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Abstract A simplified computational model of a twisted
shrouded blade with impact and friction is established. In
this model, the shrouded blade is simulated by a flexible
Timoshenko beam with a tip-mass, and the effects of
centrifugal stiffening, spin softening, and Coriolis force are
considered. Impact force is simulated using a linear spring
model, and friction force is generated by a tangential
spring model under sticking state and a Coulomb friction
model under sliding state. The proposed model is validated
by a finite element model. Then, the effects of initial gap
and normal preload, coefficient of friction, and contact
stiffness ratio (the ratio of tangential contact stiffness to
normal contact stiffness) on system vibration responses are
analyzed. Results show that resonant peaks become
inconspicuous and impact plays a dominant role when
initial gaps are large between adjacent shrouds. By
contrast, in small initial gaps or initial normal preloads
condition, resonant speed increases sharply, and the
optimal initial normal preloads that can minimize resonant
amplitude becomes apparent. Coefficient of friction affects
the optimal initial normal preload, but it does not affect
vibration responses when the contact between shrouds is
under full stick. System resonant amplitude decreases with
the increase of contact stiffness ratio, but the optimal initial
normal preload is unaffected.

Keywords twisted shrouded blade, dynamic analysis,
impact, friction, separate–stick–slip motion

1 Introduction

Turbine blades of aero-engines become easily affected by
high-cycle fatigue due to extreme work environments,
such as high temperature, high pressure, and high
rotational speed. Moreover, resonance can occur when
the excitation frequency is close to the natural frequencies
of blades, and large resonant amplitudes can cause high
dynamic stress. High-cycle fatigue should be avoided, and
the vibration amplitude of the forced blade should be
reduced; thus, in high-pressure turbines of aero-engines,
shrouded blades (Fig. 1) are mostly adopted to utilize the
dry friction between shrouds and subsequently reduce
vibration [1–3]. Many passive damping devices, such as
blade–disk interfaces [4,5], under-platform dampers [6–
10], and shrouds located at blade tips [11,12], have been
designed to decrease vibration stress.
Many researchers have investigated the dynamic

characteristics of rotating blades [13–18] and rotor
structures [19–24]. Cao et al. [13] built a pre-twisted
blade model with thermal barrier coating, and the effects of
the working condition and the pre-twisted angle were
analyzed. Wang et al. [14] used the multiple scale method
to study the vibration of a turbine blade excited by air
flows. With the aim of achieving a rotating tapered
cantilever Timoshenko beam, Yang et al. [15,16] estab-
lished a mathematical model of a beam blade with preset
and pre-twist angles by using the power series method.
Zeng et al. [17] introduced the crack propagation path into
the vibration analysis of a rotating blade, and the influences
of angular acceleration, aerodynamic force amplitude, and
crack parameters on the dynamic characteristics of a
cracked compressor blade are discussed. A finite element
(FE) beam model with flapwise–chordwise–axial–
torsional coupling was also established [18].
In many of the studies, lumped-mass models of blades

with dry friction were developed to investigate the
vibration reduction mechanism of the blades [25–31].
Dry friction was often modeled as massless springs and
contact points by using Coulomb’s friction law, and the
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harmonic balance method (HBM) and the direct time
integration method were adopted to evaluate nonlinear
dynamic responses. Wang and Shieh [27] established a
1-degree-of-freedom (1-DOF) model with dry friction by
taking into consideration the influence of the variable
coefficient of friction. Their simulation results were
validated by experimental results obtained from the
literature. On the basis of a previous work [27], a multi-
HBM for solving nonlinear vibration responses was
proposed to improve on calculation efficiency [28], and
the proposed method was verified by the direct time
integration method. With the aim of improving the
computational efficiency of the traditional method, which
is commonly used to solve dry friction-damped blade
problems, Sanliturk et al. [29] focused on the frequency
domain and proposed a calculation approach for nonlinear
dynamic responses. The dry friction damper in their study
was considered to be equivalent to a complex stiffness
model based on first-order HBM, and their simulated
results were verified by an experiment.
Subsequent research focused on the effects of variable

normal load on the vibration characteristics of a damped
system [22,32–34]. Koh and Griffin [35] proposed an
analytical approach to solve the forced response of a blade
with dry friction damper, in which contact stiffness was
defined by elasticity mechanics and contact theory. The
simulation results obtained from the developed method
were in good agreement with the experimental results. On
the basis of the optimal approximation method, Zhang
et al. [36] proposed a highly accurate and efficient
numerical method that can calculate the nonlinear dynamic
responses of a dry friction-damped system with local
friction contact. Allara [2] developed a model by using
Coulomb’s friction law to characterize the friction contact

of non-spherical contact geometries under the constant
coefficient of friction and an initial normal preload, and the
effects of contact geometrical parameters on hysteresis
loops and dissipated energy were studied. Zhao et al. [37]
established a fractal friction model by employing fractal
geometry and nonlinear vibration theory to describe dry
friction. On the basis of the model, the nonlinear dynamic
responses of a turbine blade with snubber and shroud were
analyzed. Jiang et al. [38] compared the effects of axial
clearance on the vibration responses of shrouded and
unshrouded blades. Their results showed that the displace-
ment of the shrouded blade was smaller than that of the
unshrouded blade due to the limitation of shrouding.
The macroslip friction model was frequently adopted in

many previous researches, and many researchers also have
used the microslip friction model to investigate the
vibration characteristics of blades with contact friction
[39–43]. Marquina et al. [40] developed two friction
models that considered the macroslip and the microslip,
and the experimental results were compared. The differ-
ences between the two models were also discussed. Yuan
et al. [42] established a 2-DOF lumped-mass model by
using the microslip friction model to investigate the
vibration characteristics of a damping blade. The structures
of the lacing and the shroud were also simulated to study
the effects of damper position on the forced responses of
the blade, respectively. The same microslip friction model
was applied by Giridhar et al. [43] to study the dynamic
responses of a damped blade, and their simulation results
were verified by a bench test. In validating theoretical
results, some researchers have adopted experimental
methods to investigate the dynamic characteristics of a
blade system with dry friction damper [44–46].
From the above literature review, lumped-mass models

Fig. 1 Shrouded blade structures. (a) Shrouded blade group reprinted with permission from Ref. [1] from Elsevier; (b) shrouded blade.
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have been frequently adopted to investigate the dynamic
responses of blades with friction, but these models cannot
easily consider the geometrical characteristics of shrouded
blades, such as their stagger angles and twist angles. Some
researchers [47–50] have demonstrated that the stagger
angle and the twist angle can remarkably influence the
dynamic characteristics of turbine blades. The effects of
the friction and the impact of the shrouded blade have been
analyzed using the lumped-parameter model [34]. How-
ever, the lumped-parameter model is simplistic, and it
cannot consider the influence of blade shape. Many
researchers [37,40] have carried out similar studies to
improve on calculation accuracy, but the focus is on the
solid FE model, which may cause low computational
efficiency. In overcoming this gap, the present study
establishes a computational model for shrouded blades by
considering the coupling effects of impact and friction. The
shrouded blade is modeled using a Timoshenko beam with
a stagger angle and a twist angle. The main research
highlights of this study are as follows:
1) A highly efficient shrouded blade modeling method

based on Ref. [50] is proposed, in which the Galerkin
truncation and free-interface modal synthesis methods are
used to improve on computational efficiency.
2) The influence of blade shape parameters (stagger

angle and twist angle) and the coupling of impact and
friction are simultaneously considered. The laws of impact
and friction on the vibration reduction characteristics of the
system are analyzed.
3) The proposed model is verified by two FE models

with beam and shell elements.

2 Computational model and model
verification

2.1 Computational model of twisted blade with impact and
friction

A dynamical model of a twisted shrouded blade is
established, and the impact–friction coupling effect of
adjacent shrouded blades is considered (Fig. 2). In Fig. 2,
osvsws denotes the shroud contact coordinate, where axis
ws is parallel to the side edge of the shroud; ovLwL denotes
the local coordinate on the blade tip at which the
intersection angle between axis ws and axis wL is the
shroud inclination angle α; and oxyz denotes the blade local
coordinate. kn and kt denote normal and tangential contact
stiffness on shroud contact interfaces, respectively. N0

denotes the initial normal preload between shrouds. Ff1

symbolizes the tangential friction force between the active
blade and passive blade 1, and Ff2 denotes the tangential
friction force between the active blade and passive blade 2.
D denotes the initial gap between the active shroud and the
passive shrouds. zs1 denotes the tangential displacement of

the active blade shroud, and zs2 denotes the displacement
of the contact point. m denotes the coefficient of friction
between contact interfaces.
The computational model of the shrouded blade was

established in a previous work [50] by considering the
effects of rotational speed and the stagger and twist angles
of the blades. The equations of motion of the shrouded
blade can be expressed as

M€q þ ðG þ DÞ_q þ ðKe þ Kc þ K s þ KaccÞq ¼ F, (1)

where M, G, D, Ke, Kc, Ks, Kacc, q, and F are mass matrix,
Coriolis force matrix, damping matrix, structural stiffness
matrix, centrifugal stiffening matrix, spin softening matrix,
stiffness matrix caused by angular acceleration, canonical
coordinates vector, and canonical external force vector,
respectively. In this study, Rayleigh damping is adopted,
and its expression is given by

D ¼ αM þ βK , (2)

where α ¼ 4πfn1fn2ðfn1�2 – fn2�1Þ
ðf 2n1 – f 2n2Þ

, β ¼ fn2�2 – fn1�1
πðf 2n1 – f 2n2Þ

, fn1 and

fn2 represent the first two-order natural frequencies, and x1
and x2 are the first two-order modal damping ratios
corresponding to natural frequencies with value set to x1 =
0.02 and x2 = 0.04. Other expressions of the matrices and
details of the modeling process can be found in Ref. [50].
During shrouded blade modeling, the torsional vibration

of the blade is restrained. Five shape functions are used in
this study. The first four natural frequencies under different
modal truncations at W = 8500 r/min are listed in Table 1.
The number of modal truncations is checked from N = 4 to
N = 7 by comparing the first four modes. The convergence
analysis shows that N = 6 is appropriate, and the maximum
error is approximately 0.64% (Table 1). As such, the
dimensions of mass, stiffness, and damping matrices are all
30 � 30.
The normal impact force (N1, N2) and the tangential

friction force (Ff1, Ff2) of the contact interfaces between
adjacent shrouds will change in different contact states
(separate, stick, or slip). Furthermore, the normal loads
between adjacent shroud contact interfaces are given as
follows:

N1 ¼
0 N0 – knvs£0  Separate,

N0 – knvs Contact,

(

N2 ¼
0 N0 þ knvs£0  Separate,

N0 þ knvs Contact,

(
(3)

where vs is the displacement of the active blade in the
normal direction of the shroud.
In Eq. (3), a negative N0 indicates the existence of an

initial gap in the contact interfaces (D = –N0/kn, kn = 1 �
107 N/m in this study). Adjacent shrouded blades are
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separate when Ni = 0 (i = 1, 2), and they are in contact
when Ni> 0 (i = 1, 2). The tangential friction force Ff1

between the active blade and passive blade 1 and the
tangential friction force Ff2 between the active blade and
passive blade 2 are as follows:

Ff1 ¼
0 N1 ¼ 0 Separate,

ktðzs1 – zs2Þ jzs1 – zs2j£�N1=kt Stick, 

�N1sign _zs2ð Þ jzs1 – zs2j > �N1=kt Slip,

8><
>:

Ff2 ¼
0 N2 ¼ 0 Separate,

ktðzs1 – zs3Þ jzs1 – zs3j£�N2=kt Stick,

�N1sign _zs3ð Þ jzs1 – zs3j > �N2=kt Slip,

8><
>:

(4)

where zs1 is the tangential displacement of the active blade
shroud, and zs2 and zs3 denote the displacements of the
contact points. The superposed dot denotes the time
derivative.
The motion states of the contact points can be

determined by the following expressions:

zs2ðtÞ ¼

zs1ðtÞ N1 ¼ 0 Separate,

zs2ðt –ΔtÞ jzs1 – zs2j£�N1=kt Stick,

zs2ðtÞ –�N1sign _zs2ðtÞð Þ=kt jzs1 – zs2j > �N1=kt Slip,

8><
>:

_zs2ðtÞ ¼
_zs1ðtÞ N1 ¼ 0 Separate,

0 jzs1 – zs2j£�N1=kt Stick,

_zs1ðtÞ jzs1 – zs2j > �N1=kt Slip,

8><
>: (5)

zs3ðtÞ ¼

zs1ðtÞ N2 ¼ 0 Separate,

zs3ðt –ΔtÞ jzs1 – zs3j£�N2=kt Stick,

zs3ðtÞ –�N1sign _zs3ðtÞð Þ=kt jzs1 – zs3j > �N2=kt Slip,

8><
>:

Fig. 2 Schematic of twisted shrouded blade with impact and friction.

Table 1 First four natural frequencies under different modal truncations at W = 8500 r/min

N fn1/Hz fn2/Hz fn3/Hz fn4/Hz Error for fn1/% Error for fn2/% Error for fn3/% Error for fn4/%

4 286.0 (282.4) 1121.2 (1117.0) 1506.7 (1497.5) 3975.1 (3958.1) 1.27 0.38 0.61 0.43

5 285.3 (282.4) 1120.9 (1117.0) 1502.9 (1497.5) 3972.6 (3958.1) 1.03 0.35 0.36 0.37

6 284.2 (282.4) 1119.9 (1117.0) 1502.0 (1497.5) 3968.3 (3958.1) 0.64 0.26 0.30 0.26

7 283.6 (282.4) 1119.9 (1117.0) 1500.8 (1497.5) 3969.7 (3958.1) 0.42 0.26 0.22 0.29

Note: Values in () denotes the results obtained from FE model.
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_zs3ðtÞ ¼
_zs1ðtÞ N2 ¼ 0 Separate,

0 jzs1 – zs3j£�N2=kt Stick,

_zs1ðtÞ jzs1 – zs3j > �N2=kt Slip:

8><
>: (6)

A coordinate transformation is used to transform the
displacement of the blade tip under the blade local
coordinate system (ovLwL) into the normal and tangential
displacement of the shroud under the shroud contact
coordinate (osvsws), and the transformation equations is
given by

vs
ws

� �
¼ cosα sinα

– sinα cosα

" #
vL
wL

� �
: (7)

Similarly, the equations used to transform the forces in
the shroud contact coordinate system into those in the
blade local coordinate system are written as follows:

Fy

Fz

" #
¼ cosα – sinα

sinα cosα

" #
N1 –N2

Ff1 þ Ff2

" #
: (8)

By taking impact and friction into consideration, the
canonical external force vector F in Eq. (1) should be
replaced by F . Therefore, the equations of motion and the
expression of F are given by

M€q þ ðG þ DÞ _q þ ðKe þ Kc þ K s þ KaccÞq ¼ F , (9)

F ¼

F1

F2

F3

F4

F5

2
66666664

3
77777775
, (10)

where

F1ðj,1Þ ¼ �A _�
2!

L

0
ðRd þ xÞf1jðxÞdx

þmsðRd þ LÞ _�2f1jðLÞ,

F 2ðj,1Þ ¼ – �A€�!
L

0
cosβðxÞðRd þ xÞf2jðxÞdx

–msðRd þ LÞ€�cosβðLÞf2jðLÞ

þ!
L

0
Fef2jðxÞdxþ Fyf2jðLÞ,

F 3ðj,1Þ ¼ �A€�!
L

0
sinβðxÞðRd þ xÞf2jðxÞdx

þmsðRd þ LÞ€�sinβðLÞf2j

�
L
�
þ Fzf2jðLÞ,

F4ðj,1Þ ¼ – �Iz€�!
L

0
cosβðxÞf3jðxÞdx,

F5ðj,1Þ ¼ – �Iy€�!
L

0
sinβðxÞf3jðxÞdx, j ¼ 1, 2, :::, N :

Fe is the uniformly distributed aerodynamic force, and
its expression can be written as [3]:

Fe ¼ F0sinðkeωtÞ, (11)

where F0 = 150 N/m and ke is the number of obstacles in
the front of the blade (ke = 2 in this study). Moreover, ω=
2πW/60, in which W is the rotational speed of the disk
(r/min). The Newmark–β numerical method is employed to
calculate vibration responses where the integration para-
meters are taken as: α ¼ 0:5 and β ¼ 0:25. During the
calculation process at each speed, the initial displacement,
velocity and acceleration are set as zero.
A free-interface modal synthesis method is used to

decrease the dimension of the computational model as
means to improve on solution efficiency [51,52]. The
detailed reduction process is as follows:
(1) Solve the eigenvalue li and the eigenvector xi ofM\K

(i = 1, 2, ..., 30).
(2) Adopt the first n-order natural frequencies of the

blade, and rank the eigenvalue li from smallest to largest.
The dimension reduction matrix N* = [x1, x2, ..., xi, ..., xnr]
can then be obtained. The eigenvector xi in N* corresponds
to the eigenvalue li. The dimension of N* is 30 � nr.
(3) Assume q = N*q* and the dimension of q* to be nr �

1. Substitute q = N*q* with Eq. (9) and multiply by N*T at
both sides of equation. The equations of motion of the
shrouded blade can then be expressed as

ðN*TMN*Þ€q* þ ðN*TGN* þ N*TDN*Þ _q*

þðN*TKN*Þq* ¼ N*TF*: (12)

After dimension reduction, with the definitions M* =
N*TMN*, G*=N*TGN*, D* = N*TDN*, and K* = N*TKN*,
the dimensions of mass matrix M*, Coriolis force matrix
G*, Rayleigh damping matrix D*, and stiffness matrix K*

become nr � nr.

2.2 Model verification

2.2.1 Verification of the reduced model

The system vibration responses are compared with those
obtained from the full model without reduction to verify
the proposed model. The system parameters are as follows:
kt = 1 � 107 N/m, kn = 1 � 107 N/m, α = 15°, and μ = 0.3,
and the other shrouded blade parameters are shown in
Table 2. The calculations are performed using a personal
computer with Intel core i7-6700 3.40 GHz processor and
16 GB RAM. After the model reduction, the convergence
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results of the dimension of matrix nr with the response of
the blade are determined (Fig. 1). The max error between
nr = 6 and nr = 30 is approximately 0.08% (Fig. 3(b)),
which shows that the reduced computational model has
high accuracy. In consideration of both computational
efficiency and accuracy from the analysis, nr = 6; thus, the
dimension of the matrix can be reduced from 30 � 30 to 6
� 6.
Different initial gaps D and normal preloads N0 are

considered, and the amplitude–frequency responses of the
bending displacement vL of the blade tip obtained from two
models are determined (Fig. 4). The two models are in
good agreement in terms of amplitude–frequency
responses. In addition, the calculation time by using the
reduced model is only approximately 70% of that of the
full model.

2.2.2 Model verification based on the FE models

The proposed computational model is verified by compar-
ing its results with those obtained from the two FE models
by using ANSYS. The schematic of the FE model is shown
in Fig. 5. In Fig. 5, OXYZ and oxyz denote the global
coordinate system and the blade local coordinate, respec-
tively. u, v, and w represent the displacement of an arbitrary
Point P on the blade in radial, flexural, and swing
directions, and uL, vL, and wL denote the displacement of
tip-mass Point Q in the radial, flexural, and swing
directions, respectively. b1 and bL denote the stagger
angle at the root and the blade tip of the blade, respectively.

uLyszs denotes a coordinate system to describe the shroud
inclination angle α, where the zs and ys axes are parallel and
vertical to the side edge of the shroud, respectively. bn is
the angle of an arbitrary cross section between z axis and zn
axis (bn = b1 + b'x/L and b'= bL – b1). Rd, L, b, and h
represent disk radius, blade length, blade width, and blade
thickness, respectively.
(1) Verification by using the first FE model
In the first FE model, the blade is simulated by a

Timoshenko beam (Beam188 element), and the shroud is
described by a lumped-mass point (Mass21 element). The
twisted beam is established by changing the shape of the
beam section. This modeling process can be realized by
setting the section type of Beam188 to “Quad”. The blade
modeling is completed by changing the coordinates of the
four corner points of the rectangular cross section (i.e.,
corner points An, Bn, Cn, and Dn in Fig. 5(b)). In this study,
n = 61 sections are adopted in the blade length direction
(i.e., x-direction), and the distance of adjacent sections are
all set to L/(n – 1), as shown in Fig. 5(a). On the basis of the
geometric relationships in Fig. 5(b), the y- and z-direction
coordinates of Points Cn and Dn are expressed as follows:

zCn ¼
d

2
cosβn þ

h

2
sinβn,

yCn ¼ –
d

2
sinβn þ

h

2
cosβn,

zDn ¼
d

2
cosβn –

h

2
sinβn,

yDn ¼ –
d

2
sinβn –

h

2
cosβn,

8>>>>>>>>>><
>>>>>>>>>>:

(13)

Table 2 Shrouded blade parameters

Young’s modulus/GPa Density/(kg$m–3) Poisson’s ratio Disk radius/mm Blade length/mm Blade width/mm

200 7800 0.3 150 150 40

Blade thickness/mm Stagger angle/(° ) Shroud length/mm Shroud width/mm Shroud thickness/mm Twist angle/(° )

7 30 40 20 7 10

Fig. 3 Vibration responses of the bending displacement of the blade tip under D = 0.6 mm at W = 8500 r/min: (a) Displacement
waveforms and (b) partial enlarged waveforms.
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Fig. 4 Amplitude–frequency responses obtained from the reduced and full computational models: (a) D = 0.6 mm, (b) D = 0.1 mm,
(c) D = 0.05 mm, (d) N0 = 0 N, (e) N0 = 10 N, and (f) N0 = 50 N.

Fig. 5 Schematics of the FE models of the shrouded blade: (a) Blade model, (b) arbitrary blade section, and (c) shroud inclination
angle α.
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where βn ¼ β1 þ ði – 1Þβ#=ðn – 1Þ (i = 1, 2, …, n, here, n =
61). Points An and Cn and points Bn and Dn are symmetric
to origin P; therefore,

zAn ¼ – zCn, yAn ¼ – yCn, zBn ¼ – zDn, yBn ¼ – yDn: (14)

In the first FE model (Fig. 6), 60 Beam188 elements and
61 nodes are used to simulate the blade, and each node has
6 DOFs. One Mass21 element is adopted to simulate the
shroud, and two point–point contact elements (Conta178
elements) are used to simulate impact and friction. The
directions of the contact elements should be determined on
the basis of the shroud inclination angle, particularly by

specifying the contact normal direction and by using real
constants. The node of the blade root is fully constrained,
and the rotational DOF on the X-axis for all nodes is
constrained (i.e., the torsional vibration of the shrouded
blade is constrained). Rayleigh damping is also adopted in
the first FE model (Eq. (2)). With the aim of improving
computational efficiency, the free-interface modal synth-
esis method is used to reduce the FE model dimension. In
the reduction dimension process, the blade is selected as a
substructure, the blade tip node is defined as the main
node, and the truncation order is set to 24. Thus, the
dimensions of the mass matrix, stiffness matrix, and
damping matrix can all be set to 30� 30, which is the same
as those of the proposed computational model.
The amplitude–frequency responses of blade tip point

obtained from the full and reduced models under different
initial gaps and normal loads, in which the other
parameters are the same as above, are shown in Fig. 7.
In Fig. 7, the lines and the point denote the results obtained
from the reduced computational and FE models, respec-
tively. The amplitude–frequency responses obtained from
two models are in good agreement with one another under
different conditions. This finding also verifies the effec-
tiveness of the reduced computational model in impact–
friction conditions.
The vibration responses obtained from the four models

(reduced computational model, full computational model,
reduced FE model, and full FE model) are compared to
verify the correctness of the established models (Fig. 8).
The selected system simulation parameters are as follows:
W = 10000 r/min, N0 = 0 N, kt = 1�107 N/m, kn = 1 � 107

N/m, α = 15°, and m = 0.3. In Figs. 8(d) and 8(h), States
1–3 represent the separation, slip, and stick states,
respectively. The vibration responses obtained from the
four models are in good agreement with one another in
terms of time-domain waveforms and hysteresis loops. The
calculation times (100 periods, with sampling interval of
60/(256keW) s) of the four models are shown in Table 3.Fig. 6 Schematic of the first FE model by using ANSYS.

Fig. 7 Amplitude–frequency responses: (a) Different initial gaps and (b) small initial gap (D = 1 mm) and different initial normal preloads.
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The efficiencies of the reduced models are nearly 30%
better than the efficiencies of the full models. The proposed
computational models have higher computational efficien-
cies than the FE models because the contact elements in the
latter need several iterations to obtain the convergent
results. The difference in calculation time can also be
attributed to the software.

Fig. 8 Response comparisons among the four models: (a) Impact force on the left side of the shroud, (b) friction force on the left side of
the shroud, (c) hysteresis loop on the left side of the shroud, (d) contact state on the left side of the shroud, (e) impact force on the right side
of the shroud, (f) friction force on the right side of the shroud, (g) hysteresis loop on the right side of the shroud, (h) contact state on the
right side of the shroud, (i) displacements in flexural direction, and (j) displacements in swing direction.

Table 3 Calculation times of the four models

Model Calculation time/s

Reduced computational model 5.37

Full computational model 7.66

Reduced FE model 2328.84

Full FE model 3259.67
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(2) Verification by using the second FE model
The second FE model with Shell181 elements is

established to further evaluate the proposed computational
model (Fig. 9). The blade and the shroud are discretized
into 200 and 60 elements, respectively. Eleven contact
elements (Conta178 elements) between the active blade
shroud and each passive blade shroud are established. The
second FE model also adopts Rayleigh damping (Eq. (2)).
The free-interface modal synthesis method is also used to
reduce the dimension of the shell FE model, in which the
blade is selected as a substructure and the truncation order
is set to 24. In addition, for the shroud, the middle node and
the 22 nodes connected to the contact elements are defined
as the main nodes.

The comparison results obtained from the reduced
computational model and the shell FE model are shown
in Fig. 10. The rotational speed is W = 10000 r/min, while

the other simulation parameters are the same as those in
Fig. 8. As shown in Fig. 10, the impact and friction forces
are the resultant forces at all nodes on the contact interface
between the active blade and passive blade 1. The
displacement of the middle node in the active blade in
the flexural direction is shown in Fig. 10(c). At W = 10000
r/min, the computation time of the reduced shell FE model
(100 periods, with sampling interval of 60/(256keW) s) is
approximately 2605.71 s, which is slightly larger than that
of the reduced beam FE model, but is remarkably higher
than that of the reduced computational model proposed in
this study. The comparison results show similar vibration
laws, and the vibration amplitudes are larger than those of
the shell FE model.

3 Vibration responses of the shrouded
blade under different parameters

On the basis of the above discussion on the proposed blade
model in which impact and friction have been established,
the effects of initial gaps D and initial normal preloads N0,
coefficient of friction m, and contact stiffness ratio x on the
system dynamic characteristics are analyzed. Owing to the
influence of the normal motion of the shroud on the normal
load, the limiting friction force is no longer a simple
product of the coefficient of friction and the initial normal
preload. The influences of the initial normal preload and
the coefficient of friction on the vibration responses differ
from one another; thus, the two effects are individually
analyzed. The stagger angle and the twist angle are
primarily determined by the aerodynamic design. There-
fore, the influences of both angles on the vibration
responses of the shrouded blade will not be elaborated in
this paper. Instead, the fixed stagger angle and the twist
angle are applied, i.e., the stagger angle is set to 30°, while
the twist angle is set to 10°.

3.1 Case 1: Effects of initial gap and normal load

The amplitude–frequency responses of the shrouded blade
under different initial gaps and normal preloads are shown

Fig. 9 Schematic of the second FE model by using ANSYS.

Fig. 10 Response comparison at W = 10000 r/min: (a) Impact forces, (b) friction forces, and (c) displacements in flexural direction.
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in Fig. 11. The system simulation parameters are defined as
follows: m = 0.3, α = 30°, kt = 5 � 106 N/m, and kn = 1 �
107 N/m. When blade rotational speed is increased, the
resonance peak of the bending displacement vL of the blade
tip becomes apparent. For example, the resonant peak
appears at the rotational speed ofW = 8500 r/min under D =
0.6 mm (Fig. 11(a)). This finding can be attributed to 2fr
(283.3 Hz), which is close to the first-order natural
frequency of the blade (284.2 Hz in Table 1) at this
rotational speed, and this phenomenon leads to the
appearance of primary resonance. Two extreme cases are
considered. The first case occurs when the impact and
friction between the shrouded blades do not appear under
the first natural frequency (the initial gap is sufficiently
large), whereas the second case occurs when the initial
normal preload is considerably large such that no relative
slipping can occur, i.e., the damping effect disappears.
Except for the two extreme cases, slip and stick contact
states alternately exist between shrouds in a given
vibration period, in which the initial gap decreases or the
initial normal preload increases, and blade resonant speed
will increase accordingly. When the initial gap decreases,
the resonant peak of the blade becomes inconspicuous.
This finding can be explained by the vibration of the blade
that is strongly restrained by the impact force between
adjacent shrouds. This phenomenon indicates the limita-
tion of blade shrouds relative to blade vibration amplitude.
In the case of initial normal preload, the existence of an
optimal normal preload (a well-known phenomenon) can
minimize the resonant amplitude of the blade.

3.2 Case 2: Effects of coefficient of friction

The amplitude–frequency responses of the shrouded blade
with different m are shown in Fig. 12. The resonant
response characteristics of the shrouded blade with

different D, N0, and m are shown in Fig. 13. The selected
system simulation parameters are defined as follows: α =
30°, kt = 5� 106 N/m, and kn = 1� 107 N/m. The vibration
responses atW = 25500 r/min under m = 0.1 and m = 0.5 are
shown in Figs. 14 and 15. The following dynamic
phenomena can be deduced from Figs. 14 and 15:
(1) The resonant rotational speed and the resonant

amplitude of the shrouded blade remain nearly unchanged
under the same initial gap (D≥100 mm) with the increase
of m (Figs. 12(a), 12(c), 12(e), 13(a), and 13(b)). Under a
large initial gap, the contact time of adjacent shrouds
becomes extremely short such that friction has negligible
influence on vibration. When the initial gap is small (i.e.,
D = 1 mm) or the initial normal preload N0 is constant, the
resonant rotational speed will increase with the increase of
m (Figs. 12(b), 12(d), and 12(f)).
(2) Initial normal preload decreases with the increase of

m when the contact interface nears the initial full stick state
(Fig. 13(d)), i.e., the larger the coefficient of friction is, the
greater the maximum friction force under the same initial
normal preload will be. The shroud contact interfaces
cannot easily achieve a slip. The resonant rotational speed
and the amplitude become stable after the contact state is in
full stick state, i.e., m does not affect the vibration
characteristics of the shrouded blade in this condition.
The minimum resonant amplitude remains nearly
unchanged despite the change of m (Figs. 13(c) and
13(d)).
(3) Period-one (P1) motion and period-ten (P10) motion

appear at m = 0.1 and m = 0.5, respectively (Figs. 14 and
15). P10 motion occurs because the impact period is ten
times that of the aerodynamic force period (fe is the
aerodynamic frequency). The friction force has the same
period as the impact force. The P10 motion leads to the
fluctuation of the amplitude–frequency response in the
range of [22500, 26000] r/min (Fig. 12(f)).

Fig. 11 Amplitude–frequency responses of shrouded blade: (a) Different initial gaps and (b) small initial gaps (D = 1 mm) and initial
normal preloads.
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Fig. 12 Amplitude–frequency responses under different D, N0, and m: (a) m = 0.1 under different initial gaps, (b) m = 0.1 under different
initial normal preloads, (c) m = 0.3 under different initial gaps, (d) m = 0.3 under different initial normal preloads, (e) m = 0.5 under different
initial gaps, and (f) m = 0.5 under different initial normal preloads.
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Fig. 13 Resonant response characteristics under different coefficients of friction: (a) Resonant rotational speed under different initial
gaps, (b) resonant amplitude under different initial gaps, (c) resonant rotational speed under different initial normal preloads, and
(d) resonant amplitude under different normal preloads.

Fig. 14 Vibration responses at W = 25500 r/min under m = 0.1: (a) Displacement vL, (b) friction force Ff1, (c) impact force N1,
(d) frequency spectrum of displacement, (e) frequency spectrum of friction force, and (f) frequency spectrum of impact force.
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3.3 Case 3: Effects of contact stiffness ratio

The dynamic responses of the shrouded blade under
different contact stiffness ratios (x = kt/kn, kn = 1 � 107

N/m) are shown in Fig. 16. The resonant characteristics of
the shrouded blade under different D, N0, and x are shown
in Fig. 17. The selected system simulation parameters are
defined as follows: m = 0.3, α = 30°, and kn = 1� 107 N/m.
The following dynamic phenomena can be deduced from
Figs. 16 and 17:
1) The resonant rotational speed and the resonant

amplitude of the shrouded blade remain nearly unchanged
under the same initial gap (D≥100 mm) with the increase
of x (Figs. 16(a), 16(c), 16(e), 17(a), and 17(b)). This
finding indicates that the tangential stiffness between
shrouds has a negligible effect on the vibration responses
of the shroud under large initial gaps.
2) When a small gap (D = 1 mm) or an initial normal

preload exists, the resonant rotational speed increases,
while the resonant amplitude decreases, with the increase
of x (Figs. 16(b), 16(d), and 16(f)). This finding indicates
that the increase in contact stiffness ratio will strengthen
the constrained effects between shrouds (Figs. 17(c) and
17(d)).
3) An increasing x will not affect the optimal initial

normal preload, and this phenomenon contributes to the
best damping effect. Furthermore, when the contact is
under full stick, the initial normal preload will also remain
unchanged (Figs. 17(c) and 17(d)). The reason behind this
observation is that an increase in tangential contact
stiffness does not affect the maximum friction force
between shrouds.

4 Conclusions

A computational model of a twisted shrouded blade with
impact and friction between adjacent shrouds is established
by using Timoshenko beam theory and the macroslip
friction model. The proposed computational model is
verified by the FE model. Then, the effects of initial gaps D
and initial normal preloads N0, coefficient of friction m, and
contact stiffness ratio x (the ratio of tangential contact
stiffness to normal contact stiffness) on system dynamic
characteristics are analyzed. The main conclusions are as
follows:
1) For the investigated model in this study, under a large

initial gap D (i.e., D≥100 mm) between adjacent shrouds,
the vibration responses of the shrouded blade are mainly
affected by impact force, and the resonant peak of the
shrouded blade becomes inconspicuous in this case. With
the decrease of D, the resonant rotational speed will
increase because the additional stiffness caused by adjacent
shrouds increases, and the resonant amplitude will
decrease due to the intensive limitation of adjacent
shrouds. Furthermore, coefficient of friction m and contact
stiffness ratio x have almost no influence on system
vibration under large D.
2) Friction has a remarkable influence on the vibration

responses of the shrouded blade in the presence of initial
normal preload or small initial gap (i.e., D = 1 mm).
Multiple periodic motions, such as P10 motion, can be
observed under small gaps and large coefficients of
friction. When slip and stick contact states between
shrouds alternately exist in a given vibration period,
resonant rotational speed also increases with the increase

Fig. 15 Vibration responses at W = 25500 r/min under m = 0.5: (a) Displacement vL, (b) friction force Ff1, (c) impact force N1,
(d) frequency spectrum of displacement, (e) frequency spectrum of friction force, and (f) frequency spectrum of impact force.
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Fig. 16 Amplitude–frequency responses under different D, N0, and x: (a) x = 0.2 under different initial gaps, (b) x = 0.2 under different
initial normal preloads, (c) x = 0.5 under different initial gaps, (d) x = 0.5 under different initial normal preloads, (e) x = 1 under different
initial gaps, and (f) x = 1 under different initial normal preloads.
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of N0. Optimal N0 can minimize the amplitude of the
system. With the increase of coefficient of friction, the
optimal N0 tends to decrease, while the minimum resonant
amplitude nearly remains unchanged. Furthermore, contact
stiffness ratio x hardly affects the optimal N0, while
resonant amplitude will decrease with the increase in x.
Spring elements are adopted to investigate the effects of

adjacent passive blades, but the inertial effects of adjacent
blades are ignored in this study. In future work,
neighboring blades or the cyclically symmetric model
will be considered.
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Nomenclature

Fig. 17 Resonant response characteristics under different contact stiffness ratios: (a) Resonant rotational speed under different initial
gaps, (b) resonant amplitude under different initial gaps, (c) resonant rotational speed under different initial normal preloads, and
(d) resonant amplitude under different normal preloads.

A Cross-sectional area of the blade

b Blade width

D, D* Rayleigh damping matrices before and after
dimension reduction

E Young’s modulus

F, F Canonical external force vectors without and with
impact and friction

F* Canonical external force vector after dimension
reduction

Fe, F0 Uniformly distributed aerodynamic force per unit
length and aerodynamic force amplitude

Fy, Fz Components of impact and friction force in the
flexural and swing directions

Ff1, Ff2 Friction force

fc(x) Centrifugal force of the shrouded blade

fe Aerodynamic frequency

fr Rotational frequency

fn1, fn2 The first two-order natural frequencies of the
shrouded blade

G, G* Coriolis force matrices before and after dimension
reduction

h Blade thickness

Iy, Iz Area moment of inertias of y and z axes of the blade
section
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