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Abstract This study derived a novel computation
algorithm for a mechanical system with multiple friction
contact interfaces that is well-suited to the investigation of
nonlinear mode characteristic of a coupling system. The
procedure uses the incremental harmonic balance method
to obtain the nonlinear parameters of the contact interface.
Thereafter, the computed nonlinear parameters are applied
to rebuild the matrices of the coupling system, which can
be easily solved to calculate the nonlinear mode character-
istics by standard iterative solvers. Lastly, the derived
method is applied to a cycle symmetry system, which
represents a shaft–disk–blade system subjected to dry
friction. Moreover, this study analyzed the effects of the
tuned and mistuned contact features on the nonlinear mode
characteristics. Numerical results prove that the proposed
method is particularly suitable for the study of nonlinear
characteristics in such nonlinear systems.

Keywords coupling vibration, nonlinear mode, original
algorithm, contact interface

1 Introduction

Shaft, disk and blade are the key components of rotating
machinery. In operating conditions, the deformation and
vibration of subcomponents are constantly encountered
and grouped. Many studies have analyzed the dynamic
couplings among the shaft, disk and blades of a linear

system [1–6]. Moreover, some studies [7–10] have adopted
pre-twisted, thin-walled rotating blades to analyze their
nonlinear vibration characteristics under different excita-
tion condition. However, friction dampers are commonly
designed and applied to attenuate the response levels and
prevent high cycle fatigues. Consequently, the coupling
behavior of structures that are made of components
assembled by means of joints may be highly nonlinear.
Over the years, many scholars have focused on the
dynamic behavior of blades with friction damper.
The most common friction damper in a blade system is

the blade–disk interface. Petrov and Ewins [11] developed
an approach to analyze the multi-harmonic forced response
of large-scale finite element modes of bladed disks by
considering the nonlinear forces acting at the contact
interface of the blade roots. Thereafter, the multi-harmonic
vibrations for systems with friction and gaps based on
analytically derived contact interface elements were
analyzed using a proposed approach [12]. Ciğeroğlu and
Özgüven [13] proposed a multi-degree-of-freedom (multi-
DOF) model of bladed disk system subjected to dry
friction dampers for the efficient vibration analysis of
turbine blades with dry friction. Peeters et al. [14,15]
applied a shooting method to calculate the nonlinear
normal modes of a system with cyclic symmetry, thereby
exposing the similar and nonsimilar normal modes and
localization phenomena for some nonlinear normal modes.
Zucca et al. [16] presented a method to compute the
friction forces that occur at the blade root joints to evaluate
their effects on blade dynamics. Another research used the
harmonic balance method (HBM) to conduct a parameter
study of the non-linear aero-elastic phenomena of a bladed
disk for aeronautical application in the presence of friction
contact by a one-way coupled method [17]. Li et al. [18]
used a finite element model (FEM) to propose a dynamic
model to analyze the nonlinear characteristics of a flexible
blade with dry friction. Joannin et al. [19] introduced a
novel reduced-order modeling technique well-suited to the
study of nonlinear vibrations in large FEMs. Apart from
FEM, the lump parameter model was also established to
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study the nonlinear vibration of bladed disks with dry
friction dampers of blade roots [20]. Joannin et al. [21]
computed the steady-state forced response of nonlinear and
dissipative structure by presenting an extension to classic
component mode synthesis methods, which was proven by
previous mistuned cycle model.
Underplatform damper is another friction damper that is

commonly used to reduce vibration amplitude. Petrov and
Ewins [22] developed an advanced structural model for
wedge and split underplatform dampers (UPDs) and
proposed and realized an approach for using the new
damper models in the dynamic analysis of large-scale
FEMs of bladed disks. Firrone et al. [23] proposed a novel
method to compute the forced response of blade disks with
UPDs. Berruti et al. [24] designed a static test rig called
“Octopus” to validate the numerical model and its
nonlinear dynamic response of a bladed disk with UPDs.
Zhang et al. [25] described an efficient method to predict
the nonlinear steady-state response of a complex structure
with multi-scattered friction contacts. Thereafter, blades
with UPDs were used as an example to validate the
approaches by calculating the steady-state response of an
FEM with numerous DOFs. Pesaresi et al. [26] used an
updated explicit damper model as basis to perform a
nonlinear analysis and evaluated the results against a
newly developed UPD test rig. Pesaresi et al. [27] used a
modified Valanis model as basis to propose a 3D microslip
element to describe the contact interface. This new
approach allows to implicitly account for the microscale
energy dissipation and the pressure-dependent contact
stiffness caused by the roughness of the contact surface.
In a mechanical system, the subcomponents are often

connected by a single or multiple friction contact

interfaces, thereby resulting in a nonlinear coupling
system. To compute the nonlinear coupling mode
characteristics, this study proposed an algorithm to obtain
the coupling mode information of such a mechanical
system. Thereafter, the representative shaft–disk–blade
(SDB) coupling structure of this mechanical system was
used as an example to adopt the derived method to obtain
and investigate the nonlinear coupling vibration character-
istics of the lumped SDB system with tuned/mistuned
contact interfaces. The algorithm used in this research is
well suited in analyzing the coupling vibration character-
istics of such a mechanical system, thereby easily and
efficiently obtaining the nonlinear modes similar to a linear
system. Lastly, the effects of the tuned/mistuned contact
interface on the nonlinear coupling mode characteristics of
the cycle SDB structure was discussed in detail.

2 Mathematical formulation

A lumped-parameter model is devised to study the
coupling vibration characteristics of the SDBs subjected
to dry friction at moderate computational cost. This model
consists of several sectors (see Fig. 1), all of which are
made of two DOFs to account for the blade body and blade
root and one DOF to account for the disk. For each sector,
the disk and blade root are connected by tenon–mortise.
An ideal dry friction model is adopted to simulate the
contact feature. In this model,Ms,Mi, mi1 and mi2 stand for
the mass of shaft, ith disk, ith blade root and ith blade body,
respectively. Moreover, kdi and kbi correspond to the disk
stiffness between the ith and (i+ 1)th disk elements and
blade bending stiffness of ith blade, respectively. In

Fig. 1 Diagram of the lumped SDB model.
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addition, ksdi is the coupling stiffness of the shaft and disk.
In the rotating SDB system, blades are often installed on
the disk through contact interface. Consequently, the
contact behavior is simplified and described using the
nonlinear damping and nonlinear stiffness of the dry
friction force. In particular, Kni and Cni represent the
nonlinear damping and nonlinear stiffness of the dry
friction damper, respectively.
The kinetic energy of the shaft–disk system (Tr) can be

presented as follows:

Tr ¼
1

2
Ms

dxs
dt

� �2

þ 1

2

Xn
i¼1

Mi
dxs
dt

þ dxdi
dt

� �2

, (1)

where n is the sector number of the disk and xs and xdi are
the displacements of Ms and Mi, respectively.
The kinetic energy of the shaft–disk system (Ur) is

provided as follows:

Ur ¼
1

2
ksx

2
s þ

1

2

Xn
i¼1

kdi
�
xdi – xdðiþ1Þ

�2

þkdnðxdn – xd1Þ2 þ
1

2

Xn
i¼1

ksdix
2
di, (2)

where ks is the shaft stiffness.
In Fig. 1, the displacement of the ith blade’s root and tip

in a global coordinate system can be expressed as follows:

xri ¼ xs þ xdi þ xi1,

xti ¼ xs þ xdi þ xi1 þ xi2,

(
(3)

where xs is the displacement of the shaft (Ms), xdi is the
local displacement of mdi with respect toMs, xi1 is the local
displacement of the blade root (mi1) with respect to mdi,
and xi2 is the local displacement of the blade tip (mi2) with
respect to mi1.
Therefore, the kinetic and potential energies of the

blades can be presented as follows:
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Ub ¼
1

2

XNb

i¼1

kbix
2
i2, (5)

where xi1 and xi2 are the displacements of the ith blade root
and ith blade body, respectively.
By substituting the energy expressions into the Lagrange

equations, the differential equation of the vibration in the
matrix notation is provided as follows:

MSDB
d2qSDB
dt2

þ CSDB
dqSDB
dt

þ KSDBqSDB

¼ FeðtÞ –FD x,
dx

dt
,t

� �
, (6)

where MSDB, CSDB, KSDB, and qSDB are the mass matrix,
damping matrix, stiffness matrix, and generalized coordi-
nate vector, respectively, Fe is the external excitation, and
FD is the friction force vector. The meaning of the
parameters in the formula is provided in the Appendix.

3 Phenomenological model

3.1 Harmonic excitation

Harmonic excitation is commonly used to simulate
aerodynamic excitation. The excitation naturally arises
from the static parts in the gas flow. The harmonic
excitation acting on ith blade body is provided as follows:

FeðtÞ ¼ FHðxÞδðx – LbÞsin ωt þ 2π
Nb

i

� �
, (7)

where F is the amplitude of the excitation, ω is the
excitation frequency, Nb is the blade number, and d is the
Dirac delta function.

3.2 Dry friction model

In this analysis, an ideal dry friction model is established to
simulate the nonlinear force of contact interface. The
contact interface diagram is illustrated in Fig. 2. A time-
discrete friction contact model is employed and the specific
derivation of the contact force is introduced [28]. The two
linear spring kt and kn in the tangential and normal
directions, respectively, are used to model the local contact

Fig. 2 Structure diagram of the dry friction.
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stiffness of the contact surface. Coulomb friction law is
used as basis to derive the tangential force f(t) and normal
force N(t) by considering the relative tangential (u(t)) and
normal (v(t)) displacements, respectively, of the contact
DOF.
After using a predictor step, the value of the tangential

contact force (T(t)) under the sticking condition is as
follows:

TðtÞ ¼ kt½uðtÞ –wðt –ΔtÞ�, (8)

where Dt is the time step, w(t) is the slider displacement,
and kt is the contact stiffness in the tangential direction.
Thereafter, the actual value of tangential contact force is
computed accordingly as follows:

f ðtÞ ¼
TðtÞ stick state,

�NðtÞsignðTðtÞÞ slip state,

0 lif t-of f state,

8><
>: (9)

where N(t) is the positive pressure of the contact surface.
Moreover, the slider displacement can be further obtained
as follows:

wðtÞ ¼
wðt –ΔtÞ stick state,

uðtÞ –�NðtÞsignðTðtÞÞ=kt slip state,

0 lif t-of f state:

8><
>:

(10)

By decomposing the dry friction force of Eq. (9) with a
first order Fourier, the dry friction force can be written as
follows:

fn ¼ keqðArÞuþ ceqðArÞ
du

dt
, (11)

where keq(Ar) and ceq(Ar) are the nonlinear stiffness and
damping, respectively, of the dry friction and Ar is the
response amplitude of the contact DOF.

4 Algorithm of the nonlinear analysis

Nonlinear modes differ from the linear analog because the
former is energy-dependent. Consequently, the computa-
tion of nonlinear modes results in more computational
effort than the linear system. This study uses the
incremental HBM (IHBM) as basis to derive an algorithm
to efficiently yield the mode characteristics. This section
provides an overview of the main steps of the calculation.
The specific procedure is as follows.
First, using a new time scale τ = ωt, where is the angular

frequency, Eq. (6) is transformed as follows:

ω2M
d2Q

dτ2
þ ωC

dQ
dτ

þ KQþ F
dQ
dτ

,Q

� �
¼ PsinðτÞ, (12)

where Q =[Q1(τ), Q2(τ), …, QNo(τ)] and No is the number

of degree freedom.
Second, letQ0 andω0 denote the state of the vibration by

adding the increment DQ, Dω is as follows:

Q ¼ Q0 þ ΔQ, ω ¼ ω0 þ Δω: (13)

By substituting Eq. (13) into Eq. (12) and disregarding
all small terms of the higher order, the incremental
equation is as follows:

ω2
0MΔ

d2Q

dτ2

� �
þ ω0CΔ

dQ
dτ

� �
þ KΔQþ CnΔ

dQ
dτ

� �

þKnΔQ ¼ R – 2ω0M
d2Q0

dτ2
þ C

dQ0

dτ

� �
Δω, (14)

where Cn and Kn are the Jacobin matrices, and Cn ¼
∂FðdQ=dτ,QÞ=∂ðdQ=dτÞ and Kn ¼ ∂FðdQ=dτ,QÞ=∂Q.
Thereafter, let

QiðτÞ ¼ ai0 þ
Xm
n¼1

�
aincosðnτÞ þ binsinðnτÞ

�
, (15)

ΔQiðτÞ ¼ Δai0 þ
Xm
n¼1

½ΔaincosðnτÞ þ ΔbinsinðnτÞ�: (16)

By substituting Eqs. (15) and (16) into Eq. (14), the
Galerkin method is used to obtain the algebraic equation,
which can be written as follows:

KmΔA ¼ Rm1A0 þ Rm2 þ Rm3A0Δω, (17)

where DA =[Da10, Da11, Db11, Da12, Db12,…, Dam2]. When
the residual of DA is zero, A, Cn, and Kn approach the exact
value. The matrices and vectors in Eq. (17) depend on the
initial value of A0 and ω0. Accordingly, ω is set as the
active incrementing parameter. On the basis of Eq. (17),
the response amplitude of the coupling system can be
obtained.
Lastly, by substituting the equivalent stiffness Kn and

damping Cn into the coupling matrices, the damping and
stiffness matrices in Eq. (6) can be rewritten as follows:

KTotal ¼ KSDB þ Kn,

CTotal ¼ CSDB þ Cn,

(
(18)

where Kn and Cn are the nonlinear stiffness and damping
matrices, respectively, assembled by the Kni and Cni of the
different contact DOF of the blades. According to the
vibration theory, it can be assumed that the solution of Eq.
(6) is of the form qSDB ¼ ηelt, then Eq. (6) can yield the
following equation:

½ðKSDB þ KnÞ þ l2MSDB�η ¼ 0, (19)

where η is the undetermined coefficient vector and l is the
eigenvalue (i.e., l = jω, j =

ffiffiffiffiffiffiffi
– 1

p
).
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jðKSDB þ KnÞ þ l2MSDBj ¼ 0: (20)

The mode characteristics can be obtained by solving the
corresponding equations. Thereafter, the nonlinear cou-
pling mode characteristics and coupled vibration of the
SDB structure can be further studied similar to a linear
system.
In Fig. 3, the response amplitude A can be obtained by

using IHBM to compute the nonlinear stiffness Kn and
nonlinear damping Cn. This section uses a single sector to
compute the amplitude–frequency response of the blade
root, nonlinear stiffness and damping of the dry friction
contact feature. In Fig. 4, the nonlinear stiffness and
nonlinear damping under different excitation frequency
and rotational speed are plotted with the parameters listed
below:
Contact parameters:
Shear stiffness: kt= 8�106 N/m;
Friction coefficient: m = 0.2;
Angle of contact surface: f = η = 30º.
Shaft–disk parameters:

Shaft mass: Ms= 23.675 kg;
Disk stiffness: ks= 1�108 N/m;
Disk mass: Mi= 4.141 kg;
Disk stiffness: kdi= 1�109 N/m;
Coupling stiffness: ksdi= 1�108 N/m;
Disk radius: RD= 0.35 m.
Blade parameters:
Material density: rb= 7850 kg/m3;
Mass of the blade root: mi1= 0.124 kg;
Mass of the blade body: mi2= 0.372 kg;
Blade stiffness: kbi= 1�106 N/m;
Blade number: Nb= 12;
Blade length: Lb= 0.15 m;
Blade cross-section: Ab= 4.2�10–4 m2.
The numerical results indicate that nonlinear stiffness

and nonlinear damping are constant when DOF of the
blade root is in a stationary sticking state and gradually
shift toward a significant change when slipping occurs.
The effect of rotational speed on nonlinear damping and
stiffness reveals the difficulty of changing for high
rotational speed. This phenomenon can be explained

Fig. 3 Algorithm of the nonlinear analysis.
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through the hard activation of nonlinearity under high
rotational speed case. Therefore, the nonlinear stiffness and
damping of the contact surface remain constant.

5 Numerical results and discussion

The contact force can be calculated approximately using
the predictor–corrector strategy [28]. This study aims to
investigate the coupling vibration characteristics under the
effect of contact interface. Consequently, the variation of
the normal force is assumed to be constant. Moreover, the
normal force N is generated by the centrifugal force of the
blade system and the specific expression is N ¼ �bAbΩ

2

$!
Lb

0
ðRD þ xÞdxcosf=sinðfþ ηÞ. Section 4 presents the

specific values of the parameters.
This section summarizes the coupling modal properties

by using the algorithm provided in the previous section
based on a lumped SDB model with the 12 previously
derived identical sectors. The results consist of the natural
frequencies and mode shapes in the stick–slip areas,
respectively. Moreover, the variation of the coupling modal

characteristics versus the excitation frequency is high-
lighted. The model parameters in this study are illustrated
in Table 1.

5.1 Tuned system

The forced response and mode characteristics are com-
puted in the case of the tuned system. The tuned SDB
model with contact interface in this study is an ideally
periodic structure, thereby enabling all sectors to show the
identity characteristics. Therefore, only the results of
Sector 1 are shown in this section. In this study, the
coupling dynamic behavior of contact interface depends on
a few key parameters, namely, rotational speed, contact
parameters, excitation level and load frequency. Therefore,
the following study selects some representative parameters
as examples for the mechanism analysis of the coupling
vibration.
Figure 5 illustrates the amplitude–frequency response

curves of the blade in Sector 1 under different excitation
levels for W = 200 rad/s. Further analysis of the nonlinear
characteristics points out that the resonance frequency is
constant at low excitation level. When the excitation level

Fig. 4 (a) Amplitude–frequency response of the blade root, (b) nonlinear damping, and (c) nonlinear stiffness of an SDB system.

Table 1 Natural frequency of the tuned coupling system for ω = 200 Hz and ω = 250 Hz

Sector
Natural frequency (ω = 200 Hz)/Hz Natural frequency (ω = 250 Hz)/Hz

Blade body Blade root Shaft Disk Blade body Blade root Shaft Disk

1 253.2769 1836.3942 153.5851 2313.1122 229.2292 977.9689 152.6156 2277.6773

2 253.2769 1836.3942 – 2313.1122 229.2292 977.9689 – 2277.6773

3 253.3133 1855.3368 – 2875.0239 229.2587 978.5021 – 2858.6677

4 253.3133 1855.3368 – 2875.0239 229.2587 978.5021 – 2858.6677

5 253.3342 1860.8601 – 3510.4298 229.2757 978.7749 – 3499.9044

6 253.3342 1860.8601 – 3510.4298 229.2757 978.7749 – 3499.9044

7 253.3446 1862.9076 – 4048.8739 229.2841 978.9029 – 4040.6643

8 253.3446 1862.9076 – 4048.8739 229.2841 978.9029 – 4040.6643

9 253.3494 1863.7412 – 4125.2422 229.2880 978.9605 – 4123.3330

10 253.3494 1863.7412 – 4401.7604 229.2880 978.9605 – 4394.5509

11 253.3508 1863.9731 – 4401.7604 229.2892 978.9772 – 4394.5509

12 262.5346 1878.8707 – 4524.0797 239.6277 983.6187 – 4517.1575
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is sufficiently high, the nonlinearity is activated and the
resonance frequency gradually shifts toward a low
frequency. This result indicates that the contact interface
in this study is softening nonlinearity.
Figure 6 shows the variation of the nonlinear stiffness

and nonlinear damping versus excitation frequency. In
Fig. 6, nonlinear stiffness and nonlinear damping remain
constant at low excitation levels. The values of the
nonlinear stiffness and nonlinear damping are equal to
that of a linear system with frictionless interface. However,
complex mode characteristics may occur during the stick–
slip transitions when nonlinearity is activated at high
excitation amplitudes. In the slipping area, the nonlinear
stiffness of the contact interface initially decreases and
eventually increase to the value of a linear system with
frictionless interface. However, nonlinear damping exhi-
bits an opposite change rule. Although the friction DOFs
are in a sipping state, nonlinear damping significantly
increases. Moreover, a broad frequency range of slipping
state exists at high excitation levels.
The variations of the natural frequencies of the blade

body DOFs and blade root DOFs against the excitation

frequency at F = 500 N are plotted in Fig. 7. Note that the
coupled natural frequencies are constant and equal to those
of the underlying linear system with bonded DOFs at the
contact surface. However, the natural frequencies of the
coupling system decrease significantly with excitation
frequency when frictional DOFs are in a slipping state.
This result indicates that nonlinearity has a significant
impact on the natural frequencies. Moreover, multiplicity
of the coupling frequencies is present. Further analysis is
conducted on the nonlinear mode shapes of the cyclic
structures. The mode shapes of Points A (ω = 200 Hz) and
B (ω = 250 Hz) (see Fig. 7), which are in the stick- and slip-
areas, respectively, are plotted in the following section.
The natural frequency of the blade in Sector 12 exhibits a
conspicuous difference with other blades. The single
frequency reveals that it is associated with the shaft
mode. Therefore, the coupled effect can ideally account for
the distinct natural frequency.
The natural frequencies of the coupling system at ω =

200 Hz are shown in Table 1 and the mode shapes, which
are predominated by DOFs of the blade body, are exhibited
in Fig. 8. The natural frequencies of the coupling SDB

Fig. 6 Nonlinear parameters of the contact interface in Sector 1 for W = 200 rad/s and F = 500 N: (a) Nonlinear stiffness; (b) nonlinear
damping.

Fig. 5 Amplitude–frequency response curves for different excitation levels when W = 200 rad/s: (a) Blade body; (b) blade root.
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system can be divided into three frequency ranges, namely,
blade body frequency, blade root frequency and disk
frequency ranges. The natural frequencies of the blade
body show inconspicuous difference, except for 262.5346
Hz. This result can be explained by the coupling vibration
among the shaft and blade. However, the wide frequency
range of the disk can be explained by the strong coupling
effects among the subcomponents. Furthermore, repeated

frequencies occur and the single frequencies are induced
by the coupling vibration of the shaft.
For a clear interpretation of the nonlinear characteristics

of the coupling system, the mode shapes for the sticking
and slipping states are given in Figs. 8 and 9, respectively.
The corresponding mode characteristics of the tuned
system can provide a reference for the mistuned system
in the following analysis. Therefore, the mode property for

Fig. 8 Mode shapes of the tuned coupling system for ω = 200 Hz. (a) Sector 1; (b) Sector 2; (c) Sector 3; (d) Sector 4; (e) Sector 5;
(f) Sector 6; (g) Sector 7; (h) Sector 8; (i) Sector 9; (j) Sector 10; (k) Sector 11; (l) Sector 12.

Fig. 7 Variations of the natural frequencies for W = 200 rad/s and F = 500 N: (a) Blade body; (b) blade root.
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the sticking state (ω = 200 Hz) is first computed and
illustrated (see Fig. 8). In such a case, the nonlinear
damping and stiffness of different sectors are constant and
equal to one another. Given that no slipping occurs
between the contact DOFs at the interface, the mode
shapes are identical to those of a linear system with bonded
DOFs at the interface. The majority of the mode shapes of
the cyclic symmetric structure in the sticking state are in
harmonic form and the subcomponents exhibit identical
mode properties. This result indicates that the cyclic
symmetric structure exhibits a synchronous vibration
phenomenon. The results indicate that disk flexibility
does not induce the split of the contact interface in different
sectors. The majority of the modes are repeated except for
the last two modes. This result can be explained by the
flexibility of the shaft.
Further analysis of the nonlinear coupling mode is

shown in Fig. 9 for ω = 250 Hz (Point B in Fig. 7).
Although the increase of the excitation frequency activates
the sticking state of the contact DOFs, the distribution
pattern of the coupled frequencies remains constant.
However, the natural frequencies of the blade DOFs
significantly decrease in the slip area, which is why friction
is commonly referred to as a softening nonlinearity.

However, the natural frequencies of the disk’s DOFs
exhibits a slight decrease owing to the strong coupling
between the disk’s DOFs. The mode shapes of the
coupling system with respect to the slip-area (Point B in
Fig. 7) are depicted in Fig. 9. Although the frictional DOFs
are in a slipping state, the mode shapes remain similar to
the stationary sticking state.
The computation of the nonlinear mode shows that the

contact interface exhibits conspicuous influence on the
coupling system. In a linear system, the natural character-
istics are known to be constant. However, the natural
characteristics of a nonlinear system completely depend on
the motion of the contact DOFs. When the friction DOFs
are in a stationary sticking state, the natural characteristics
of the coupling system are identical to those of the
underlying linear system with linear connection. Although
the slipping state occurs, the natural frequencies of a
nonlinear system significantly decrease and is lower than
that of the sticking state. Therefore, a series of parameters,
such as contact parameters, can alter the modal character-
istics of a nonlinear system with the contact interface.
Accordingly, the representative contact parameters are
considered as examples for the mechanism analysis of the
coupling vibration.

Fig. 9 Mode shapes of the tuned coupling system for ω = 250 Hz. (a) Sector 1; (b) Sector 2; (c) Sector 3; (d) Sector 4; (e) Sector 5;
(f) Sector 6; (g) Sector 7; (h) Sector 8; (i) Sector 9; (j) Sector 10; (k) Sector 11; (l) Sector 12.
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5.2 Mistuned system

This section presents and discusses the effects of random
mistuned contact interface on the nonlinear coupling
mode. In the previous section, the mode characteristics
of the cycle structure under different excitation levels have
already been analyzed. Therefore, only the case of F =
500 N is used as an example to analyze the mode
characteristics of the mistuned system. Accordingly, the
mistuned contact interface is added to the model through
the mistuned contact parameters. For a given contact
parameter, the random mistuning parameter fm is obtained
by the addition of a random mistuning error ε taken in the
normal distribution ε~(0, σ2). To provide a clear overview
of the mistuned mode characteristics, the standard
deviation of mistuning error is σ= 5%, which may be
exaggerated in contrast to the practical case. Therefore, the
mistuned parameter is as follows:

fm ¼ f ð1þ εÞ, (21)

where f is the tuned value of the contact parameter.

5.2.1 Mistuned friction coefficient

The influence of the friction coefficient mistuning is
presented and investigated. The specific values of the
mistuned friction coefficient are given in Table 2. There-
after, the amplitude–frequency response curves of the
different sectors are plotted in Fig. 10 using the algorithm
presented in Section 4. Compared with the tuned system,
the forced response of the blades no longer exhibits a
single resonance peak. The multiplicity of the blade
response can be explained by the mistuned contact
interface. However, the split of the response only occurs
in the slipping area. This result indicates that the random
mistuned friction can only take effect when the friction
DOFs are in a slipping state.
Further analysis of the nonlinear parameters of the

contact interface is plotted in Fig. 11. In the stationary
sticking state, the nonlinear stiffness and nonlinear

damping of the different contact interfaces are constant
and equal to one another, similar to a tuned system.
However, the nonlinear stiffness and nonlinear damping of
the contact interfaces in the different sectors lose their
identity characteristics in the slipping state. The multi-
plicity of the nonlinear stiffness and nonlinear damping
indicates a mistuning of the contact interfaces. Figure 12
shows the variation of the coupling frequency with the
excitation frequency. Evidently, the changed rule of the
natural frequency is identical to that of the tuned contact
interface case.
A focus on the natural characteristics enables an

improved understanding of the mode characteristics
when ω = 200 Hz (Point C in Fig. 12). In the sticking
state, the natural frequencies in Table 3 show no difference
with those of the tuned system. The mode shapes, which
are predominated by the blade body, are plotted in Fig. 13.
The corresponding mode shapes show the same distribu-
tion pattern as the tuned system. Moreover, the majority of
the modes occur repeatedly except for the last two modes.
The equal deformation of the blade and disk DOFs reveals

Table 2 Values of the random mistuning friction coefficient μ in the
different contact interfaces

Sector Random mistuning friction coefficient

1 0.311

2 0.326

3 0.310

4 0.311

5 0.297

6 0.289

7 0.271

8 0.306

9 0.280

10 0.261

11 0.318

12 0.299

Fig. 10 Amplitude–frequency response curves forW = 200 rad/s and F = 500 N under mistuned friction coefficient case: (a) Blade body;
(b) blade root.
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that the single mode arises from the coupling vibration of
the shaft. Thus, mistuning may have no impact on the
natural characteristics of the cycle symmetric structure in
the stationary sticking case.
An analysis of the natural characteristics is performed

for the slipping state (Point D in Fig. 12). The natural

frequencies of the coupling system are given in Table 3.
Note that repeated frequencies disappear and each DOF
exhibits a peculiar frequency. The frequency split is caused
by the difference in the nonlinear stiffness of the mistuning
contact interface. Figure 14 illustrates the mode shapes
predominated by the blade. In the mistuning system, the

Fig. 11 Nonlinear parameters of the contact interfaces in the different sectors for W = 200 rad/s and F = 500 N under mistuned friction
coefficient case: (a) Nonlinear stiffness; (b) nonlinear damping.

Fig. 12 Variations of the natural frequencies for W = 200 rad/s and F = 500 N under mistuned friction coefficient case: (a) Blade body,
(b) blade root.

Table 3 Natural frequency of the coupling system for ω = 200 Hz and ω = 250 Hz under mistuned friction coefficient case

Sector
Natural frequency (ω = 200 Hz)/Hz Natural frequency (ω = 250 Hz)/Hz

Blade body Blade root Shaft Disk Blade body Blade root Shaft Disk

1 253.2769 1836.3942 153.5851 2313.1122 224.9295 925.3268 152.5889 2277.5969

2 253.2769 1836.3942 – 2313.1122 225.6163 930.8274 – 2277.6629

3 253.3133 1855.3368 – 2875.0239 227.1697 950.9701 – 2858.5518

4 253.3133 1855.3368 – 2875.0239 227.7164 955.5698 – 2858.7146

5 253.3342 1860.8601 – 3510.4298 228.5753 966.5974 – 3499.8755

6 253.3342 1860.8601 – 3510.4298 229.5426 982.2695 – 349.9880

7 253.3446 1862.9076 – 4048.8739 229.7237 983.1077 – 4040.5895

8 253.3446 1862.9076 – 4048.8739 229.9858 987.5018 – 4040.6938

9 253.3494 1863.7412 – 4125.2422 230.4309 989.6337 – 4123.3277

10 253.3494 1863.7412 – 4401.7604 231.1232 997.7133 – 4394.5169

11 253.3508 1863.9731 – 4401.7604 231.6311 1008.8343 – 4394.5436

12 262.5346 1878.8707 – 4524.0797 239.5725 1014.4355 – 4517.1376
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mode shapes of the slipping state show a significant
difference and the harmonic form disappears. The mode
information exhibits an evident localization phenomenon.
Therefore, the mistuned friction coefficient will result in
the localization of the cycle structure when the contact
DOFs are in a slipping state.

5.2.2 Mistuned contact stiffness coefficient

This section adds the random mistuned contact stiffness
coefficient to the dry friction model in the different sectors.
Table 4 illustrates the specific values of the contact
stiffness in the different sectors. The forced response of the
blade DOFs in the different sectors is plotted in Fig. 15 for
F = 500 N. Unlike the mistuned friction coefficient case,
only a slight difference in resonance amplitude occurs.
However, the impact of the mistuned contact stiffness
constantly exists in the overall frequency range. Moreover,
note that the mistuning of the contact stiffness coefficient
activates a new resonance peak in the frequency of the
shaft.
The nonlinear stiffness and nonlinear damping of the

contact interfaces are given in Fig. 16 forW = 200 rad/s and

F = 500 N. The results show that the nonlinear stiffness
splits into distinct values throughout the frequency range.
However, the multiplicity of the nonlinear damping only
occurs in the slipping area. Moreover, nonlinear stiffness
and nonlinear damping exhibit a conspicuous shift in the
frequency of the shaft. This result indicates that the random
mistuning of the contact stiffness activates the transient
slipping state in this frequency range. Figure 17 provides
an overview of the variations of the natural frequencies.
The results show varied natural frequencies throughout the
frequency range. For the frequency of the shaft, the natural
frequencies of the blade DOFs exhibit a significant
decrease. These results indicate that the mistuning of the
contact stiffness has a conspicuous impact on the modal
characteristics of the coupling system.
In this section, the natural characteristics of coupling

system are investigated under the stationary sticking state
(Point E in Fig. 17). Table 5 shows the natural frequencies
of the coupling system whenω = 200 Hz. All DOFs show a
single natural frequency, which is different from the
mistuning case of the friction coefficient. A corresponding
analysis of the mode shapes is plotted in Fig. 18. Although
all contact interfaces are in stationary sticking, localization

Fig. 13 Mode shapes of the SDB system with mistuned friction coefficient for ω = 200 Hz. (a) Sector 1; (b) Sector 2; (c) Sector 3;
(d) Sector 4; (e) Sector 5; (f) Sector 6; (g) Sector 7; (h) Sector 8; (i) Sector 9; (j) Sector 10; (k) Sector 11; (l) Sector 12.
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remains in the coupling system.
An overview of the natural characteristics of the

coupling system in a slipping state (Point F in Fig. 17) is

obtained for W = 200 rad/s and F = 500 N. Similar to the
stationary sticking state, there exists identical mode
characteristics except for the low natural frequencies. All
DOFs exhibit a single and peculiar natural frequency that
originates from the repeated frequency. Therefore, the
repeated modes also disappear, which differ from the tuned
system (see Fig. 19). Moreover, localization phenomenon
also occurs in the mode shapes and is induced by the
mistuning feature. The mistuned contact stiffness coeffi-
cient may constantly have an effect on the modal properties
throughout the frequency range.

6 Conclusions

This paper uses IHBM as basis to propose a new method
for calculating the coupling mode characteristics of a
nonlinear system with contact interface. The proposed
method is successfully applied to obtain the coupling mode
characteristics of a cycle symmetry structure with tuned
and mistuned contact interface. Accordingly, this method
is proven to be beneficial and efficient, thereby enabling
the direct determination of the nonlinear mode information

Fig. 14 Mode shapes of the SDB system with mistuned friction coefficient for ω = 250 Hz. (a) Sector 1; (b) Sector 2; (c) Sector 3;
(d) Sector 4; (e) Sector 5; (f) Sector 6; (g) Sector 7; (h) Sector 8; (i) Sector 9; (j) Sector 10; (k) Sector 11; (l) Sector 12.

Table 4 Values of the random mistuning contact stiffness coefficients
kt in the different contact interfaces

Sector
Random mistuning contact stiffness

coefficient/(106 m∙s–1)

1 8.206

2 7.713

3 7.986

4 8.045

5 7.956

6 7.183

7 8.240

8 8.155

9 8.194

10 7.802

11 8.307

12 7.849
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of different nonlinear structures with the contact interface.
Moreover, the modal analysis of the cyclic symmetric
structure with the contact feature is presented as follows.
In the tuned system, all sectors show identical nonlinear

characteristics in the cycle symmetrical structure. When
contact DOFs are in a stationary sticking state, the
nonlinear stiffness and nonlinear damping of contact
interface remain constant. However, these nonlinear

parameters vary significantly when the slipping state of
the contact DOFs is activated. The majority of the modes
occur repeatedly except for the mode coupled with shaft
vibration. The mode shapes of the coupling system are in
harmonic form, which is similar to a linear system with
frictionless interfaces.
The mistuning of the contact interface shows a

conspicuous impact on the nonlinear characteristics. The

Fig. 15 Amplitude–frequency response curves for W = 200 rad/s and F = 500 N under mistuned contact stiffness case: (a) Blade body;
(b) blade root.

Fig. 16 Nonlinear parameters of the contact interfaces in different sectors for W = 200 rad/s and F = 500 N under mistuned contact
stiffness case: (a) Nonlinear stiffness; (b) nonlinear damping.

Fig. 17 Variations of the natural frequencies for W = 200 rad/s and F = 500 N under mistuned contact stiffness case: (a) Blade body;
(b) blade root.
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mistuned friction coefficient can only affect the system’s
natural frequency in the slipping state. However, the
effects of mistuned contact stiffness do not depend on the

state of the friction DOFs. When the mistuned feature takes
effect, the nonlinear stiffness and nonlinear damping of
each contact interface exhibit a peculiar value that differs

Table 5 Natural frequency of the coupling system for ω = 200 Hz and ω = 250 Hz under mistuned friction coefficient case

Sector
Natural frequency (ω = 200 Hz)/Hz Natural frequency (ω = 250 Hz)/Hz

Blade body Blade root Shaft Disk Blade body Blade root Shaft Disk

1 252.5143 1767.6760 153.5837 231.2356 228.9848 974.8533 152.6094 2277.6532

2 253.0586 1823.3982 — 2313.5381 229.0257 975.3624 — 2277.6628

3 253.1508 1833.8829 — 2874.6105 229.0434 975.6548 — 2858.6492

4 253.2028 1839.6541 — 2875.2533 229.0502 975.7721 — 2858.6591

5 253.3003 1852.8047 — 3509.9887 229.0792 976.1677 — 3499.8861

6 253.3580 1855.4957 — 3510.7562 229.0841 976.2503 — 3499.9020

7 253.3931 1865.3426 — 4048.6993 229.0875 976.2760 — 4040.6524

8 253.4973 1872.5862 — 4048.9612 229.2182 977.6082 — 4040.6588

9 253.5149 1880.6315 — 4125.2322 229.2674 978.6491 — 4123.3310

10 253.5453 1882.9722 — 4401.6487 229.2935 978.9403 — 4394.5410

11 253.5975 1887.2574 — 4401.7967 229.4777 980.5990 — 4394.5449

12 262.5051 1896.7463 — 4524.0438 239.5138 983.3419 — 4517.1499

Fig. 18 Mode shapes of the SDB system with mistuned contact stiffness for ω = 200 Hz. (a) Sector 1; (b) Sector 2; (c) Sector 3;
(d) Sector 4; (e) Sector 5; (f) Sector 6; (g) Sector 7; (h) Sector 8; (i) Sector 9; (j) Sector 10; (k) Sector 11; (l) Sector 12.
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from one another. The repeated modes in the tuned system
also split into different modes with a distinct natural
frequency. Moreover, the multiplicity of the contact
feature’s nonlinear stiffness induces the localization in

mode shapes. Hence, the contact interface should achieve
sufficient manufacturing accuracy to avoid the occurrence
of mistuning.
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Fig. 19 Mode shapes of the SDB system with mistuned contact stiffness for ω = 250 Hz. (a) Sector 1; (b) Sector 2; (c) Sector 3;
(d) Sector 4; (e) Sector 5; (f) Sector 6; (g) Sector 7; (h) Sector 8; (i) Sector 9; (j) Sector 10; (k) Sector 11; (l) Sector 12.

Appendix: Matrix elements
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