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Abstract Advanced manufacturing processes such as
additive manufacturing offer now the capability to control
material placement at unprecedented length scales and
thereby dramatically open up the design space. This
includes the considerations of new component topologies
as well as the architecture of material within a topology
offering new paths to creating lighter and more efficient
structures. Topology optimization is an ideal tool for
navigating this multiscale design problem and leveraging
the capabilities of advanced manufacturing technologies.
However, the resulting design problem is computationally
challenging as very fine discretizations are needed to
capture all micro-structural details. In this paper, a method
based on reduction techniques is proposed to perform
efficiently topology optimization at multiple scales. This
method solves the design problem without length scale
separation, i.e., without iterating between the two scales.
Ergo, connectivity between space-varying micro-structures
is naturally ensured. Several design problems for various
types of micro-structural periodicity are performed to
illustrate the method, including applications to infill
patterns in additive manufacturing.

Keywords multiscale topology optimization, micro-
structure, additive manufacturing, reduction techniques,
substructuring, static condensation, super-element

1 Introduction

Manufacturing technologies are rapidly advancing and
now offer the capability to control material placement at

unprecedented length scales. This gives tremendous design
freedom to designers. Whether being the lattice infill of an
additively manufactured part or a standard structure,
manufacturing constraints still do exist and must be
accounted for during the design process [1–6]. None-
theless, these new manufacturing technologies offer the
possibility to fabricate structures for which the macro-
structural layout as well as the underlying micro-structure,
or architecture of material have been specifically designed.
That said, to fully leverage the capabilities of these new
technologies, the design process must rigorously account
for both scales to achieve the best performances.
Computational topology optimization provides a sys-

tematic, mathematically driven framework for navigating
this new design challenge. Traditional implementations of
structural optimization occur at the macroscale level, i.e., a
selected material is distributed over a design domain such
that an objective function, e.g., compliance or structural
mass, is minimized while satisfying a set of constraints. To
achieve the optimal material distribution, the homogeniza-
tion method [7] or the SIMP interpolation model [8,9] are
commonly used. Topology optimization is not restricted to
the optimal distribution of a single material, but several
materials can be considered [10,11]. Topology optimiza-
tion has also been employed to design novel materials with
extreme properties [12,13] such as negative Poisson’s ratio
[14,15], thermal expansion coefficient [16], fluid perme-
ability [17,18], piezoelectric properties [19] and phononic
properties [20,21], to name a few. To tailor the effective
properties of the designed material, the inverse homo-
genization method [22] has been widely employed.
Alternatively, in cases where homogenization may not
apply, such as optimizing energy absorption considering
material plasticity [23,24], one can create a finitely
periodic representation of the material at significantly
increased computational cost. When designing novel
materials, the optimization process is usually carried out
with a general idea of future potential needs rather than
focusing on a specific application. Ergo, when applying the
optimized material to a specific application or an existing
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structural design, the resulting design may not be optimal
due to the uncoupled characteristic of the process. The idea
of designing simultaneously the structure and the material
is thus appealing since it would lead to a structure
exhibiting an optimized macrostructural layout with
architectured materials that account for the structure
boundary conditions.
To capture micro-structural details, fine discretization is

needed as it determines the resolution of the design
optimization process. However, with increasing degrees of
freedom (dofs), computational cost grows drastically and
subsequently prevents the use of very fine resolutions. In
order to consider multiscale optimization, a hierarchical
approach has been developed wherein the macroscopic
layout and the micro-structures are designed iteratively
[25]. The hierarchical approach relies on the homogeniza-
tion method which determines the homogenized macro-
scopic response of a unit cell [26,27]. Homogenized
responses are then used to optimize the macroscopic layout
at a moderated computational cost. Moreover, due to the
presence of a weak coupling between the two scales, the
solution of the optimization problem at the microscale
level can easily be parallelized [28]. The hierarchical
approach has also been employed to solve nonlinear
problems [29,30]. More recently, the two-scale problem
was linearized and a level set based topology optimization
was adopted at both scales to design the structure and the
material [31]. Again, the homogenization theory is used to
bridge the scales.
For a single micro-structure repeated throughout the

computational domain, it was demonstrated that an
optimized periodic structure with sufficient finite geo-
metric periodicity converges to optimized material unit
cells with an infinite geometric periodicity obtained using
homogenization [32,33]. However, it must be noted that
this is true only for certain design problems, particularly
for cases where localization due to boundary condition
effects is not an issue and where the homogenized moduli
to be optimized is dominant and known a priori. The scale
effect of micro-structure upon the optimal topology
solution was investigated and discussed in Ref. [34].
A common issue of these two-scale optimization

approaches using the homogenization theory concerns
the lack of connectivity between unit cells, especially when
the material design varies in space. The homogenization
theory assumes the micro-structure is infinitely periodic,
yet in practice optimization is used to actively vary micro-
structure in space. A consequence of this inconsistency is
that structural features and load paths can be disconnected,
meaning regions that are predicted to offer large effective
stiffness in reality offer none. Ensuring the connectivity
between micro-structures is thus of utmost importance to
ensure the numerically predicted performance of the
optimized design. This topic has received more attention
in recent years, notably in the contexts of free material
optimization [35] and functionally graded materials [36].

More recently, a contrast-independent spectral conditioner
[37] based on the multiscale finite element method [38]
was applied to solve large structures with fully-resolved
micro-structural details. In the latter approach, the authors
avoid the length scale separation, i.e., the micro- and
macroscale problems are treated in an integrated way,
without iterations between the two scales.
In this paper, we propose an efficient, flexible and easy-

to-implement method to perform topology optimization at
multiple scales while ensuring the manufacturability of
micro-structural details. The method relies on reduction
techniques, also known as condensation or substructuring.
The idea of using reduction methods was introduced in
Ref. [34] for the purpose of dealing with conventional
designs of materials and structures in a unified way. In the
proposed approach, the micro and macro-scales are fully
coupled, i.e., the two-scale design problem is treated in an
integrated way, without length scale separation. The use of
reduction techniques has a double benefit. While they
highly improve the computational efficiency, they also
achieve the connection between space-varying micro-
structures if appropriate boundary nodes are retained in the
reduction process. It is also clear that the micro-structural
features are designed with full awareness of the structural
boundary conditions, as all applied loads are carried by
distinct solid features. The idea for the condensation-based
multiscale approach was first presented and highlighted by
the authors of Ref. [39]. Herein we expand on this initial
work to include full derivations and algorithmic details,
and provide extensions to consider additional cases of
periodicity, infill design of existing components, and
connections to length scale.
The layout of the paper is as follow. Section 2 briefly

recalls the principle of reduction techniques and describes
the proposed method to solve multiscale topology
optimization problem. The optimization problem formula-
tion and solution algorithm are discussed in Section 3.
Several examples for various kinds of micro-structural
periodicity are solved and the optimality of lattice infills is
investigated for linear elastic material in Section 4. A
discussion on the methods that decouple the micro- and
macro-scales is provided in Sections 5 and 6 concludes the
paper.

2 Multiscale topology optimization based
on reduction techniques

2.1 Generalities of reduction techniques

Reduction techniques are commonly employed to reduce
the size of a static or dynamic problem. The adopted
reduction method originating from the work of Turner et al.
[40] is hereafter briefly summarized.
Let us consider the static equilibrium equation of a

structure, expressed as
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Kd ¼ F, (1)

where K is the positive definite global stiffness matrix
considering the free dofs, d is the vector of free nodal
displacements, and F is the force vector composed of
nodal applied forces and forces due to displacement
boundary conditions. Resulting from a user-defined input,
the static equilibrium Eq. (1) can be partitioned into two
sets of dofs, named the retained (subscript r) and
condensed (subscript c) dofs, leading to

K rr K rc

Kcr Kcc

" #
dr

dc

" #
¼ Fr

Fc

" #
, (2)

where we note K rr and Kcc are both positive definite due to
the positive definiteness of K .
The goal of the reduction method is to transform the

original problem of dimension n, where n equals the
number of dof, into a reduced size problem by temporarily
removing all condensed dof. To achieve this reduction, the
second equation of Eq. (2) is removed by expressing the
displacement dc, as follows:

dc ¼ K – 1
cc ðFc –KcrdrÞ: (3)

Then, inserting that result into the first equation of Eq.
(2), the condensed stiffness equation reads:

Kdr ¼ F, (4)

where K and F are named respectively the condensed
stiffness matrix and the condensed force vector and they
are defined as:

K ¼ K rr –K rcK
– 1
cc Kcr, (5)

F ¼ Fr –K rcK
– 1
cc Fc: (6)

From Eq. (4), the displacement vector of the retained dof
dr can be computed at a reduced cost. The displacements of
the condensed dof dc can be subsequently recovered if
needed by using the Eq. (3).

2.2 Multiscale topology optimization based on reduction
techniques

The simultaneous optimization of micro-structural details
and structural layout requires dealing with very fine
meshes since the latter determines the resolution of the
optimization. However, the computational cost severally
grows with increasing mesh size, leading to extreme
computational demands. Improving computational effi-
ciency and scalability has been the focus of many recent
topology optimization works, including advanced precon-
ditioning strategies [41,42], approximation strategies [43]
and parallel processing implementations [44], among
others.
In this paper, a method based on reduction techniques is

proposed to efficiently perform high resolution topology
optimization, including simultaneous design of what can
be classified as micro-structural unit cells and structure
topology. To reduce the problem size, each unit cell of the
structure is condensed in a super-element, i.e., each unit
cell possesses its own condensed stiffness matrix K se by
applying Eq. (5). Likewise, the condensed load vector Fse
can be applied by employing Eq. (6). Consequently,
solving the macroscopic static equilibrium problem is
performed at an extreme reduced cost. During the
condensation process, the retained nodes are selected as
the border nodes of the unit cells. This selection is
paramount as it ensures the connectivity between space-
varying micro-structures.
Figure 1 illustrates the proposed approach where a unit-

cell is highlighted and where a two-level mesh can be
observed. At the lower scale, the standard finite element
mesh is defined within the super-element, while at the
larger scale, the representative mesh is the coarser mesh
composed of the super-elements that embed the lower
scales.
In addition to a two-level mesh, the condensation

process can be performed in chain leading to a multi-
level reduction. Embedding super-elements within
super-elements further enhances the computation speed.

Fig. 1 Design domain discretization with a zoom on a unit-cell/super-element. H is the size of the square unit cell and h is the size of the
finite element mesh. It must be noted that the method is not restricted to square unit cell.
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However, there is an optimal number of layers beyond
which the creation time of super-elements outweighs the
benefit of solving reduced systems and additional layers no
longer benefit the overall computation time. Figure 2
illustrates a two-level reduction approach. When consider-
ing a multi-level reduction, the master unit cell can be
defined at different level. Referring to Fig. 2, the master
unit cell can either be defined at the first level (e.g., SE1,1)
or at the second level (e.g., SE2,1). In this paper, the master
unit cell is always defined at the highest level.

3 The optimization problem and solution
algorithm

3.1 Regularization of the topology optimization problem

Topology optimization problems are known to be ill-posed
and prone to checkerboard issues and mesh dependency.
Several methods have been proposed to regularize the
problem [45,46]. In this paper, the Heaviside projection
method [47] is adopted to stabilize the problem by
imposing a minimum length scale on structural features.
Using the Heaviside projection method, the independent

design variables are not the element volume fractions ρ but
instead auxiliary variables f. These variables can be
located at any point in space [48] and are projected onto
element space to determine the element volume fractions ρ
that define topology. Herein we locate these variables at the
nodes of the finite element mesh and the projection occurs
over the minimum length scale radius rmin via the
following regularized Heaviside function:

�eðfÞ ¼ 1 – e – β�eðfÞ þ �eðfÞ
fmax

e – βfmax , (7)

where �e is a proximity-based linear filtering of nodal
design variables located within distance rmin of the element
centroid [49], β dictates the curvature of the regularization,
i.e., the projection function is linear with β ¼ 0 and
approaches the Heaviside function as β approaches infinity,
and e is the Euler’s number. The often used beta-
continuation strategy is eliminated by modifying para-
meters of the optimizer [50] and the upper bound fmax is
set to 1. The reader is referred to Ref. [47] for further
details.

3.2 Optimization problem formulation

Adopting the Heaviside projection methodology, standard
topology optimization design problems can be formulated
as

minimize C
f

¼ LTd ¼ LTd,

subject to K ðfÞd ¼ F ,X
e2Ω

�eðfÞve
VΩ

£Vf ,

0£fi£fmax, 8i 2 Ω,

(8)

where Ω is the design domain, VΩ is the volume of the
design domain, Vf is the allowable volume fraction of
material, and ve is the elemental volume. The vectors F and
d result respectively from the assembly of the condensed
applied nodal load vectors and the unknown retained nodal
displacement vectors for each unit cell. The matrix K is the
global stiffness matrix assembled from the super-element
stiffness matrices K se. L is a problem-dependent vector and
will be specified in Section 4. The absence of the symbol �
over F, d, K and L is used to refer to them as the standard
elements, i.e., the assembled elements without reduction
methods. Since the reduction method obeys the energy
conservation principle, the objective function C can either
be defined with respect to the condensed or the standard
elements.
We emphasize that the design variable vector f lies at

the lowest scale and that it defines the topology of the unit-
cells. This means that the micro-scale topology variables
are optimized while considering the condensed, macro-
scale response in Eq. (8).
To solve the optimization problems Eq. (8), the method

of moving asymptotes [51] is employed. To mathemati-
cally motivate a 0-1 material distribution, the solid
isotropic material with penalization (SIMP) method is
considered [8,9]. Hence, before performing the reduction
process, the element stiffness matrices are penalized as
follows:

Ke ¼
�
�peðfÞ þ �e,min

�
Ke,0, (9)

where p³1 is the exponential penalty term, Ke,0 is the
element stiffness matrix and �e,min is a small positive
number preventing singularity of the global stiffness
matrix, typically �e,min ¼ 10 – 4.
Gradient-based methods require a sensitivity analysis to

compute the gradient of the cost and constraint functions.
The sensitivities of a function f with respect to the
independent design variables fi are given by

df

dfi
¼

X
e2Ω

∂f
∂�e

d�e
dfi

: (10)

Fig. 2 Tree structure of a multi-level reduction.
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The term d�e=dfi results from the Heaviside projection
method and its derivation is detailed in Ref. [47]. The term
∂f =∂�e is problem-dependent and the adjoint method is
employed to compute its value, yielding

∂f
∂�e

¼ – p�p – 1e ðfÞlTeKe,0de, (11)

where l is the adjoint response vector. We note that the
sensitivity analysis is carried out at the microscale level
since it involves the design variables f that are defined at
the microscale level. Therefore, the sensitivity analysis
requires recovering the condensed displacements using

Eq. (3) whereupon the sensitivity is evaluated in a classical
manner.
The flowchart of the optimization process is given in

Fig. 3, where a light grey box highlights the novelty of this
paper.

4 Examples

The proposed approach is demonstrated on the four design
problems illustrated in Fig. 4. The first three are
compliance minimization problems and since this problem

Fig. 3 Flowchart of the optimization process.

Fig. 4 Design problems. (a) Double clamped beam; (b) cantilever beam with a distributed load; (c) Michell beam; (d) invert compliant
mechanism.
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is equivalent to minimizing the external work, it follows
that L ¼ F and for sensitivity analysis, that le ¼ de. The
fourth example considers the design of an inverter
compliant mechanism wherein the goal is to maximize
the negative displacement at the output point for a given
force at the input point. It follows that the vector L is a
dummy load vector composed of zeros except at the entry
associated with the dofs of the output point displacement
whose value is set to 1. For the sensitivity analysis, the
element vector le is recovered from the condensed adjoint
response vector l that solves K ðfÞl ¼ L. The inverter
problem is further described in Refs. [46,52].
All the design problems consider a material with a

Young’s modulus of E ¼ 1 and Poisson’s ratio of � ¼ 0:3,
which is initially uniformly distributed over the design
domain. Four-node bilinear elements (Q4), with the plane
stress assumption and a unit thickness, are employed to
mesh the structure. A continuation method is applied to the
exponent parameter p of the SIMP law where p is increased
from 1 to 5 in unit increments. The examples typically
consider a one-level reduction process, i.e., super-elements
are not embedded within super-elements except when
explicitly mentioned. The optimization processes are
deemed converged when the relative change of the
objective function and the relative constraint violation
are respectively less than 10 – 4 and 10 – 6 between
iterations. We note that for intermediate steps of the
continuation process, the convergence criteria on the
relative change of the objective function is relaxed to 10 – 2.
The reduction approach gives total freedom to treat

different configurations of the unit cell periodicity. The
designer may decide to design specific unit cells and to
replicate these unit cells through the structure (Fig. 5). A
first possibility is to design a single unit cell, i.e., one
master cell, and to replicate the optimized micro-structure
throughout the whole structure, leading to a fully periodic
structure (Fig. 5(a)). The designer can also create layered
structures by defining several master cells and replicating
each optimized micro-structure through a pre-defined
number of layers (Fig. 5(b)) [37]. This configuration offers
the possibility of defining graded material structures by
assigning varying properties to the master unit cells. When
designing the selected unit cell topology, features at the

boundaries have a minimum length scale of half of the
imposed rmin with the adopted projection method. To
circumvent this issue, the designer can account for the
neighborhood of the master unit cells when performing the
projection. The last configuration considers the fully free-
form design case where each unit cell is a master cell.
Hence, each cell can have a different micro-structure and
the optimizer has a total freedom to distribute material over
the design domain.
The first two configurations lead to major savings as the

proposed method only needs to condense and store the
stiffness matrix of the few master cells which contain the
independent design variables. In the third configuration,
each cell must be condensed independently and therefore
computational savings result only in solving the large
system of equilibrium equations as a series of smaller
systems.

4.1 Fully periodic structure design

The first numerical application is carried out on the double
clamped beam design problem (Fig. 4(a)) for the fully
periodic case (Fig. 5(a)) with the following parameters: L =
2, B = 1, F = 1, h =H/40, rmin = 2h, Vf ¼ 0:5, and β ¼ 50.
The design problem is performed for an increasing number
of unit cells and the different scenarios are characterized by
the parameter M = B/H representing the number of unit
cells along the vertical axis.
The optimized solutions are presented in Fig. 6 where it

is observed that the optimized micro-structures converge
and that the topologies are similar for M³4. Indeed, the
proposed method implicitly factors in the size of the unit
cell. A key point of emphasis is that structural features are
present at the location of the applied load (the center point
of the macroscale beam) in all cases. This is a key
difference from using hierarchical methods where a unit
cell is designed using inverse homogenization, which lacks
awareness of the macroscale loads and boundary condi-
tions. Figure 7 illustrates the optimized structures for
M ¼ f2,4,64g. The results are in good agreement with
Refs. [33,37] although the optimization methods slightly
differ. As observed in these two references, the compliance
increases with an increase in the number of unit cells. This

Fig. 5 Three different types of periodicity. (a) Fully periodic structure; (b) user-defined selective periodicity; (c) fully free-form
periodicity (no imposed periodicity). The unit cells containing design variables are shaded and letters identify the unit cell micro-
structures.

156 Front. Mech. Eng. 2020, 15(1): 151–165



augmentation stems from the size of the unit cell, as
reducing the size confines the design space and thus, the
optimizer has less freedom to minimize the objective
function.
Continuing along with a fully periodic structure, the

cantilever beam design problem (Fig. 4(b)) is performed
for several values of M with the following parameters: L =
2, B = 1, F = 0.01 per unit length, h = H/40, rmin = 2h,
Vf ¼ 0:5, and β ¼ 64. The optimized structures with a
zoom on the associated micro-structure are illustrated in
Fig. 8. This example is particularly interesting as it again
highlights a benefit of using an integrated method without
length scale separation. It is observed that the micro-
structures possess a vertical bar on the right edge to support
the distributed load on the right beam edge. When
decoupling the scales of the design problem, the
optimization process fails to capture accurately the loading
applied at the macroscale level, requiring non-design
subdomains to be enforced to circumvent this issue (see for
instance Ref. [33]). In contrast, this issue is handled
directly with the proposed method. As previously
observed, the compliance also increases as the unit cell
size decreases.

4.2 Efficiency of the reduction approach

To demonstrate the efficiency of the developed method, the
results of the double clamped beam design problem with
M = 64 are further investigated. This problem can be
classified as large scale problem since the model consists
of 13107200 finite elements with a total number of dof
equal to 26229762. The computation has been performed
on a cluster equipped with AMD Opteron Processor 6220
CPUs, 132 GB memory, running on CentOS 6.7 and

Matlab 2016a. The study has been carried out with Matlab
restricted and not restricted to a single computational
thread.
Using the proposed method, the problem size is reduced

by 95%, i.e., it only consists of 1309698 retained dofs, and
a single design iteration with a one-level reduction takes
around 41 min. Solving this problem without the reduction
method must be possible but the computation time for a
single iteration took so long (more than one day) that the
design process was aborted.
Multi-level reduction can be employed to lessen even

more the computation time. Table 1 summarizes the results
where the mesh of the smallest entity as well as the number
of super-elements at each level are specified. As the master
unit cell is always defined at the highest reduction level in
this paper, the four treated examples all haveM = 64. Using
multi-thread computation, the computation time can be
reduced using up to 3 reduction levels. However, an
additional reduction level is not beneficial as the super-
elements become so small the construction and the
communication costs outweigh the gains in solving smaller
systems of equations. It is possible that a more refined
mesh or different computational implementation would
lead to additional reduction levels being advantageous.
Using a single computational thread, the average computa-
tion time is less sensitive to multi-level reduction.
For other periodicities with several master unit cells, the

computation time can also be improved by parallelizing the
creation of super-elements. It is worth noticing that the
proposed method can be easily implemented in an existing
topology optimization code. The main modification
concerns the creation of a like-tree structure containing
the super-element hierarchy for solution of the finite
element equations.

Fig. 6 Optimized micro-structures of the double clamped beam design problem. (a)M = 2, C = 9.24; (b)M = 4, C = 11.13; (c)M = 8, C =
12.29; (d) M = 16, C = 14.02; (e) M = 64, C = 16.75.

Fig. 7 Optimized designs of the double clamped beam. (a) M = 2; (b) M = 4; (c) M = 64.
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The proposed method is an “exact” method and thus it
solves micro-structural details to full accuracy. Therefore,
the method may be slower compared to approximate
methods, such as the method using a spectral coarse basis
preconditioner [37] for instance. For the double clamped
beam design with M = 64, the proposed method is 5 times
slower, i.e., 42 min per design iteration compared to 8 min
in Ref. [37]. Time comparison should be taken only as an
indicative basis since the code implementation and
computer hardware are different. However, the proposed
method seems to achieve convergence in a relatively small
number of iterations. Adopting the same stopping criteria
on the objective function (10 – 3), the proposed method
requires 48 design iterations to achieve convergence
compared to 200 in Ref. [37]. With that in mind, the
method is only two times slower for a full accuracy. The
proposed reduction method could be faster if one could
update the condensed solution in a cheap way during the
optimization process. However, this would probably
introduce approximation and thus, resulting in a compro-
mise between speed and accuracy.

4.3 Layered structure design

Following the examples in Ref. [37], a structure with a
layered micro-structure periodicity is now considered to

solve the cantilever beam design problem (Fig. 4(b)). The
parameters given in Section 4.1 for this design problem are
adopted.
The optimized designs are illustrated in Fig. 9 for

different numbers of unit cells as well as for different layer
thicknesses. It can be observed that the connectivity
between space-varying micro-structures is correctly
ensured. Also, the vertical feature on the right edge of
the unit cell is still well generated to support the distributed
load applied on the right edge of the beam.

4.4 Fully free-form topology optimization

In the previous sections, the micro-structure periodicity is
prescribed and consequently, micro-structural details are
obtained. In this section, the fully free-form periodicity,
i.e., the most general case, is investigated (Fig. 5(c)).
The double clamped beam design problem is solved

with the following parameters: L = 2, B = 1, F = 1, rmin =
2h, Vf ¼ 0:3, and β ¼ 64. In Fig. 10(a) with M = 16 and
h =H/10, a classical result is recovered where we note the
absence of distinct porous micro-structures. The same
design problem is performed with a finer mesh to capture
smaller micro-structural details if any (M = 16 and h =
H/40). The computation is first carried out with rmin = 8h to
have the same minimum length scale as in Fig. 10(a).

Table 1 Computation time using multi-level reduction for the double clamped beam having 26229762 dofs

Reduction level
Mesh: Smallest

entity
Number of SE per
level along x-axis

Number of SE per
level along y-axis

Multi thread: Average
time per iteration/min

Single thread: Average
time per iteration/min

1 40�40 [128] [64] 41 42

2 20�20 [2;128] [2;64] 34 41

3 10�10 [2;2;128] [2;2;64] 34 41

4 5�5 [2;2;2;128] [2;2;2;64] 37 43

Note: Columns 3 and 4 indicate the number of super-elements embedded within each super-element for each reduction level. The last number corresponds to the highest
level and is thus the number of super-elements composing the reduced global stiffness matrix.

Fig. 8 Optimized micro-structures and structures of the cantilever beam design problem, where M is the number of unit cells along the
vertical axis. (a) M = 2, C = 1.098�10–2; (b) M = 4, C = 1.240�10–2; (c) M = 8, C = 1.298�10–2; (d) M = 16, C = 1.336�10–2.
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Figures 10(a) and 10(b) illustrate similar optimized designs
while the objective function of the finer mesh is a little bit
higher due to the finer discretization. Reducing the filtering
radius size to rmin = 2h, the optimized design exhibits a few
smaller features (Fig. 10(c)). However, this is attributed to
the change of length scale rather than to the creation of
micro-structures.

These designs offer significantly improved structural
efficiency as the compliances are slightly below the
best periodic solutions (Fig. 5(a)) even though using
significantly less volume of material (30% compared
to 50%). We note these findings support the logic that
optimal micro-structures are fully solid or fully void
when optimizing elastic stiffness, and that porous

Fig. 9 Cantilever beam optimized designs—Layered micro-structure periodicity. (a)M = 4, Thickness =
1

4
,
1

4
,
1

4
,
1

4

� �
, C = 8.672�10–3;

(b) M = 16, Thickness =
4

16
,
8

16
,
4

16

� �
, C = 1.071�10–2; (c) M = 18, Thickness =

3

18
,
12

18
,
3

18

� �
, C = 1.145�10–2; (d) M = 18, Thickness

=
6

18
,
6

18
,
6

18

� �
, C = 1.064�10–2.

Fig. 10 Optimized designs for the double clamped beam (a, b and c) and the compliant inverter mechanism (d) without imposing any
periodicity on the unit cell. (a)M = 16, h =H/10, C = 9.02; (b)M = 16, h =H/40, C = 9.87, rmin ¼ 8h; (c)M = 16, h =H/40, C = 9.66; (d)M
= 10, h =H/12, Cpen ¼ – 2:046, Cunpen ¼ – 0:236.
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micro-structures such as lattices should only arise when
considering design objectives other than elastic stiffness,
such as buckling or functional properties [39,44,53].
To further investigate the fully free-form case, the

challenging design problem of the inverter compliant
mechanism is solved with the following parameters: L =
120, F = 1, kin ¼ 1, kout ¼ 0:001, rmin = 2h, Vf ¼ 0:25,
β ¼ 64, M = 10, and h =H/12. Again, a classical topology
optimization result is recovered with an objective function
of Cpen ¼ – 2:046 (Fig. 10(d)). Considering unpenalized
element density, i.e., p ¼ 1, the objective function of the
final design is Cunpen ¼ – 0:236. As previously noticed, the
optimized design indicates a lack of micro-structural
details or infill patterns.
To validate the non-optimality of porous infill patterns,

these two examples are solved with an additional local
volume constraint for each unit cell. This is similar in
concept to the maximum length scale constraint in Ref.
[54], which when relaxed slightly was shown to effectively
generate infill-like patterns [55]. Here, we impose this
constraint on each super-element, rather than each element,
providing convenient implementation and reducing the
number of local constraints, albeit resulting in a different
restriction than the preceding works. These constraints
prevent a super-element from being fully filled of material
and thus promote infill pattern. Mathematically, the design
problem Eq. (8) is supplemented with the following
constraints:

X
e2Ωse,k

�eðfÞve
Vse,k

£LVF, k ¼ 1, 2, :::, nse, (12)

where nse is the number of super-elements, Ωse,k is the

design domain of the super-element k, Vse,k is the volume
of the super-element k, and LVF is the allowable local
volume fraction of material. The results for the double
clamped beam and for the inverter compliant mechanism
design problems are respectively illustrated in Figs. 11 and
12 for several LVF values. For both design problems, it is
observed that local volume constraints promote the
appearance of lattice-like features that negatively impact
the stiffness-based objective function, the smaller the local
volume fraction, the worse the objective function value.

4.5 Imposing minimum and maximum local volume
constraints

In order to promote infill patterns, local volume constraints
have been incorporated in the design problem to prevent
the super-elements from being completely filled with
material [55].
In this section, in addition to the previous maximum

local volume constraints, minimum local volume con-
straints are also considered to force a more uniform
distribution of material within the design domain. These
new constraints impose a minimum volume of material for
each super-element and they are mathematically expressed
as

X
e2Ωse,k

�eðfÞve
Vse,k

³LVFm, k ¼ 1, 2, :::, nse, (13)

where LVFm is the minimum volume fraction of material
required in each unit cell.
The double clamped beam design problem is solved for

several LVFm with the following parameters: L = 2, B = 1,

Fig. 11 Optimized design of the double clamped beam considering local volume constraints to promote lattice-like features (M = 16,
h =H = 40). (a) C = 9.95, LVF = 0.9; (b) C = 10.33, LVF = 0.7; (c) C = 10.91, LVF = 0.5.

Fig. 12 Optimized design of the compliant inverter considering local volume constraints (M = 10, h =H/12). (a) Cpen ¼ – 1:973,
Cunpen ¼ – 0:537, LVF = 0.9; (b) Cpen ¼ – 1:901, Cunpen ¼ – 0:355, LVF = 0.8; (c) Cpen ¼ – 1:733, Cunpen ¼ – 0:215, LVF = 0.7.
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F = 1, rmin = 2h, Vf ¼ 0:3, LVF ¼ 0:5, and β ¼ 64. As the
LVFm value increases, the material is better distributed
within the design domain and finer features are generated
while minimum length scale is still satisfied (Fig. 13). Here
again, the more the design freedom is constrained, the
larger the magnitude of the objective function. To satisfy
the local constraints on the minimum amount of material
LVFm, “light grey areas” may exist in the optimized
designs (Figs. 13(a) and 13(c)). Those areas are not optimal
for minimizing the compliance but they stem from the
optimization problem formulation. In these cases, the
algorithm has chosen to waste material to satisfy the
constraints rather than spend more material resource to
create a distinct but structurally inefficient feature.
The Michell beam design problem is now performed for

several LVF with the following parameters: L = 40, B = 25,
F = 1, rmin = 2h, Vf ¼ 0:5, LVFm ¼ 0:1 and β ¼ 64. For
large LVF values, the optimizer tends to generate a
topology very similar to the classical topology optimiza-
tion design of the Michell beam (Fig. 14(a)). “Grey areas”
also exist in the very low strain energy regions of the
optimized designs to satisfy the constraints on the
minimum amount of material within each super-element.
It is clear this material offers no structural benefit and thus
SIMP penalization is ineffective in these regions. If
material is required to exist in these regions, additional
penalization or a metric related to this requirement is
needed. Reducing the LVF value, the material is better
distributed within the design domain (Fig. 14). With
LVF ¼ 0:5, the optimized design fills the macroscale space
fully (Fig. 14(c)). One can observe two blurred areas at the

top and bottom of the right edge, where strain energies are
near zero. As already observed, the compliance increases
as the LVF becomes more and more restrictive. Similar
observations about the non-optimality of Michell-type
truss structure are pointed out in Ref. [53].

4.6 Re-design of the inner structure of a part

During the lifetime of a system, it may occur that some
components have been over-designed and that the
replacement of those components with porous designs
that can now be realized by additive manufacturing would
be of great benefits. Optimization techniques can be used
to improve the over-designed components but more
constraints usually exist as the new design should fit
within the existing system. This situation is here
considered where we assume the doubled clamped beam
design illustrated in Fig. 10(b) turns out to be over-
designed. Hereafter, several lighter designs are proposed.
The design domain consists of the inner part of the
component and it is required to remain within the
geometric envelope of the existing component, that can
be observed in Fig. 15 (thin contour line).
The fully free-form approach is adopted to re-design

the inner part of the component and thus infill patterns
can be generated. The optimization is performed for
several reduced allowable volume fractions of material
with the same parameters as for the initial design. The
optimized designs are illustrated on the left column of
Fig. 15. The same optimization processes are performed
for a smaller minimum length scale and are illustrated on

Fig. 13 Optimized designs of the double clamped beam with minimum and maximum local volume constraints (M = 8, h =H/40). (a) C
= 10.685, LVFm= 0.05; (b) C = 11.431, LVFm= 0.2; (c) C = 14.717, LVFm= 0.3.

Fig. 14 Optimized designs of the Michell beam with minimum and maximum local volume constraints (M = 20, h =H/10). (a) C =
43.804, Max LVF = 0.9; (b) C = 46.785, Max LVF = 0.7; (c) C = 64.112, Max LVF = 0.5.
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the right column of Fig. 15. It can be seen that infill
patterns are not promoted and that, as expected, the
structure becomes less stiff as the allowable amount of
material is reduced.

5 Discussion on two-step approaches

The SIMP interpolation law is generally adopted to force
the design towards a 0-1 solution. Indeed, with p³1,
intermediate densities are “uneconomical” since the
stiffness for intermediate densities is small with respect
to the cost of material.
The issue of interpreting “grey”material is dodged when

the optimization process actually achieves a black-and-
white design. However, the issue of constructing a meta-
material that mimics the properties of “grey” material is
often raised when the optimized design is not totally clear
of grey. Several multiscale optimization methods rely on
the use of small values of p where-upon the methods take
advantage of grey areas to artificially introduce micro-
structures. For instance, a standard topology optimization

problem is first performed for the macroscale design with
p = 1. Subsequently, the “grey” areas are replaced by pre-
defined and convenient isotropic micro-structures.
We would like to briefly go back on the construction of a

material model mimicking the SIMP interpolation model.
Considering isotropic linear elastic materials, Hashin and
Shtrikman [56,57] established the limits of possible
isotropic material properties that can be achieved by
constructing materials with micro-structure. The limits are
usually referred to as the Hashin–Shtrikman bounds. The
conditions under which the SIMP interpolation model
respect the Hashin–Shtrikman bounds are clearly derived
in Ref. [10] and thus the conditions that SIMP may
represent a realizable physical model. For example, p³3
when using base materials with Poisson’s ratio of 1/3.
Consequently, it is physically impossible to identify

micro-structures mimicking the “grey” region properties
when using p = 1 since this leads to micro-structures that
are beyond the Hashin–Shtrikman bounds. Ergo, these
two-step methods introduce a clear decoupling between the
micro- and macroscopic scales and the resulting approach
is not consistent in such cases.

Fig. 15 Double clamped beam re-design (M = 16, h =H/40, rmin= 8h for left column and rmin= 2h for right column). (a) C = 11.20, Vf=
0.25; (b) C = 11.06, Vf= 0.25; (c) C = 14.34, Vf= 0.2; (d) C = 13.92, Vf= 0.2; (e) C = 20.00, Vf= 0.15; (f) C = 18.83, Vf= 0.15.
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6 Concluding remarks

Reduction techniques have been employed to perform
topology optimization. Condensing the unit cells in super-
elements reduces drastically the size of the design problem
while still solving micro-structural details to full accuracy
without length scale separation. The proposed method is
flexible and any periodicity of the micro-structure can be
easily enforced. Fully periodic and layered structures lead
to major computation time saving as only a couple of unit
cells must be condensed. Also, the proposed method can be
easily implemented in existing topology optimization
codes.
Several classical examples have been solved to illustrate

the capabilities of the method. From the results, it appears
that micro-structure and infill patterns do not seem to be
optimal for stiffness-based design problems with linear
elastic material when a finite length scale is considered,
agreeing with findings in Ref. [53]. Finite length scale is to
be attributed since it is related to the resolution of the
manufacturing process. Infill patterns appear here only
when restricting the allowable volume of material within
each super-element. Compared to other methods that
introduce an additional constraint per finite element to
promote infill pattern (see Ref. [58] for instance), the
proposed approach offers an alternative that uses less
constraints and is synergistic with the reduction approach.
Introducing local volume constraints was originally
introduced in Ref. [54] for imposing a maximum length
scale on the design problem. These updated local volume
constraint approaches therefore also influence maximum
length scale, though in a less direct manner.
Adopting an integrated approach and fully resolving

micro-structural details, the optimization process promotes
“solid” unit cells for stiffness-based design problems with
linear elastic material when imposing a finite length scale.
However, for more advanced design problems, infill
patterns seem to give better performances such as
increasing the critical buckling load [55] or the structural
robustness [58]. In the latter two studies, the improvements
are due to positive side effects. For future work, it would be
interesting to identify and formulate a design problem that
generates infill pattern as the optimal result of the design
process.
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