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Abstract This study proposes a method of constructing
type II generalized angulated elements (GAEs II)
Hoberman sphere mechanisms on the basis of deployment
axes that intersect at one point. First, the constraint
conditions for inserting n GAEs II into n deployment axes
to form a loop are given. The angle constraint conditions of
the deployment axes are obtained through a series of linear
equations. Second, the connection conditions of two GAEs
II loops that share a common deployable center are
discussed. Third, a flowchart of constructing the general-
ized Hoberman sphere mechanism on the basis of
deployment axes is provided. Finally, four generalized
Hoberman sphere mechanisms based on a fully enclosed
regular hexahedron, arithmetic sequence axes, orthonor-
mal arithmetic sequence axes, and spiral-like axes are
constructed in accordance with the given arrangement of
deployment axes that satisfy the constraint conditions to
verify the feasibility of the proposed method.

Keywords deployable mechanism, type II generalized
angulated elements, Hoberman sphere mechanism, deploy-
ment axes, constraint conditions

1 Introduction

Deployable mechanisms are widely used in daily life and
aerospace fields, such as deployable tents, roofs, antennas,
and solar panels, because of their excellent deployable and
stretching properties. Piñero [1] utilized scissor-hinge

structures to construct building roofs and designed a
deployable mobile theater. Zeigler [2] proposed a self-
stabilizing roof based on the shear fork mechanism; the
roof increased the structural stability of the studied theater.
Escrig and Valcarcel [3,4] obtained various combinations
of scissor-like deployable mechanisms through an in-depth
analysis of geometry and motion characteristics and
constructed complex assemblies with deployable charac-
teristics in one, two, and three dimensions. You [5]
proposed an intermediate element that consists of two
ordinary scissor-hinge elements and constructed deploy-
able structures with rotational symmetry.
On the basis of scissor-hinge structures, Hoberman [6,7]

converted the straight rods of such structures into a pair of
angulated elements (AEs) and constructed a series of plane
and space (Hoberman sphere) deployable mechanisms.
You and Pellegrino [8] analyzed the construction constraint
conditions of AEs and proposed two generalized AEs,
namely, type I generalized AEs (GAEs I) and type II
generalized AEs (GAEs II). Patel and Ananthasuresh [9]
described the motion trajectory of a radial motion
mechanism by solving the kinematics of the planar-
coupled prismatic–revolute–revolute–prismatic (PRRP)
mechanism and provided the trajectories of the intermedi-
ate hinge points of AEs, GAEs I, and GAEs II. Cai et al.
[10,11] analyzed the kinematics and mobility of AEs and
angulated scissor-like elements by referring to screw
theory. Chen et al. [12] presented an integral mechanism
mode for symmetric structures and proposed its kinematics
on the basis of symmetric deployable scissor-hinge
structures.
Bai et al. [13] introduced angulated–straight elements

and the synthesis methods of deployable mechanisms for
regular polygons and regular polyhedra. Wohlhart [14,15]
proposed deployable mechanisms based on cyclic poly-
hedra. Wei and Dai [16] used the reciprocating motion of
the PRRP chain to arrange a pentahedron and a cube and
presented four over-constrained mechanisms with radially
reciprocating motion. Li et al. [17,18] proposed reconfi-
gurable, double, and multiple AEs and constructed
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reconfigurable deployable polyhedral mechanisms on the
basis of the Platonic polyhedron and semiregular and
Johnson polyhedra. Li et al. [19] developed a pair of
straight elements degenerated from a pair of AEs and
constructed reconfigurable deployable polyhedron
mechanisms. Kiper et al. [20] synthesized polyhedral
linkages by taking advantage of the Cardan motion along
the axes. Shieh [21] presented deployable mechanisms
based on a planar four-bar linkage. Huang et al. [22,23]
proposed deployable mechanisms derived from the three-
fold-symmetric deployable Bricard mechanism and irre-
gularly shaped triangular prismoid units. Qi et al. [24]
proposed a class of large deployable mechanisms based on
plane-symmetric Bricard linkages. Wang and Kong [25]
introduced deployable polyhedron mechanisms con-
structed by connecting spatial single-loop linkages.
St-Onge and Gosselin [26] proposed a new design of
deployable one-degree-of-freedom mechanisms based on
rigid links.
The deployable mechanisms in these studies were

constructed by inserting modular linkages into the vertices,
edges, and faces of the given polyhedra, and the centers of
the polyhedra were normally the deployable centers.
However, the number of polyhedra is limited. Hence, we
need to explore a highly general method of constructing
deployable mechanisms, including regular and irregular
ones. Furthermore, irregular deployable mechanisms can
provide high application diversity. All deployable mechan-
isms are deployed along the axes passing the deployable
center, which are referred to as deployment axes in this
study. As shown in Fig. 1, the angles between the adjacent

deployment axes of a regular hexahedron satisfy �1 ¼
�2 ¼ ∙∙∙¼ �n. Semiregular polyhedra, such as a triangular
prism and truncated octahedron, have symmetrical deploy-
ment axes. The construction conditions for n arbitrary
deployment axes require further investigation.
In this work, we build a cluster of deployment axes that

intersect at a common center, analyze the constraint
conditions for inserting AEs into three or more arbitrary
deployment axes, and propose a novel approach to
construct generalized Hoberman sphere mechanisms
based on AEs and deployment axes.
The rest of the paper is organized as follows. Section 2

presents the constraint conditions for inserting a GAEs II
loop into n deployment axes. Section 3 introduces the
construction of Hoberman sphere mechanisms on the basis
of deployment axes and the parameters of two adjacent
GAEs II loops. Section 4 shows the construction of several
Hoberman sphere mechanisms on the basis of given axis
arrangements. Section 5 provides the conclusions of this
study.

2 GAEs II loop with n deployment axes

The AEs proposed by Hoberman [6,7] is shown in
Fig. 2(a). The link lengths and angles of the AEs satisfy
AC = BC, DC = EC, :ACD =:BCE = π –:BOD. When
points A and B and pointsD and Emove along the lines AB
and DE, respectively, the trajectory of point C is the line
OC passing through point O. As shown in Fig. 2(b), the
link lengths and angles of GAEs II [8] satisfy BC/AC =

Fig. 1 Polyhedra and deployment axes. (a) Regular hexahedron; (b) uniform triangular prism; (c) truncated octahedron; (d) arithmetic
sequence axes.

Fig. 2 Angulated elements and generalized angulated elements. (a) AEs; (b) GAEs II.
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EC/DC =m, and :ACD =:BCE = π –:BOD. GAEs II
is similar to AEs; when points A and B and points D and E
move along the lines AB and DE, respectively, the
trajectory of point C is the line OC passing through point
O. AEs and GAEs II are deployed along lines OB and OD,
which are the deployment axes, and AEs is a special case
of GAEs II when m = 1. We discuss the construction of
highly general Hoberman sphere mechanisms by using
GAEs II and the deployment axes.

2.1 Constraint conditions of two GAEs II with three
deployment axes

As shown in Fig. 3, two GAEs II (GAEs II-L and GAEs II-
R) are connected. The constraint conditions of GAEs II-L
are :COF =�1, :ABF =:CBE = π–�1, BF = l1, AB = l2,
BE =m1l1, BC =m1l2, and the constraint conditions of
GAEs II-R are :COH =�2, :ADH =:CDG = π–�2, AD
= l3, DH = l4, DC=m2l3, DG =m2l4. All of these condi-
tions should be satisfied. BN is perpendicular to OC and
intersects OC at point N. DN' is perpendicular to OC and
intersects OC at point N'. :BOF =�í1 , :BOC =�î1 ,
:COD =�í2 , and :HOD =�î2 .

Three deployment axes (a1, a2, and a3) are shown in Fig.
3. Deployment axes a1 and a2 are on plane-I, a2 and a3 are
on plane-II, and a2 is the intersection axis of the two
planes. A Cartesian coordinate system is established. The
origin is set at point O (O'), that is, the intersection of the
three deployment axes. The z-axis is set along deployment
axis a2, and the y-axis is set along the line that is
perpendicular to the z-axis and passes through point O on
plane-II. According to the right-hand rule, the x-axis is
perpendicular to the yOz plane. When points A and C and
points E and F move along axes OC and OF, respectively,

the trajectory of point B is line OB. The coordinates of
point A are (0, 0, a), the coordinates of point C are (0, 0, c),
:BAC =φ, and :DAC =f, where a, c, φ, and f are
variables. The coordinates of point B are (bx, by, bz),
:BOC is constant, and the dihedral angle of plane-I and
plane-II is set as ω. We can obtain the trajectory of point B
as follows:

bztan�$1cosω ¼ by,

bztan�$1sinω ¼ bx:

(
(1)

The coordinates of point B are ðbztan�$1sinω ¼ bx,
bztan�$1cosω ¼ by, bzÞ. Given that AB = l2 and BC =m1l2,
we have

ðbztan�$1sinωÞ2 þ ðbztan�$1cosωÞ2 þ ðbz – cÞ2 ¼ m2
1l
2
2,

ðbztan�$1sinωÞ2 þ ðbztan�$1cosωÞ2 þ ðbz – aÞ2 ¼ l22:

(

(2)

The equation of coordinate bz can be obtained from Eq.
(2):

ð1þ tan2�$1Þð1 –m2
1Þb2z – 2bzðc –m2

1aÞ þ ðc2 –m2
1a

2Þ
¼ 0: (3)

Considering that point B is the intersection of the two
spheres of Eq. (2) and lies on plane-I, Eq. (3) has one
solution or two equal solutions.
Similarly, we let the coordinates of point D be (dx, dy,

dz). We can obtain the trajectory of point D as

dztan�
í
2 ¼ dy,

0 ¼ dx:

(
(4)

Thus, the equation of coordinate dz is

ð1þ tan2�í2Þð1 –m2
2Þd2z – 2dzðc –m2

2aÞ þ ðc2 –m2
2a

2Þ
¼ 0: (5)

Given that point D is the intersection of the two spheres
and lies on plane-II, Eq. (5) has one solution or two equal
solutions.
From the analysis of Eqs. (3) and (5), we can derive the

following cases.
Case 1. If m1=m2= 1 and Eqs. (3) and (5) have one

solution, we have

by ¼
aþ c

2
¼ dy: (6)

Hence, BD is perpendicular to CA and bisects CA.

BN ¼ ON tan�$1, (7)

DN ¼ ON tan�#2: (8)

Fig. 3 Cartesian coordinate system of two GAEs II.
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In the right triangles ABN and AND, we have

l22 ¼ BN2 þ CN2, (9)

l23 ¼ DN 2 þ CN2: (10)

Hence,

l22 – l
2
3 ¼ BN 2 –DN 2 ¼ ON2ðtan2�$1 – tan2�#2Þ, (11)

where tan2�$1 – tan
2�#2 is quantitative because the left side

of Eq. (11) is quantitative and ON2 on the right side is a
variable. To ensure that the equation is always true, we let
l22 – l

2
3 ¼ 0 and tan2�$1 – tan

2�#2 ¼ 0. We obtain

�$1 ¼ �#2, (12)

l22 ¼ l23: (13)

Therefore, the two GAEs II inserted into the three
deployment axes should satisfy the constraint conditions:

l2 ¼ l3,

�$1 ¼ �#2:

(
(14)

Case 2. If m1≠1, m2≠1, the discriminants ΔB and ΔD of
Eqs. (3) and (5) are equal to 0, and Eqs. (3) and (5) have
two equal solutions, then we derive

tan2�$1
tan2�#2

¼ m2
1ðm2

2 – 1Þðc2 –m2
2a

2Þ
m2

2ðm2
1 – 1Þðc2 –m2

1a
2Þ: (15)

Given that �î1 , �í2 , m1, and m2 are quantitative, a and c

are variables. We let T ¼ tan2�$1
tan2�#2

m2
2ðm2

1 – 1Þ
m2

1ðm2
2 – 1Þ

and obtain

the following from Eq. (15):

T ¼ c2 –m2
2a

2

c2 –m2
1a

2 ) ðT – 1Þa2 ¼ ðTm2
1 –m

2
2Þc2, (16)

where a2=c2 is not quantitative, so

T – 1 ¼ 0,

Tm2
1 –m

2
2 ¼ 0:

) T ¼ 1,

m1 ¼ m2:

�(
(17)

Thus,

T ¼ tan2�$1
tan2�#2

m2
2ðm2

1 – 1Þ
m2

1ðm2
2 – 1Þ

¼ tan2�$1
tan2�#2

¼ 1: (18)

We have

�$1 ¼ �#2: (19)

Substituting Eq. (19) into Eqs. (3) and (5) yields

bz ¼ dz: (20)

We obtain

l2 ¼ l3: (21)

Therefore, the two GAEs II inserted into the three
deployment axes should satisfy the constraint conditions

l2 ¼ l3,

�$1 ¼ �#2,

m1 ¼ m2:

8><
>: (22)

Case 3. If m1= 1, m2≠1, the discriminant ΔD of Eq. (5)
is equal to 0, Eq. (3) has one solution, and Eq. (5) has two
equal solutions, then the two GAEs II cannot satisfy the
constraint conditions for being inserted into the deploy-
ment axes at this time.
In summary, the constraint conditions of the two GAEs

II inserted into the three deployment axes are presented in
Eq. (22), and the length of OB (distance from the origin to
point B) is always equal to the length of OD (distance from
the origin to point D).

2.2 Constraint conditions of n GAEs II with n deployment
axes

According to the constraint conditions of two GAEs II with
three deployment axes, the following n GAEs II are
inserted into n deployment axes, and these deployment
axes intersect at one point and form a loop. As shown in
Fig. 4, according to Eq. (22), the constraint conditions can
be summarized as follows:

l2i – 2 ¼ l2i – 1,

l2n ¼ l1,

mi – 1 ¼ mi,

�$i – 1 ¼ �#i,

�$n ¼ �#1,

8>>>>>>><
>>>>>>>:

(23)

where l2i – 1 and l2i are the lengths of the links of the ith

Fig. 4 Loop of n GAEs II.
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GAEs II, mi is the ratio of the ith GAEs II, �#i and �$i are
the angles of the deployment axes of the ith GAEs II, and i
= 2, 3, …, n.

2.3 Angle constraint conditions of the deployment axes

As shown in Fig. 5, GAEs II satisfies the constraint
conditions α ¼ β ¼ π – �1, BF = l1, AB = l2, BE =m1l1, and
BC = m1l2, where m1 is a positive number. In the triangles
OBF and OBA, the following equation is obtained with the
sine theorem.

l1
sin�#1

¼ l2
sin�$1

: (24)

Therefore, for a loop, the lengths of the links of GAEs II
can be obtained from Eqs. (23) and (24) as long as the
angles are given.

Naturally, the angles of the n deployment axes are �1,
�2, …, �n and satisfy

�#1 þ �$1 ¼ �1,

�#2 þ �$2 ¼ �2,
:::

�#n – 1 þ �$n – 1 ¼ �n – 1,

�#n þ �$n ¼ �n:

8>>>>>>><
>>>>>>>:

(25)

According to Eq. (23), a loop based on the deployment
axes should meet the constraint conditions �$n ¼ �#1,
�$1 ¼ �#2, …, �$n – 1 ¼ �#n, which are respectively expressed
as x1, x2, …, xn. Then, the following equations can be
obtained:

x1 þ x2 ¼ �1,

x2 þ x3 ¼ �2,

x3 þ x4 ¼ �3,

x4 þ x5 ¼ �4,
:::

xn þ x1 ¼ �n:

8>>>>>>>>><
>>>>>>>>>:

(26)

The augmented matrix of Eq. (26) is

B ¼

1 1 0 ::: 0

0 1 1 ::: 0

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅
0 0 0 ::: 1

1 0 0 ::: 0

0

0

⋅

⋅

⋅
1

1

�1

�2

⋅

⋅

⋅
�n – 1

�n

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: (27)

Elementary row transformations are performed on the
augmented matrix of linear equations.
When n is even, we obtain

B ¼

1 1 0 ::: 0

0 1 1 ::: 0

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅
0 0 0 ::: 1

1 0 0 ::: 0

0

0

⋅

⋅

⋅
1

1

�1

�2

⋅

⋅

⋅
�n – 1

�n

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

↕ ↓:::↕ ↓

1 1 0 ::: 0

0 1 1 ::: 0

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅
0 0 0 ::: 1

0 0 0 ::: 0

0

0

⋅

⋅

⋅
1

0

�1

�2

⋅

⋅

⋅
�n – 1

�n – �1 – ⋅⋅⋅ – �n – 1 þ �2 þ ⋅⋅⋅þ �n – 2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

(28)

When n is odd, we obtain

Fig. 5 Parameters of GAEs II.
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B ¼

1 1 0 ::: 0

0 1 1 ::: 0

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅
0 0 0 ::: 1

1 0 0 ::: 0

0

0

⋅

⋅

⋅
1

1

�1

�2

⋅

⋅

⋅
�n – 1

�n

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

↕ ↓:::↕ ↓

1 1 0 ::: 0

0 1 1 ::: 0

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅
0 0 0 ::: 1

0 0 0 ::: 0

0

0

⋅

⋅

⋅
1

2

�1

�2

⋅

⋅

⋅
�n – 1

�n – �1 – ⋅⋅⋅ – �n – 1 þ �2 þ ⋅⋅⋅þ �n – 2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

(29)

In conclusion, when n is even, �1 þ �3þ ∙∙∙ þ�n – 1 ¼
�n þ �2þ ∙∙∙þ�n – 2 is a sufficient and necessary condition
for the existence of a solution, and infinite solutions exist at
this time. When n is odd, the equation has a unique
solution. However, when the loop is constructed, the
angles must all be positive. Thus, a loop can be constructed
only when Eq. (26) has a positive solution. In addition, the
angles of any single loop must satisfy Eq. (26).

3 Construction of a Hoberman sphere
mechanism based on deployment axes and
GAEs II loops

To insert multiple GAEs II into multiple loops based on
deployment axes, we must introduce platforms for the
connections among adjacent loops. The lengths of the
platforms have been studied, but the constraint conditions
of the connections among loops still need to be discussed.
We consider the connection conditions of two loops. As

shown in Fig. 6(a), two GAEs II loops (loops I and II) have
a common deployable center, which is also the intersecting
point of deployment axes. The two GAEs II loops can be
simplified as in Fig. 6(b). The term rth is the common
GAEs II of loops I and II. Thus, according to Eqs. (22) and
(23), we can derive

lp2 ¼ lq2 ¼ lr2,

mp ¼ mq ¼ mr,

�$p ¼ �$q ¼ �$r,

lp2
sin�$p

¼ lp1
sin�#p

¼ lq1
sin�#q

¼ lr1
sin�#r

,

8>>>>>><
>>>>>>:

(30)

where lj1 and lj2 are the lengths of the links of the jth GAEs
II, mj is the ratio of the jth GAEs II, �#j and �$j are the angles
of the axes of the jth GAEs II, and j = p, r, and q.
The connection conditions of multiple loops can be

inferred from the connection conditions of two loops. All
loops have a common deployable center, and adjacent
loops share a common deployment axis. Accordingly, we
can simplify the connection of multiple loops as one loop
connected with another loop. Thus, a Hoberman sphere
mechanism based on multiple deployment axes that have a
common deployable center needs to satisfy the following
constraint conditions: The angles and lengths of links
around each deployment axis are equal, the lengths of all
the links divided by the sine of the corresponding angles
are equal, and ratios mi are all equal.
Next, the steps of constructing a Hoberman sphere

mechanism are provided. First, according to the given
relationships of the deployment axes and loops, one loop is
set as the first loop to determine whether Eq. (28) or (29) is
satisfied and whether Eq. (26) has a positive solution.

Fig. 6 Connection for two loops. (a) Two loops; (b) three GAEs II of platform A.
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Second, if the first step is satisfied, then the length of a
certain link, the corresponding angle, and the ratio m1 are
given. The first loop can be constructed according to Eq.
(24) and the solution of Eq. (26). Third, the next loop that
is connected to an axis of the first loop is constructed
according to Eqs. (30) and (24) to determine if Eq. (26) has
a positive solution. All other loops are similarly designed
and connected. Finally, a Hoberman sphere mechanism is
constructed, and the corresponding flowchart is shown in
Fig. 7.

As illustrated in the flowchart of constructing a
generalized Hoberman sphere mechanism, a Hoberman
sphere mechanism based on the axes of a regular
hexahedron can be constructed only when Eq. (26) has a
positive solution. As shown in Fig. 8(a), the deployment

axes are the lines connecting the vertexes to the center of a
regular polyhedron and the lines connecting the center of
the polyhedron to the central point of each side. The center
of the regular polyhedron is regarded as the deployable
center. Given that the sides of the regular hexahedron are
equal, and the angles of the axes are all equal and
uniformly denoted by �= 35.27°. A loop is considered, and
infinite positive solutions can be obtained according to Eq.
(26). A positive solution is taken, and the loop is
constructed. m = 1.3 is set, the angles of axes associated
with the ith GAEs II are 15.98° and 19.29°, and the lengths
of the links of GAEs II are 50 and 60 mm. The five other
loops are designed in the same manner, and all of the six
loops are connected by platforms according to Eq. (30).
Then, a Hoberman sphere mechanism based on the regular
hexahedron is constructed. Its configurations are shown in
Figs. 8(b)–8(d).

4 Generalized Hoberman sphere
mechanism with a given arrangement of the
deployment axes

Section 3 indicated that constraint conditions must be
satisfied to construct a Hoberman sphere mechanism based
on existing and fixed deployment axes. In the current
section, the deployment axes are arranged according to
the constraints in Eqs. (24), (26), and (30). As shown in
Fig. 9(a), six axes are inserted into the six faces of the
regular hexahedron, and the angles between the inserted
and deployment axes are equal and uniformly denoted by
� = 54.74°. GAEs II are then inserted according to Eqs.
(24) and (30). The configurations of the Hoberman sphere
mechanism based on the fully enclosed regular hexahedron
are shown in Figs. 9(b)–9(d). This mechanism possesses
more rigidity than the mechanism in Fig. 8. As shown in
Fig. 10, a 3D printed prototype is fabricated to verify the
feasibility of the mechanism, and the configurations are
shown in Figs. 10(a)–10(c).
Next, a series of axes that satisfy the arithmetic sequence

are given. As shown in Fig. 11, the angles of the
deployment axes satisfy the arithmetic sequence �1 þ
7d ¼ �2 þ 6d ¼ �3 þ 5d ¼ ∙∙∙¼ �7 þ d ¼ �8 (d is a
common difference), and the angles satisfy Eqs. (28) and
(30). m = 1.3 is given, and the parameters of the
mechanism are obtained as in Table 1, where �i, �#i, and
�$i are the angles of axes associated with the ith GAEs II
and l2i–1 and l2i are the lengths of the links of the ith GAEs
II. Therefore, five GAEs II chains that are based on the
arithmetic sequence axes are connected by four platforms.
The configurations of the Hoberman sphere mechanism
based on the arithmetic sequence axes are shown in Figs.
11(b)–11(d).
A series of complicated axes are arranged, as shown in

Fig. 12. Two GAEs II loops are inserted into the two series

Fig. 7 Flowchart of constructing a Hoberman sphere mechanism.
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of arithmetic sequence axes separately. The angles of the
two loops are of an arithmetic sequence, and the two loops
are orthogonal to each other and connected by platforms.
According to Eq. (28), m = 1.3 is given, and the lengths of
the links and angles are as shown in Table 1. Then, as
shown in Fig. 12(a), 20 axes are inserted to connect the two
orthogonal loops, which belong to four types. The angles
and lengths of the links are determined by Eqs. (24) and
(30), as shown in Table 2, where �j, �#j, and �$j are the
angles associated with the jth GAEs II and L2j–1 and L2j are

the lengths of the jth GAEs II. A Hoberman sphere
mechanism based on the spiral-like axes is then con-
structed (Fig. 13), and 23 axes are arranged cylindrically,
as shown in Fig. 13(a). The height of the cylinder is 300
mm, the diameter is 300 mm, and the cylinder is cut evenly
into six parts at a distance of 50 mm. The center point of
the cylinder is the deployable center. Three uniform points
are obtained on the upper bottom surface of the cylinder
and rotated by 60° on the second surface until they are
rotated to the lower bottom surface. The lines connecting

Fig. 8 Hoberman sphere mechanism based on the regular hexahedron. (a) Deployment axes; (b) configuration I; (c) configuration II;
(d) configuration III.

Fig. 9 Hoberman sphere mechanism based on a fully enclosed regular hexahedron. (a) Insert deployment axes; (b) configuration I;
(c) configuration II; (d) configuration III.

Fig. 10 3D printed prototype of a Hoberman sphere mechanism based on a fully enclosed regular hexahedron. (a) Configuration I;
(b) configuration II; (c) configuration III.
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these points to the deployable center are set as the
deployment axes, which satisfy the relationships in Eqs.
(24) and (30). Then, the platforms and GAEs II are
inserted, and m = 1.3 is given. The lengths of the links and
the other parameters are shown in Table 3.

5 Conclusions

The connections of two GAEs II with three deployment
axes are analyzed in three cases, and the constraint
conditions for one loop with n GAEs II are obtained for

Fig. 11 Hoberman sphere mechanism based on arithmetic sequence axes. (a) Deployment axes; (b) configuration I; (c) configuration II;
(d) configuration III.

Table 1 Parameters of the Hoberman sphere mechanism based on arithmetic sequence axes

i �i /(° ) �#i /(° ) �$i /(° ) l2i–1/mm l2i/mm

1 15.5 7.25 8.25 37.86 43.05

2 17.5 8.25 9.25 43.05 48.22

3 19.5 9.25 10.25 48.22 53.38

4 21.5 10.25 11.25 53.38 58.53

5 23.5 11.25 12.25 58.53 63.65

6 25.5 12.25 13.25 63.65 68.76

7 27.5 13.25 14.25 68.76 73.85

8 29.5 14.25 15.25 73.85 78.91

Fig. 12 Hoberman sphere mechanism based on orthonormal arithmetic sequence axes. (a) Deployment axes; (b) configuration I;
(c) configuration II; (d) configuration III.

Table 2 Parameters of inserted axes

j �j /(° ) �#j /(° ) �$j /(° ) L2j–1/mm L2j/mm

1 22.65 9.25 13.40 48.22 69.53

2 22.50 11.25 11.25 58.53 58.53

3 20.32 11.25 9.07 58.53 47.30

4 36.37 13.25 23.12 68.76 117.81
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the first time based on the common center and n
deployment axes. A highly general approach is proposed
and verified by examples to construct a generalized
Hoberman sphere mechanism based on the GAEs II
loops and deployment axes. A series of novel generalized
Hoberman sphere mechanisms are constructed by design-
ing the parameters of GAEs II loops and arranging the
deployment axes, such as arithmetic sequence, orthonor-
mal arithmetic sequence, and spiral-like axes. The obtained
mechanisms can expand the application scope of tradi-
tional Hoberman sphere mechanisms.
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