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Abstract Rolling contact fatigue (RCF) issues, such as
pitting, might occur on bevel gears because load fluctua-
tion induces considerable subsurface stress amplitudes.
Such issues can dramatically affect the service life of
associated machines. An accurate geometry model of a
hypoid gear utilized in the main reducer of a heavy-duty
vehicle is developed in this study with the commercial gear
design software MASTA. Multiaxial stress–strain states
are simulated with the finite element method, and the RCF
life is predicted using the Brown–Miller–Morrow fatigue
criterion. The patterns of fatigue life on the tooth surface
are simulated under various loading levels, and the RCF
S–N curve is numerically generated. Moreover, a typical
torque–time history on the driven axle is described,
followed by the construction of program load spectrum
with the rain flow method and the Goodman mean stress
equation. The effects of various fatigue damage accumula-
tion rules on fatigue life are compared and discussed in
detail. Predicted results reveal that the Miner linear rule
provides the most optimistic result among the three
selected rules, and the Manson bilinear rule produces the
most conservative result.

Keywords bevel gear, rolling contact fatigue (RCF),
multiaxial fatigue criterion, load spectrum, damage accu-
mulation rule

1 Introduction

Bevel gears have been extensively used in main reducers
and differentials of automobiles, aerospace devices, and
printing devices due to their high mechanical efficiency,
large loading capacity, low noise behavior, and capability
for direct power transmission between two orthogonal
shafts. Load fluctuation and considerable subsurface stress
amplitude may cause rolling contact fatigue (RCF) issues,
such as pitting, on bevel gears; these issues could
dramatically affect the service life of associated machines.
The prediction of RCF life of a bevel gear pair is
imperative for reliability evaluation. Niemann et al. [1]
developed the first version of FZG gear test rig and defined
relevant experimental standards. Later on, this type of test
rig was extensively applied in fatigue and tribological
studies on involute parallel gears [2]. He et al. [3]
investigated the effect of external load on involute gear
contact fatigue life and curve-fitted the stress–life formula
on the basis of numerical data. Fernandes and McDuling
[4] found that surface contact fatigue is the most common
cause of gear failure and can significantly reduce the load-
carrying capacity of components. Liu et al. [5] studied
effects of surface roughness and residual stress on the
contact fatigue performance of gears by using the modified
Dang Van multiaxial fatigue criterion. Carpinteri et al. [6]
conducted a comprehensive review of multiaxial fatigue
under variable amplitude and random loading. Wang et al.
[7,8] predicted the RCF life of a wind turbine carburized
gear by using multiaxial fatigue criteria. Wu et al. [9]
evaluated six multiaxial fatigue criteria with life data
obtained from proportional and non-proportional tension–
torsion fatigue tests on titanium alloy TC4. Zhu et al. [10]
conducted a comparative evaluation of typical critical
plane criteria by utilizing experimental datasets of four
materials under uniaxial tension, torsion, and non-propor-
tional multiaxial loadings.
Compared with involute gears, bevel gears have elicited

less research attention. Litvin et al. [11] conducted a
pioneering study on loaded tooth contact by using the finite
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element method; the contact pattern was predicted and
proven by tests on spiral bevel gear drives. Sekercioglu and
Kovan [12] experimentally studied the fatigue fracture of a
bevel gear in an automotive differential and found that
excessive contact stress is responsible for tooth pitting and
the final fracture. Bhavi et al. [13] performed fatigue
testing of spiral bevel gears and obtained the pinion’s
failure mode. Obtaining the S–N curve through long-term
fatigue tests is time consuming. Thus, experimentally
acquired RCF S–N curves of bevel gears have rarely been
reported. Estimations of fatigue life with numerical
methods, such as the finite element method, have become
prevalent due to the development of simulation techniques.
Ural et al. [14] summarized the applications of the finite
element method and fracture mechanics in the prediction of
cracks and estimation of the fatigue life of bevel gears in
helicopters. Deng et al. [15] investigated contact and
bending fatigue by using the cumulative fatigue criterion
and stress-life equation.
In most engineering applications, gears experience time-

varying loading histories due to the fluctuation of external
torque. Liu et al. [16] developed a modular method to
investigate the effect of load on the efficiency of a
multirange hydromechanical transmission. Liu et al. [17]
investigated the influence of work holding equipment
errors on the mesh and loading behavior of face-hobbed
hypoid gear by using an accurate mesh model established
from a generated process. Medepalli and Rao [18] pointed
out that the load characteristics of vehicles differ under
varying road conditions and illustrated that the prediction
of road load via numerical simulation is possible. The
fatigue life under a constant load assumption cannot
accurately describe damage evolution under a fluctuating
load spectrum. Therefore, compilation of the load
spectrum and selection of damage accumulation rules are
crucial. Liu et al. [19] estimated the fatigue life of fan

blades under random loading by considering the combined
influence of stress amplitude and mean stress. Shinde et al.
[20] utilized a modified rain flow counting method that
allows the use of the Miner criterion to evaluate the fatigue
life of structures under random loading. Mayer et al. [21]
investigated the effect of cyclic loads below the endurance
limit on fatigue damage in a series of variable amplitude
loads.
According to these previous studies, accurate fatigue life

estimation of bevel gears depends on the following
prerequisites: Fatigue S–N curve, load spectrum, and
proper fatigue damage accumulation rule. Only a few
studies on bevel gear fatigue life have considered these
factors. To address this shortage, this study used the finite
element method to simulate the multiaxial stress–strain
states of subsurface material points and the RCF S–N curve
of bevel gear. The typical torque–time history on the driven
axle was described using a typical truck load spectrum, and
the standard load spectrum was constructed with the rain
flow method and Goodman mean stress equation. Various
fatigue damage accumulation rules were discussed. A
diagram of the technique applied in this work is shown in
Fig. 1.

2 Numerical methodology

To understand the contact fatigue behavior of a hypoid
bevel gear in a heavy-duty vehicle, we investigated fatigue
life under a given load spectrum by emphasizing the
following aspects: Modeling of gear geometry and finite
element contact analysis, fatigue life prediction of bevel
gear under constant loading conditions on the basis of the
Brown–Miller–Morrow multiaxial fatigue criterion, and
compilation of load spectrum and fatigue estimations with
various damage accumulation rules.

Fig. 1 Calculation flow chart.

124 Front. Mech. Eng. 2020, 15(1): 123–132



2.1 Bevel gear contact finite element model

Oerlikon and Gleason hypoid gears and spiral bevel gears
are the most commonly used gear types in the main
gearboxes of modern vehicles [22]. The Gleason-type
hypoid gear was selected in this work, and the MC401-
AGMA/Gleason hypoid gear design module was obtained
from the commercial gear design software MASTA. Table
1 shows the basic design parameters of a hypoid gear pair.
Figure 2 shows the geometry of a Gleason hypoid gear
pair.
A finite element contact analysis was conducted with the

commercial software Abaqus/Standard 6.14. Seven teeth
of the wheel were modeled in consideration of axisym-
metric characteristics to reduce the computation time. The
finite element type C3D10 was selected, and the mesh
density at the tooth surface contact zone was sufficiently
fine to guarantee convergence. Around 400000 elements
were generated in the pinion and wheel. A rotating motion
was applied on the driving pinion, and the output torque
was applied on the engaged driven wheel, as shown in
Fig. 3.
The gear material was 20CrNiMo, and its fundamental

mechanical properties are:
Young’s modulus: E = 206 GPa;
Poisson’s ratio: v = 0.3;
Tensile strength: �s = 1.3 GPa.

2.2 Fatigue life estimation under constant loading
conditions

Under repeated gear meshing, the subsurface material
points under the contacting surface exhibit complicated
time-varying multiaxial stress–strain responses. Normal

and shear components co-exist, and the mean values are
generally non-zero [23]. Therefore, critical-plane-based
multiaxial fatigue criteria are frequently used to determine
the complicated stress–strain state and further employed
for fatigue behavior analysis during the cycling contact
period [24]. A widely accepted multiaxial criterion, the
Brown–Miller criterion [25], was used in this work to
evaluate the fatigue life under constant contact loading
conditions.
Given that considerable mean stresses occur at critical

material points, the modified Brown–Miller–Morrow
criterion that considers the mean stress effect was used
as follows [26]:

Δγmax

2
þ Δεn

2
¼1:65

ð�#f –�mÞ
2

ð2Nf Þb

þ1:75ε#f ð2Nf Þc, (1)

where Δγmax is the maximum shear strain range, Δεn is the
normal strain range, �#f is the fatigue strength coefficient,
�m is the mean stress, b is the fatigue strength exponent, c
represents the fatigue ductility exponent, ε#f is the fatigue
ductility coefficient, and Nf is the cycle number to crack
initiation.
Different loading levels were selected to generate the

RCF S–N curve of the bevel gear. Given that this
methodology cannot predict the contact fatigue limit, the
horizontal segment of a practical S–N curve was not
considered. The simulated S–N curve was further used in
the following life estimation under a given load spectrum.

2.3 Compilation of the load spectrum

Heavy-duty vehicles often operate under rough and

Table 1 Basic parameters of a hypoid gear pair

Hypoid
gear pair

Number
of teeth

Gear
module/mm

Width of a
tooth/mm

Pitch
diameter
d/mm

Average
pressure
angle/(° )

Spiral
angle/(° )

Hand
Cutter

radius/mm

Pinion 9 12 76 129.8 20 45 Left

Wheel 41 12 70 492.0 20 45 Right 177.8

Fig. 2 Gleason hypoid gear pair studied in this work. Fig. 3 Finite element contact model of a gear pair.
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complicated road conditions. The average value of the
load–time history is T2 = 2153 N∙m, as depicted in Fig. 4.
When the vehicle is driving on a complicated road, the load
fluctuates significantly due to the unevenness of the road
surface.

Statistical counting was conducted using the widely
accepted rain flow method to derive the amplitude–mean
rain flow matrix. The resultant torque amplitude–mean
frequency histogram is shown in Fig. 5. Subsequently, the
amplitude–mean probability distribution function was
determined. Then, the two-dimension load spectrum was
compiled, based on which the one-dimensional load
spectrum was generated through the Goodman equivalent
damage rule [27]. Finally, the one-dimensional standard
load spectrum was used in fatigue life estimation.

The least squares method was used to test the
distribution of the mean and amplitude frequency.
Logarithmic normal, three-parameter Weibull, Weibull,
and normal distributions were fitted. The results showed
that the torque amplitude follows the Weibull distribution,
and the mean torque follows the normal distribution.
Figure 6(a) shows that the statistical amplitude frequency
follows the Weibull distribution. Figure 6(b) depicts the
fitted amplitude probability density curve, and Fig. 6(c)

shows that the statistical mean frequency follows the
normal distribution. Figure 6(d) illustrates the fitted mean
probability density curve.
The mean value and amplitude of torque are independent

variables, and the two-dimension load spectrum relates to
both variables. Therefore, the joint probability density
function of the mean and amplitude is defined as

f ðx,yÞ ¼ f ðxÞf ðyÞ, (2)

where x stands for the mean and y refers to the amplitude.

f ðx,yÞ ¼ f ðxÞf ðyÞ

¼ 0:001002exp
x – 2037
1205 þ0:08661

0:392

� �2

� 0:0784y – 0:5802expð – 0:1868y0:4198Þ: (3)

The mean and amplitude of load were divided into eight
grades. The mean was divided with an equal spacing, and
the proportional coefficients were 0.125, 0.25, 0.375, 0.5,
0.625, 0.75, 0.875, and 1. The amplitude was divided with
an unequal spacing, and the coefficients were 1, 0.95, 0.85,
0.725, 0.575, 0.425, 0.275, and 0.125.
The joint probability density function was then used to

calculate the frequency of each load interval. The formula
is expressed as

N ¼ N#!
Sa2

Sa1
!

Sm2

Sm1

f ðx,yÞdðx,yÞ, (4)

where N is the cycle number, Sa1 and Sa2 are the integral
lower and upper limits of amplitude, respectively, Sm1 and
Sm2 are the integral lower and upper limits of the mean,
respectively, and N# is the cumulative frequency.
The 600-second data of torque shown in Fig. 4 are

insufficient to represent the entire loading history. There-
fore, cumulative loading cycles should be extended to the
well-recognized threshold of 106 cycles. To reflect a more
realistic load history experienced during the entire life
cycle, the two-dimension load spectrum is shown in a
tabular form in Table 2.
The German company LBF [28] developed an eight-

level program load spectrum, which has been widely used
for fatigue life estimation of truck gears. The main
advantage of such a standard load spectrum is that it
accurately reflects the actual loading history conditions of
vehicles. On the basis of this method and the Goodman
equivalent damage rule, the one-dimensional standard load
spectrum with zero mean stress for the bevel gear was
generated in this work, as shown in Table 3.

2.4 Damage accumulation rules

Many fatigue damage accumulation rules [29,30] have
been proposed, and they can be classified into three main
types, namely, linear, bilinear, and nonlinear. The Miner

Fig. 4 Typical torque history of the output axle.

Fig. 5 Torque mean amplitude frequency histogram.
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linear, Manson bilinear, and Corten–Dolan nonlinear rules
are generally accepted in engineering practice [31].
The fatigue damage variableD of the Miner linear rule is

the ratio between cycle number n under service stress and
fatigue life N of the material under this stress, and it is
expressed as

D ¼ n

N
: (5)

Under multiple stress amplitudes, the Miner damage is

expressed as

D ¼
X

Di ¼
Xni

Ni
, (6)

where Di means the damage suffered during a loading
block, ni is the cycle number under the ith class of load,
and Ni is the fatigue life under the ith load class.
The Manson bilinear rule assumes that the fatigue life

consists of two stages for a two-level cyclic loading
condition. As shown in Fig. 7, the fatigue damage for each

Fig. 6 Probability densities of mean torque and amplitude. (a) Torque amplitude frequency histogram; (b) torque amplitude probability
density; (d) mean torque frequency histogram; (e) mean torque probability density.

Table 2 The matrix of loading cycle under various amplitudes and mean values of torque

Mean/(N∙m)
Loading cycle number

496.5 N∙m 1092.3 N∙m 1688 N∙m 2284 N∙m 2879.8 N∙m 3376.3 N∙m 3773.5 N∙m 3972 N∙m

496.5 367 42 14 7 3 2 0 0

993.0 12400 1430 487 222 116 57 31 12

1489.5 119000 13600 4660 2120 1110 549 300 117

1986.0 330000 37800 12900 5890 3080 1520 829 325

2482.5 270000 31000 10600 4830 2530 1250 680 266

2979.0 65300 7500 2560 1170 610 302 164 64

3475.5 4540 521 178 81 42 21 11 4

3972.0 88 10 3 2 0 0 0 0
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stage is calculated individually using the linear cumulative
damage rule.
For loading blocks containing more than two loading

levels, the bilinear damage curve is expressed as

Z ¼
ln 0:35

N1

N2

� �0:25� �
Nφ
1

, (7)

φ ¼ 1

ln
N1

N2

� �ln
ln 0:35

N1

N2

� �0:25� �

ln 1 – 0:65
N1

N2

� �0:25� �
0
BBB@

1
CCCA, (8)

ni,I ¼ Ni,f expðZNφ
i,f Þ,

ni,II ¼ Ni,f – ni,I,

(
(9)

where Ni,f is the fatigue life under the ith load class, N1

represents the fatigue life at the highest stress level in the
load spectrum, and N2 is the fatigue life at the lowest stress
level in the load spectrum.
According to the Corten–Dolan nonlinear rule under the

action of multistage stress, high-level stress not only
causes damage to the structure but also affects the damage
induced by low stress. The formula for fatigue life
estimation under multistage stresses has the form

N ¼ N1Xn
i¼1

ai
�i
�1

� �d , (10)

where N is the total fatigue life under multistage stresses,
�1 represents the stress value of maximum load with a unit
of MPa, N1 is the fatigue life under stress level �1, �i is the
stress value for the ith load class, ai represents the ratio of
cycle number of the ith load class stress to the total cycle
number, and d is the material constant. In the absence of
test data, Corten assumed that d/m = 0.85, where m is the
slope of the S–N curve.

3 Results and discussion

3.1 Fatigue life prediction under constant load conditions

Figure 8 plots the distributions of contact pressure and von
Mises stress under a constant output torque of 500 N∙m.
High contact pressure was distributed in the middle of the
tooth surface. The maximum contact pressure was 590.65
MPa, and the maximum von Mises stress on the tooth
surface was 315.5 MPa.
Figure 9 shows the calculated fatigue life of the bevel

gear under various constant loading conditions with the
torque T2 increasing from 1000 to 5000 N∙m. As the load
level increased, the minimum fatigue life of the bevel gear
decreased significantly from 7:1� 108 to 1:45� 106.
The material point with the minimum fatigue life was

selected as a representative, and the evolutions of various
stress components experienced by this material point under
the loading condition T2= 3000 N∙m are displayed in
Fig. 10. The shear stress components presented different
tendencies during a meshing cycle compared with the
normal components. The normal stress components
remained compressive, whereas the shear components
changed their signs during the loading cycle, indicating a
typical multiaxial state with considerable mean stress.
When lives at several constant loading levels are

Table 3 Eight-level standard load spectrum

Load/(N∙m) Cycle number

600.0 850000

1319.5 83700

2039.3 26500

2750.0 11200

3470.0 5700

4067.5 3200

4545.0 1400

4785.0 572

Fig. 7 Manson bilinear rule.
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estimated, the RCF S–N curve can indicate the relation
between failure cycle Nf and the maximum contact
pressure, as shown in Fig. 11.
For the classical S–N curve of contact fatigue, the

relationship between stress and cycle number can be
expressed by many forms of empirical equations and can
be approximated linearly on a log-log graph. The most
common empirical equation is the Basquin formula [32]:

S ¼ �#f ð2Nf Þb: (11)

Use the logarithm of both sides to obtain

lgS ¼ blgNf þ C, (12)

where S is the stress amplitude in MPa, C is the constant,
and Nf is the cycle number to failure.
The contact fatigue S–N curve of the driven gear can be

curve-fitted as follows:

lgS ¼ – 10lgNf þ 23:9: (13)

3.2 Special load spectrum case

Before the application of the fluctuating loading condition,
a special load spectrum consisting of only one constant
torque was assumed to investigate the effect of three
commonly used damage accumulation rules. The constant
load was set as T2= 2153 N∙m. The aforementioned S–N
curve indicates that the life under this specific constant

Fig. 8 Distributions of contact pressure and von Mises at a torque of 500 N∙m.

Fig. 9 Contact fatigue life at various loading levels.

Fig. 10 Evolutions of stress components during a loading cycle.

Fig. 11 Contact fatigue S–N curve of driven gear.
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loading condition is Nf ¼ 7:1� 107.
If the simple Miner linear rule is applied, since the

damage is expressed as

D ¼ n

Nf
,

we have

N ¼ Nf ¼ 7:1� 107:

If the Manson bilinear rule is adopted, given that

Nf ,I ¼ Nf ,II ¼ 3:55� 107,

DI ¼
n

Nf ,I
, DII ¼

n

Nf ,II
,

we have

DI ¼ 1,  N1 ¼ 3:55� 107:

Considering that DII ¼ 1, N2 ¼ 3:55� 107, from which
we can readily see N ¼ Nf ¼ 7:1� 107.
If the Corten–Dolan nonlinear rule is applied, then

N ¼ N1Xn
i¼1

ai
�i

�1

� �d ¼7:1� 107:

In a constant loading case, because no load sequence is
involved, the selection of damage accumulation rule has no
effect on fatigue life. This section illustrates the basic
procedure for life estimation based on a damage
accumulation law.

3.3 Load spectrum case

The aforementioned fluctuating load spectrum consisting
of eight levels of torque was applied in this section.
With regard to the Miner linear rule,

D ¼
X ni

Ni
,

D ¼ 850000

1010
þ 83700

108:8
þ 26500

108
þ 11200

107:36
þ 5700

106:9

þ 3200

106:6
þ 1400

106:37
þ 572

106:27

¼ 0:0034:

When D = 1, fatigue failure occurs. Thus, fatigue life is
calculated as

Nf ,Miner ¼ 2:9� 108:

As for the Manson bilinear rule, according to Eqs. (8)–
(10),

N1 ¼ 1:86� 106, N2 ¼ 1010, φ¼ 0:44,  Z ¼ – 1:84  � 103:

n1,I ¼ 7:6� 104,

n1,II ¼ 178:6� 104,
     

n2,I ¼ 1:27� 105,

n2,II ¼ 22:13� 105,
 

((

n3,I ¼ 3:98� 105,

n3,II ¼ 35:82� 105,   

n4,I ¼ 1:46� 106,

n4,II ¼ 6:48� 106,

((

n5,I ¼ 7:9� 106,

n5,II ¼ 15� 106,

(
   

n6,I ¼ 5:7� 107,

n6,II ¼ 4:3� 107,

(

n7,I ¼ 4:93� 108,

n7,II ¼ 1:38� 108,

(
   

n8,I ¼ 9:3� 109,

n8,II ¼ 178:6� 109:

(

The following relationship should be satisfied:

Xk
1

ni
Ni,I

¼ 1,

Xk
1

ni
Ni,II

¼ 1:

We have

DI ¼
X8
1

ni
Ni,I

¼ 0:033:

When DI ¼ 1, NI ¼ 3:1� 107.

DII ¼
X8
1

ni
Ni,II

¼ 0:006:

When DII ¼ 1, NII ¼ 1:67� 108. Thus, the life with the
Manson criterion is calculated as

Nf ,Manson ¼ 1:98� 108:

When the Corten–Dolan nonlinear rule is applied, slope
m and material constant d can be determined from the
given S–N curve as follows: m = 10 and d = 8.5.
Therefore, we have

N ¼ N1Xn
i¼1

ai
�i

�1

� �d ¼106:27

0:007
¼ 2:66� 108:

The Manson bilinear rule gives rise to the minimum
fatigue life, and the Miner linear rule provides the maxima
because the Miner linear rule assumes fatigue damage as a
stationary process independent of the loading level and
sequence. The Manson bilinear rule divides fatigue
damage into two stages, which can be determined
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according to the loading sequence of high and low loads, as
shown in Fig. 12. When a multistage load case is assumed
in which more than two loading levels are involved, the
total damage estimated by the Manson bilinear rule is
mainly determined by the highest and lowest levels. Final
failure is expected to occur when the total damage is less
than unity, which indicates a shorter life compared with the
Miner linear rule. According to the Corten–Dolan non-
linear rule, all damages are related to the maximum stress
and the relationship between the maximum stress and each
stress level. Owing to the consideration of the relationship
between the current stress level and the maximum one, the
damage rate at each stress level increases compared with
that in the Miner linear rule, resulting in a reduced fatigue
life. Notably, the life magnitude predicted by the Corten–
Dolan rule significantly depends on the selection of
parameter d, which should be determined experimentally.

4 Conclusions

A systematic numerical model that considers multiaxial
fatigue and the load spectrum was developed to thoroughly
understand the contact failure process of bevel gears.
Various fatigue damage accumulation rules were also
discussed, and the following conclusions were obtained.
1) The proposed numerical methodology can be utilized

in the contact fatigue life estimation of bevel gears under
given load spectrums because the multiaxial stress
response is correctly captured in the repeated contact
loading process. This methodology can be a promising
approach for fatigue analysis of other types of gears or
bearings because it allows a flexible selection of any other
damage accumulation rule.
2) In a constant loading case, because no load sequence

is involved, the selection of the damage accumulation rule
has no effect on fatigue life. Under a fluctuating loading

spectrum, the Miner rule provides the most optimistic
result among three rules, and the Manson bilinear rule
produces the most conservative one.
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