , and VPu0
i , respectively.

Qu
i³Q0

i , PT
u
i ¼ TEu

i – TS
u
i £PTu0

i ,VPi³VP0
i , (9)

where TEu
i and TSui are the machining complete time and

start time of process unit u of part Wi, respectively.
Therefore, the task assignment model of the mechanical

machining process for carbon efficiency upgrading is
defined as follows, and both objectives are considered
equally important in this paper.

max½FðHl,i,sÞ� ¼
�
maxf ð1Þ,maxf ð2Þ

�
: (10)

Subject to

Hi,s ¼ Ql,i,s – 1 ¼
Xm
l¼1

½Hl,i,s – 1⋅βl,i,s – 1�,

Hi,s ¼
Xm
l¼1

Hl,i,s,

TSMl,i,s
≠TSMl,iþ ,sþ , i≠iþ, s≠sþ,

TEMl,i,s
– TSMl,i,s

¼ TMl,i,s
,

fQi,sg≠Æ, Qi,s³0, Qi,s2Z,
Qu

i³Q0
i , PT

u
i ¼ TEu

i – TS
u
i £PTu0

i ,VPi³VP0
i :

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(11)

Task assignment optimization is a typical multi-
objective optimization problem. In this issue, the main
reason for having multiple optimal solutions is that it is
impossible to optimize multiple objects simultaneously to

find a single optimal solution. Therefore, an algorithm that
can give an optimal solution set is of practical value. In this
study, NSGA-II is introduced to obtain the solution set.
NSGA-II is currently one of the most popular multi-
objective GAs because of its fast running speed and good
convergence of solution set. Compared with the use of
weighted sum to convert multiple objective functions into
a single objective function to obtain the unique optimal
solution, NSGA-II can find a multi-valued Pareto optimal
solution in one operation, a capability that is more in line
with actual needs and which has become the benchmark of
other multi-objective optimization algorithms. The imple-
mentation steps of NSGA-II for this model are shown in
Fig. 2.
According to the characteristics of the multi-objective

task assignment model, the real number coding mode is
chosen for the chromosome coding of the NSGA-II
algorithm, which is generally applicable to solve the
problem of continuous parameter optimization. On the
basis of the determined process and machine sequence, the
task assignment solution can be formed into a 2D matrix of
machine number and task quantity. The column number of
the matrix represents the total number of processes, with
the process sequence indicated from left to right. The row
number of the matrix is the maximum number of machines
in the process unit, with the machine sequence indicated
from top to bottom. The elements in the matrix are the
processing tasks assigned to each machine for each
process, and the element vacancy of the matrix is replaced
by 0. When there are f processes in the job shop and the
maximum number of machines in each process unit is l, the
chromosome of task assignment is coded as a l � f matrix.
On this basis, the algorithm flow shown in Fig. 2 is used to
obtain the task assignment solutions. The NSGA-II starts
with a random generated initial population, and feasible
task allocation solutions as the initial population Rt are
obtained by residual calculation of the optional machine
number and the assignment quantity of each process. Then,
according to the non-dominated sorting, the partial mapped
crossover method is adopted for the crossover operation of
processing tasks and the mutation probability value Pm is
set. Consequently, the first population of offspring
generation Qt can be obtained. For the second generation,
the populations of parents and offspring generation are
combined to execute non-dominated sorting again and
calculate the crowding distance of the individual in each
non-dominant layer. Hence, a new parent population Ptþ1
is formed by filling the low-level non-dominant individual
into the parent population Pt. Iteratively, genetic manip-
ulation is carried out to form a new population of offspring
generation Qtþ1. Finally, when the termination condition
meets Gen < V , the optimal solution set of task assign-
ment can be output.
The main feature of NSGA-II is the elitist strategy of

individuals achieved by the steps of non-dominated sorting
and crowding distance calculation. This feature improves
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the diversity and distribution of the Pareto optimal solution
set and guarantees prodigious suitability in the multi-
objective optimization problem. However, it is difficult for
decision makers to directly select one or several of the best
solutions on the numerous Pareto fronts. Therefore, an
appropriate evaluation criterion or method is needed to
evaluate the performance of the Pareto optimal solution set
and then select the only optimal solution that meets the
practical workshop conditions to guide production. On this
basis, TOPSIS is used to further determine the final
solution from the approximate optimal solution set. The
method flow is expressed as follows [20]:
1) According to the approximate optimal solution set of

functions f ð1Þ and f ð2Þ, an evaluation decision matrix
G ¼ ½go,p�h�2 is established, where go, p is the approximate
optimal solution, and o ¼ 1, 2, :::,h, p ¼ 1, 2.
2) go, p is normalized to build the normalized decision

matrix K ¼ ½ko,p�h�2, where ko,p ¼ go,p=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXh
o¼1

g2o,p

vuut .

3) The Euler distance between the normalized index
ko,p and the ideal solution (the optimal value for each
objective value) kþp as well the negative ideal solution
(the worst value for each objective value) k –

p needs

to be calculated by Sþo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2
p¼1

ωpðko,p – kþp Þ2
vuut and S –

o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2
p¼1

ωpðko,p – k –
p Þ2

vuut , where ωp is the weight of f ð1Þ and

f ð2Þ. In this study, both objectives are considered equally
important, namely, ω1 ¼ ω2.
4) The relative closeness of approximate optimal

solutions can be calculated by Co ¼ S –
o =ðSþo þ S –

o Þ.
Owing to the ω1 ¼ ω2, the relative closeness Co is
evaluated between 0 and 1. A Co value closer to 1 reveals
that the task assignment plan is much better.

3.2 Processing route optimization model and algorithm

The primary objective of processing route optimization is
to further divide the assigned batch task Hl,i,s in the first
stage into sub-batch Hl,i,s,z and plan the processing
sequence of parts for each machine to minimize the
makespan of the mechanical machining process. The
running time of the machine tools in each state is the
fundamental factor affecting the carbon efficiency of the
machining process. However, batch task decomposition

Fig. 2 NSGA-II flowchart for task assignment model.
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and processing sorting in processing route optimization do
not affect the running time of the machine tools.
Specifically, ECEu, PCEu, and carbon emissions optimized
in the first stage of scheduling can be maintained, and the
relationship of two stages in the scheduling strategy is both
progressive and independent. The processing route
optimization model to minimize the makespan of the
mechanical machining process is formulated as follows:

Tp ¼ minðmaxTEl,i,f Þ: (12)

Subject to

Hi,s ¼ Ql,i,s – 1 ¼
Xm
l¼1

½Hl,i,s – 1⋅βl,i,s – 1�,

Hi,s ¼
Xm
l¼1

Hl,i,s, Hl,i,s ¼
Xy
z¼1

Hl,i,s,z,

TSMi,s
≠TSMl,iþ ,sþ , i≠iþ, s≠sþ,

TEMl,i,s
– TSMl,i,s

¼ TMl,i,s
,

fQi,sg≠Æ, Qi,s³0, Qi,s2Z,

Qu
i³Q0

i , PT
u
i ¼ TEu

i –TS
u
i £PTu0

i ,VPi³VP0
i ,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(13)

where Tp is the production time of the mechanical
machining process, and TEl,i,f is the completion time of
the last process Pi,f of part Wi on machine Ml. Except for
the need to satisfy the constraints in the task assignment
model, the processing route optimization model is
necessary to ensure the sum of divided batch task Hl,i,s,z

is equal to the corresponding batch task Hl,i,s.
Processing route optimization is a typical multi-peak

optimization problem. When GA is used to solve this kind
of problem, only a few optimal values can be found and
local optimal solutions tend to be obtained. Therefore, the
concept of niche is introduced by scholars to help resolve
this issue. Niche technology extends the GA by facilitating
the formation of stable subpopulations within the neigh-
borhood of multiple optimal solutions, enabling GAs to be
applied to problems with multiple local optimal solutions
in the search space. The NGA uses a sharing mechanism to
set a sharing function that reflects the degree of similarity
between individuals to adjust individual fitness and
achieve the purpose of maintaining population diversity.
It can also more easily find all the local and global optimal
solutions because it is the current classical algorithm to
solve the optimization problem of complex multi-peak
functions. Given the nature and complexity of processing
route optimization, the NGA is adopted to derive the
optimal solution. Interested readers can refer to Ref. [21]
for the full feature of the algorithm. The main implementa-
tion steps of NGA for processing route optimization are
sketched as follows:
1) Population initialization: Randomly generate a set of

process routing, and then randomly divide the batch tasks
Hl,i,s,z for each process step on each machine.

2) Fitness function determination: The sharing mechan-
ism is used to adjust the fitness of individuals in the
population and assume the niche radius is �sh, the sharing
function is shðdi,jÞ, and the niche number of individual Xi is
mi. The calculation formulas are as follows:

shðdi,jÞ ¼ 1 –
di,j
�sh

, di,j£�sh,

0, di,j>�sh,

8<
: (14)

�sh ¼
ffiffiffi
k

p

2
ffiffiffiffi
mk

p , (15)

mi ¼
Xn
j¼1

shðdi,jÞ, (16)

where k is the number of decision variables, m is the
number of obtained relative optimal solutions, n means the
population size, and di,j is the Euclidean distance between
individuals Xi and Xj. To ensure population diversity and
inhibit the infinite proliferation of similar individuals, the
fitness function f ðXiÞ (objective function) of individual Xi
should be adjusted to fshðXiÞ ¼ f ðXiÞ=mi.
3) Selection of operator determination: According to the

fitness value of the adjusted individual, the selection
operator pi can be calculated as follows:

pi ¼
fshðXiÞXn

i¼1

fshðXiÞ
: (17)

4) Crossover operation: the crossover method for parent
and offspring individuals is used to generate a new
individual with the following calculation formulas:

X tþ1
i ¼ αX t

j þ ð1 – αÞX t
i ,

X tþ1
j ¼ αX t

i þ ð1 – αÞX t
j ,

(
(18)

where α is the scaling factor, α ¼ expð – α0t=TÞ, α0 is the
preset coefficient within the range of [0, 1], t is the current
evolutionary generation, and T represents the largest
evolutionary generation.
5) Mutation operation: Assume the mutation step size is

Δ and the value range of genes at mutation point xk on the
tth generation is ½Uk

min,U
k
max�. The new gene value x#k can

be obtained as follows:

x#k ¼
xkþΔðt,Uk

max – xkÞ, α ¼ 0,

xk –Δðt, xk –Uk
minÞ, α ¼ 1,

(
(19)

Δðt, yÞ ¼ y
�
1 – rð1 – t=TÞ

�
, (20)

where r is the random number within the range of [0, 1].

344 Front. Mech. Eng. 2020, 15(2): 338–350



4 Case study

A case study is conducted on machining four typical parts
of a machine tool factory to obtain the scheduling scheme
with the optimal carbon efficiency performance. The total
production cycle is limited to 74 hours according to
delivery time, and 11 processing machines divided into
five process units are organized in the factory. The relevant
information and data of parts, processing steps, and
processing machines are shown in Tables 1 and 2.
To quantify the economy and PCEu of the process units

of Eqs. (3) and (4), the related indicator elements (i.e.,
processing profit, processing time, and carbon emissions)
need be measured and calculated. Among them, the power
on different states and the corresponding time of machine
are measured by the high precision power tester WT1800
[22]. In addition, the average labor cost, depreciation cost
of machine, and machining profit are provided by the
accounting department of the enterprise in accordance with
relevant standards, while the qualification rate of parts is
obtained by statistical analysis according to the quality
inspection records of the enterprise [23]. The amount of
solid waste is also counted by collecting and weighing, and
the waste hydraulic oil and waste cutting fluid are

converted and calculated according to the actual consump-
tion as well as average replacement cycle. The relevant
processing information of carbon efficiency indicator
elements of each part are shown in Tables 3 to 6.
During the two-stage scheduling optimization of the

mechanical machining process of the four types of
machine tool parts, the batch task assignment for each
process unit and the machine selection for processing
should be first determined. With the use of the task
assignment model and NSGA-II, the Pareto optimal
solution set of task assignment can be obtained under the
circumstance that ECEu is as important as PCEu. TOPSIS
is then adopted to select the final ideal solution from the
Pareto set. Figure 3 illustrates the solutions with the
optimal carbon efficiency of process unit obtained via
Matlab 7.11.0 (MathWorks, USA).
Figure 3 reflects the ECEu and PCEu values of each

relatively optimal assignment solution of different process
units. As process unit 2 (heat treatment unit) contains three
same-type machines that have the same machining
activities and process unit 3 (milling unit) contains only
one machine, the optimal task assignment solution of these
two process units is unique. Furthermore, the correspond-
ing PCEu and ECEu of process units 2 and 3 are
1:327� 10 – 7 piece/(kg CO2e$s) 2.33 CNY/(kg CO2e)

Table 1 Relevant information and data of parts and processing steps

Part number Batch task Process step 1 Process step 2 Process step 3 Process step 4 Process step 5 Process step 6 Process step 7

Tailstock
spindle W1

60 Rough
turning P1,1

Heat
treatment P1,2

Finish
turning P1,3

Slotting
P1,4

Heat treatment
P1,5

Finish
grinding P1,6

Grinding
taper hole P1,7

Tailstock
body W2

80 Heat
treatment P2,1

Planing
plane P2,2

Milling P2,3 Grinding
P2,4

Heat treatment
P2,5

– –

Under
plate W3

50 Rough
planing P3,1

Heat
treatment P3,2

Finish
planning P3,3

Finish
milling P3,4

– – –

Worktable
W4

50 Rough
planing P4,1

Milling
plane
P4,2

Finish
planing
P4,3

Milling
step
P4,4

– – –

Table 2 Relevant information and data of process units and machines

Process unit number Process unit name Machine type and number Processing capacity/(piece$time–1)

1 Turning unit CA6140 (M1) 1

CA6150 (M2) 1

2 Heat treatment unit RJX-45-9 (M3) 5

RJX-45-9 (M4) 5

RJX-45-9 (M5) 5

3 Milling unit TX6111D (M6) 1

4 Grinding unit M13328X1500 (M7) 1

C-600CNC (M8) 1

MA1420/500 (M9) 1

5 Planing unit BY60100C (M10) 1

BM2020 (M11) 1
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Table 3 Processing information of carbon efficiency indicator elements of W1

Process step
number

Process unit
number

Machine
number

Machining profit per
time/CNY

Carbon emissions per
time/(kg CO2e)

Processing time
per time/s

Qualification
rate/%

P1,1 1 M1 41.0 0.24 434 96

M2 40.0 0.23 421 96

P1,2 2 M3 148.8 53.40 10980 98

M4 148.8 53.40 10980 98

M5 148.8 53.40 10980 98

P1,3 1 M1 85.0 1.30 552 95

M2 87.0 1.20 533 95

P1,4 3 M6 47.5 0.21 363 95

P1,5 2 M3 146.0 66.90 12780 98

M4 146.0 66.90 12780 98

M5 146.0 66.90 12780 98

P1,6 4 M7 48.5 0.65 325 95

M8 48.8 0.58 310 98

M9 44.0 0.48 320 98

P1,7 4 M7 51.0 0.68 344 98

M8 52.0 0.59 326 98

M9 52.2 0.49 337 98

Table 4 Processing information of carbon efficiency indicator elements of W2

Process step
number

Process unit
number

Machine
number

Machining profit per
time/CNY

Carbon emissions per
time/(kg CO2e)

Processing time
per time/s

Qualification
rate/%

P2,1 2 M3 82.4 40.90 7200 99

M4 82.4 40.90 7200 99

M5 82.4 40.90 7200 99

P2,2 5 M10 51.5 2.10 401 100

M11 55.5 2.30 420 100

P2,3 3 M6 49.6 0.42 482 98

P2,4 4 M7 55.0 0.88 421 100

M8 53.0 0.68 443 100

M9 57.0 0.74 398 100

P2,5 2 M3 124.3 51.20 10200 93

M4 124.3 51.20 10200 100

M5 124.3 51.20 10200 100

Table 5 Processing information of carbon efficiency indicator elements of W3

Process step
number

Process unit
number

Machine
number

Machining profit per
time/CNY

Carbon emissions per
time/(kg CO2e)

Processing time
per time/s

Qualification
rate/%

P3,1 5 M10 79.5 2.20 549 100

M11 74.5 2.30 542 100

P3,2 2 M3 136.3 59.20 12600 99

M4 136.3 59.20 12600 99

M5 136.3 59.20 12600 99

P3,3 5 M10 82.6 1.90 552 100

M11 80.0 1.70 549 100

P3,4 3 M6 42.5 0.64 325 98
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and 1.0593�10–5 piece/(kg CO2e$s), 83.4678
CNY/(kg CO2e), respectively. However, process units 1,
4, and 5 include multiple different-type processing
machines and many relative optimal solutions coexist
under constraint conditions and have different levels of
performance on both ECEu and PCEu. Therefore, TOPSIS
is used to carry out a final determination of the
comprehensive optimal solution, which is 2.2085�10–5

piece/(kg CO2e$s), 85.1885 CNY/(kg CO2e) (process
unit 1); 2.0783�10–5 piece/(kg CO2e$s), 79.6849
CNY/(kg CO2e) (process unit 4); and 3.2133�10–6

piece/(kg CO2e$s), 37.1696 CNY/(kg CO2e) (process
unit 5). The corresponding task assignment plan of each
machine with the optimal carbon efficiency is shown in
Table 7.
The above analysis reveals that carbon efficiency

scheduling optimization mainly works on the process
units consisting of machine tools with different low-carbon
performance, namely, the premise of improving carbon
efficiency is that machine tools in the process unit have
different resource and energy consumption behaviors. In
this case, the process units meet the prerequisite condi-
tions, including turning process unit, grinding process unit,
and planing process unit. Comparing and analyzing the
task assignment solutions of each process unit with the
processing efficiency objective (PEO), economic benefit
objective (EBO), and carbon efficiency objective (CEO)

can obtain the carbon emission reduction effect of carbon
efficiency optimization, as shown in Table 8.
Thus far, the first-stage scheduling optimization is

accomplished, though the batch task still needs to be
divided further, and the processing route should be
developed for the purpose of minimizing the makespan.
Hence, the processing route optimization model shown in
Eqs. (12) and (13) is applied to plan the processing
sequence of different parts for each machine, and the NGA
is utilized to minimize the makespan. Figures 4 and 5 show
the result variation curves and Gantt chart for processing
route planning, respectively, obtained via Matlab 7.11.0
(MathWorks, USA). In Fig. 4, the curve of average fitness
value of populations converges exponentially at almost 5
generations prior, and between 5 and 10 generations, the
change slows down. This outcome shows that the solution
process has good performance in maintaining the popula-
tion diversity and the computational efficiency. After 10
generations of evolution, the curves of average fitness
value and optimal fitness value of populations tend to
stabilize, and the optimal makespan is maintained in 66.5
hours.
The scheduling scheme shown in Fig. 5 is the optimal

solution for carbon efficiency upgrading under production
constraints. In the figure, rectangular blocks with different
colors represent different parts, and the symbols on
rectangular blocks reflect the process step number (e.g.,

Table 6 Processing information of carbon efficiency indicator elements of W4

Process step
number

Process unit
number

Machine
number

Machining profit per
time/CNY

Carbon emissions per
time/(kg CO2e)

Processing time
per time/s

Qualification
rate/%

P4,1 5 M10 98.3 2.5 605 100

M11 99.6 2.1 612 100

P4,2 3 M6 94.6 1.5 582 99

P4,3 5 M10 93.9 2.1 578 100

M11 97.4 1.8 600 100

P4,4 3 M6 74.1 1.1 456 99

Fig. 3 Solution with the optimal carbon efficiency of (a) process unit 1 (turning unit), (b) process unit 4 (grinding unit), and (c) process
unit 5 (planing unit).
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“p12” means the part W1 under the processing on process
step 1). The position relation of the rectangle block is the
processing sequence on different machines. According to
Fig. 5, the bottleneck unit is the heat treatment process unit
containing machineM3,M4, andM5. However, the optimal
scheduling solution obviously improves the machines’
utilization of the bottleneck unit, and the waiting time
between each task is eliminated. To further unscramble the
Gantt chart, the specification of scheduling results is

presented in Table 9. The results reflect the optimality of
the current scheduling scheme and verify the applicability
of the carbon efficiency upgrading method based on
scheduling optimization strategy.

5 Conclusions

Attempts have recently been made to achieve low-carbon
mechanical machining through scheduling optimization
strategy. However, compared with existing low-carbon
scheduling methods, relatively few attempts have been
made to investigate the correlation between different levels
of the job shop during the low-carbon scheduling process
as well as to consider the integration of traditional
performance index and carbon emission in multi-objective
optimization. As a result, the optimization effectiveness
and efficiency are restricted. In this work, three hierarchies,
including process chain level (top level), process unit level
(transition level), and machine level (bottom level), and
their scheduling optimization relationship of job shop were
analyzed. On the basis of this analysis, transition level is
regarded as the scheduling core, and the ECEu and PCEu

of the process unit were defined to integrate the indicators
of processing cost, processing time, qualification rate, and
carbon emission. Additionally, two-stage carbon efficiency
scheduling optimization models and corresponding

Table 7 Task assignment of each machine with the optimal carbon efficiency

Machine number
Process step number, processing task/piece, processing time/h

Task 1 Task 2 Task 3 Task 4 Task 5

M1 P1,1, 32, 3.86 P1,3, 30, 4.60 – – –

M2 P1,1, 28, 3.27 P1,3, 30, 4.44 – – –

M3 P1,2, 20, 12.20 P1,5, 20, 14.20 P2,1, 25, 10.00 P2,5, 25, 14.10 P3,2, 15, 10.50

M4 P1,2, 20, 12.20 P1,5, 20, 14.20 P2,1, 25, 10.00 P2,5, 30, 17.00 P3,2, 15, 10.50

M5 P1,2, 20, 12.20 P1,5, 20, 14.20 P2,1, 30, 12.00 P2,5, 25, 14.10 P3,2, 20, 14.00

M6 P1,4, 60, 6.05 P2,3, 80, 10.71 P3,4, 50, 4.51 P4,2, 50, 8.08 P4,4, 50, 6.33

M7 P1,6, 18, 1.63 P1,7, 18, 1.72 P2,4, 26, 3.04 – –

M8 P1,6, 19, 1.64 P1,7, 17, 1.54 P2,4, 27, 3.32 – –

M9 P1,6, 23, 2.04 P1,7, 25, 2.34 P2,4, 27, 2.99 – –

M10 P2,2, 37, 4.12 P3,1, 26, 3.97 P3,3, 27, 3.37 P4,1, 25, 4.20 P4,3, 23, 3.69

M11 P2,2, 43, 5.02 P3,1, 24, 3.61 P3,3, 23, 4.27 P4,1, 25, 4.25 P4,3, 27, 4.50

Table 8 Comparative analysis of carbon emissions under different objectives

Process unit
Carbon emissions for

PEO/(kg CO2e)
Carbon emissions for

EBO/(kg CO2e)
Carbon emissions for

CEO/(kg CO2e)
Carbon emission
reduction ratio/%

Turning unit 50.38 51.37 46.68 6%–9%

Grinding unit 138.45 141.32 129.77 6%–8%

Planing unit 637.70 563.10 595.90 7%–9%

Fig. 4 Variation curve on solving processing route planning.
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algorithms were proposed to progressively solve the
problems of task assignment and processing route planning.
The effectiveness of the proposed method was demon-

strated by fabricating four typical parts of a machine tool
with the characteristics of multi-machine, multi-task, and
multi-process. Results show that in the task assignment
stage, the carbon efficiency indicators can effectively
diminish the dimension of multi-objective optimization
and obtain comprehensive low-carbon promotion effect. In
the processing route planning stage, the progressive
optimization strategy reduces the difficulty of obtaining

the optimal sub-batch and processing sequence and
ensures that the makespan is optimized without jeopardiz-
ing the carbon efficiency performance. The stochastic
factors of the mechanical machining process considered in
the scheduling optimization model is likewise worthy of
further investigation.
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Fig. 5 Gantt chart for processing route planning.

Table 9 Specification of processing route planning

Machine number Processing route (process step number/divided sub-batch task)

M1 P1,1/26! P1,3/6! P1,1/6! P1,3/6! P1,3/12! P1,3/6

M2 P1,1/21! P1,3/14! P1,1/7! P1,3/16

M3 P2,1/15! P1,2/10! P2,5/5! P1,2/10! P3,2/10! P2,1/10! P1,5/10! P3,2/5! P1,5/10! P2,5/20

M4 P2,1/15! P1,2/15! P3,2/10! P1,2/5! P2,5/10! P1,5/10! P3,2/5! P1,5/10! P2,1/10! P2,5/20

M5 P2,1/20! P1,2/5! P3,2/5! P1,2/5! P3,2/15! P2,5/20! P2,1/10! P1,5/5! P1,2/10! P1,5/15! P2,5/5

M6 P4,2/9! P2,3/9! P4,2/17! P1,4/6! P4,2/8! P2,3/26! P1,4/7! P4,4/8! P1,4/7! P4,4/9! P2,3/9! P4,2/8! P4,4/9! P1,4/7!
P4,4/8! P3,4/5! P3,4/5! P1,4/20! P3,4/6! P4,4/8! P4,2/8! P3,4/5! P2,3/9! P1,4/6! P2,3/9! P3,4/23! P2,3/9! P4,4/8!

P3,4/6! P1,4/7! P2,3/9

M7 P2,4/9! P2,4/8! P1,6/6! P1,7/6! P2,4/9! P1,6/6! P1,7/6! P1,6/6! P1,7/6

M8 P2,4/9! P1,6/7! P1,7/6! P1,6/6! P1,7/5! P1,6/6! P1,7/6! P2,4/9! P2,4/9

M9 P2,4/9! P2,4/9! P1,6/7! P1,7/8! P2,4/9! P1,6/8! P1,7/9! P1,6/8! P1,7/8

M10 P4,1/8! P2,2/9! P4,1/8! P3,1/5! P2,2/9! P3,1/16! P4,3/8! P4,1/9! P3,3/5! P3,3/11! P4,3/8! P3,3/6! P3,1/5! P3,3/5!
P2,2/9! P4,3/7! P2,2/10

M11 P4,1/9! P3,1/6! P4,1/16! P2,2/26! P3,1/18! P4,3/18! P2,2/9! P4,3/9! P3,3/5! P3,3/6! P3,3/12! P2,2/8
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