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Abstract The rise of the engine remanufacturing indus-
try has resulted in increased possibilities of energy
conservation during the remanufacturing process, and
scheduling could exert significant effects on the energy
performance of manufacturing systems. However, only a
few studies have specifically addressed energy-efficient
scheduling for remanufacturing. Considering the uncertain
processing time and routes and the operation character-
istics of remanufacturing, we used the crankshaft as an
illustrative case and built a fuzzy job-shop scheduling
model to minimize the energy consumption during
remanufacturing. An improved adaptive genetic algorithm
was developed by using the hormone modulation mechan-
ism to deal with the scheduling problem that simulta-
neously involves parallel machines, batch machines, and
uncertain processing routes and time. The algorithm
demonstrated superior performance in terms of optimal
value, run time, and convergent generation in comparison
with other algorithms. Computational results indicated that
the optimal scheduling scheme is expected to generate 1.7
kW∙h of energy saving for the investigated problem size.
In addition, the scheme could improve the energy
efficiency of the crankshaft remanufacturing process by
approximately 5%. This study provides a basis for

production managers to improve the sustainability of
remanufacturing through energy-aware scheduling.

Keywords remanufacturing scheduling, adaptive genetic
algorithm, energy efficiency, sustainable remanufacturing,
hormone modulation mechanism

1 Introduction

The dramatic increase in the demand and consumption of
new products places substantial environmental and
economic burdens on the original equipment manufacturer.
Remanufacturing has been widely adopted as an energy-
saving and environmentally benign manufacturing para-
digm to recover the residual value of end-of-life products
completely [1]. According to statistical data from China
Automotive Technology and Research Center, the vehicle
population and number of scrapped vehicles in China are
projected to reach 1.4 billion and 99.5 million in 2020,
respectively [2]. The increasing vehicle consumption in
China would inevitably lead to increased amounts of
scrapped vehicles, which enhances the need for engine
remanufacturing. An environmentally and financially
successful remanufacturing process requires careful con-
sideration of energy use. Energy efficiency is the core of
any strategic approach to guarantee cost-effective energy
conservation and environmental burden reduction [3].
China has been continuing its effort to highlight efficient
energy consumption in industries. The central government
initiated a mandatory regulation as a part of the 13th Five-
Year Plan for a 15% improvement in energy intensity from
2015 to 2020 [4]. With increasing policy pressure and
market competition, improvement in energy efficiency has
become an important objective for remanufacturers.
As highlighted in prior studies [5,6], scheduling and

planning can directly influence the overall performance,
such as improved quality, reduced cost, and enhanced
efficiency, of remanufacturing systems. Previous studies
on energy savings in remanufacturing systems have
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focused on assessment rather than detailed approaches for
energy reduction [7–9]. Apart from technological innova-
tions and process redesign, production scheduling can be
used as an energy- and cost-reduction approach for
remanufacturing; it requires modest capital investment.
Lage Junior and Godinho Filho [10] utilized a dynamic
programming method to solve the problem of disassembly
scheduling in clutch remanufacturing for cost minimiza-
tion. Sun et al. [11] optimized the acquisition lot size of
returned cores and scheduled the remanufacturing
sequences to minimize the average total cost. However,
they did not consider the uncertainties of remanufacturing.
The uncertainties of remanufacturing originate from the

fact that remanufacturing regards waste products as work
blanks; this is the difference between manufacturing and
remanufacturing systems. Decommissioned products had
experienced varying operation conditions during their
service life. Consequently, recycled products exhibit
different damage forms and degrees. Stochastic return
and quality variation of cores cause difficulty and
complexity in the modeling of remanufacturing systems.
Uncertainty occurs in the remanufacturing process, such as
remanufacturing routes, operation time, remanufacturing
rate, and processing cost, due to the uncertainty propaga-
tion effect. As stated by Ref. [12], planning and control of
remanufacturing operations are more complicated than
those of conventional manufacturing due to the high
degree of variability. The quantification of uncertainty
expressed in the form of a possibility distribution, fuzzy
set, or rough set usually relies on large amounts of
statistical data. Many previous studies on remanufacturing
uncertainty focused on the input side, namely, quality
grades [11], job categories [13], and purchase volumes of
new components [14]. Another difference between the two
manufacturing paradigms is that each machine is generally
assumed to handle one job at a time in conventional
manufacturing, whereas remanufacturing cleaning equip-
ment allow the simultaneous cleaning of multiple compo-
nents, thereby enhancing the difficulty of modeling and
programming.
Compared with scheduling for sustainability in conven-

tional manufacturing, scheduling for the energy saving of
the remanufacturing process under uncertainty has rarely
been addressed. To address this deficiency, the present
study developed a fuzzy job-shop scheduling method to
minimize the energy consumption in the crankshaft
remanufacturing process. On-site investigation was con-
ducted at SINOTRUK, Jinan Fuqiang Power Co., Ltd., a
large engine remanufacturer in China. The primary
uncertainties of interest were the operation time of each
technical process and the remanufacturing routes. Uncer-
tainties of processing time were presented in the form of
fuzzy numbers. Considering that remanufacturing is
usually composed of different sequential subprocesses
and involves diverse machines, we focused on the
multimachine level, namely, the process chain of crank-

shaft remanufacturing. Given that the job-shop scheduling
problem (JSSP) is a typical combination optimization
problem, we developed an improved adaptive genetic
algorithm (IAGA) by using a novel adaptive mechanism
and examined its effectiveness by comparing it with other
algorithms. This study is expected to help engine
remanufacturers achieve increased energy saving in
manufacturing and additional reductions in power cost
and environmental burden.

2 Literature review

Uncertain parameters should be incorporated to form a
new type of JSSP, namely, fuzzy JSSP (FJSSP), because
using crisp values in practical manufacturing problems is
not necessarily feasible. FJSSP, however, is still in its early
development, and it can be roughly classified according to
the considered uncertain parameters, such as processing
time and due date. Introducing fuzzy precedence con-
straints and variables to FJSSP allows it to approximate
real-world situations. However, FJSSP for energy optimi-
zation is less investigated compared with conventional
JSSP. Another problem is that in the scheduling commu-
nity, no consensus has been reached regarding the criterion
to approximate fuzzy numbers. The rest of this part
discusses the state of the art in these two aspects.

2.1 Energy-efficient scheduling under uncertainty

Scheduling for energy efficiency, also referred to as
energy-oriented or energy-aware scheduling, typically
adopts energy-related issues as optimization objectives.
Uncertain parameters in manufacturing systems affect the
completion time, idle time, and work loads of machines
and further interfere with the overall energy use. FJSSP
occurs frequently in uncertain environments and enhances
the complexity of scheduling. Therefore, maximizing
energy conservation through scheduling under uncertainty
deserves an in-depth investigation.
Singh et al. [15] proposed an online non-clairvoyant job

scheduling algorithm to minimize flow time and energy
consumption. Liu et al. [16] addressed flow JSSP in auto
tire manufacturing with state-dependent setup times. Their
model considered the uncertainty of processing time and
due date to minimize the total energy use and tardiness.
They combined the classical genetic algorithm (GA) with
the common pattern matching scheme and probabilistic
heuristics-based operators to solve the scheduling problem.
However, the superiority of the proposed algorithm was
not fully demonstrated. Shrouf et al. [17] built a
mathematical model for single machine scheduling with
the goal of energy cost minimization. Launch time, off-on
time, and idle time were determined by GA in considera-
tion of the electricity cost variation during the production
process. A comparison of heuristic and analytical solutions
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proved that the heuristic algorithm is favorable for large-
scale problems. However, scheduling at the unit process
level merely determines the state consequences of the
machine and cannot determine the actual consequence of
jobs. Aside from the uncertainty of the process time and
due date, uncertain factors, such as stochastic breakdown
of machines and new arrival of jobs, were considered in the
work of Ref. [18]. The researchers developed a novel
algorithm based on particle swarm optimization to search
for the Pareto optimal solution of energy consumption and
makespan. Numerical experiments were performed to
evaluate the performance of the proposed algorithm.
Their work focused on algorithm innovation, and the
experiments were performed on fictitious case studies
rather than real-world manufacturing practices.
The current literature survey indicates that energy-

efficient scheduling studies with one or multiple objectives
have concentrated on the conventional manufacturing
system that possesses specific uncertainties. However,
waste product return is usually recognized as an exogenous
process in which return time, quantity, and quality are
beyond the direct control of remanufacturers. Compared
with traditional manufacturing, remanufacturing involves
distinct uncertainties with a higher degree derived from
stochastic return and quality variation. Although many
studies have addressed the scheduling problem for energy
efficiency, very few have examined energy-efficient
scheduling for remanufacturing in consideration of specific
uncertain factors. This deficiency implies the necessity of
energy efficiency improvement for remanufacturing.
Similar to many discrete manufacturing processes, the
crankshaft remanufacturing process is modeled as an
FJSSP in consideration of the fuzzy processing time and
stochastic processing routes.

2.2 Operations on fuzzy numbers

In most real-world cases, the parameters involved in the
production process are not deterministic or simply
represented by crisp values. To deal with uncertain
conditions, fuzzy set theory and probability theory are
generally used with pre-established fuzzy numbers and
distribution [16]. According to the summary of Ref. [19],
the commonly used methods to represent due date and
processing time in FJSSP are double fuzzy numbers,
triangular fuzzy numbers (TFN), and trapezoidal fuzzy
numbers. Among them, TFN is the most prevalent
alternative. Thus, we discuss operations regarding TFN
in this section. The most important arithmetic and logical
operations of TFN in FJSSP are addition and max. The
addition operation is generally applied to calculate the
completion time, and the max operation determines the
beginning time. The ranking method compares the
maximum fuzzy completion time [20]. For two given
TFNs, t =(t1, t2, t3) and s =(s1, s2, s3), the three elements in a
TFN (cost-type fuzzy parameter) refer to optimistic, most

plausible, and pessimistic values, respectively. The addi-
tion operation can be presented as follows:

sþ t ¼ ðs1 þ t1,    s2 þ t2,    s3 þ t3Þ: (1)

The ranking method proposed by Ref. [21] has been
widely used in numerous subsequent studies [20,22–25].
The ranking of TFNs s and t adopts the following criteria:

Criterion I: If c1ðsÞ¼
s1þ2s2þ s3

4
>c1ðtÞ¼

t1þ2t2þ t3
4

,

then s> t and vice versa;
Criterion II: If c1(s)= c1(t), then let c2(s) = s2 and c2(t) =

t2. If c2(s)> c2(t), then s> t and vice versa;
Criterion III: If c2(s) = c2(t), then let c3(s) = s3 – s1 and

c3(t)= t3 – t1. If c3(s)> c3(t), then s> t and vice versa.
The prevalent max operations of TFNs were proposed

by Refs. [20,26]. In Sakawa’s model, the approximate
maximum is essentially a TFN composed of triple values
from s and t. The criterion is presented as follows:

s _ t � ðs1 _ t1, s2 _ t2, s3 _ t3Þ: (2)

Meanwhile, Lei’s model [27] is primarily based on the
ranking method, and the approximate maximum of TFN
follows the criterion:

If s > t, then  s _ t ¼ s; else  s _ t ¼ t: (3)

Different from Sakawa’s criterion that captures values
from both TFNs, Lei’s criterion results in either one of the
two TFNs. A comparison of the two methods performed by
Ref. [20] indicated that in most cases, Lei’s model
generates a smaller or similar approximation error
compared with Sakawa’s criterion. To mitigate possible
errors of the operations of TFNs, Liu et al. [16] recently
developed a novel approximate maximum method. A
comparison of the three approaches is presented in Fig. 1.
The membership functions of fuzzy numbers are piece-
wise, continuous, and convex; thus, they are suitable for
coding implementation. Based on fuzzy set theory, the
computer procedure proposed by Ref. [16] results in an
accurate fuzzy maximum. However, this method is
complex, particularly when used in coding for JSSP. The
present study uses Lei’s criterion, which has been
extensively applied to many previous fuzzy scheduling
problems due to its conciseness and effectiveness [22,24].
In several optimization problems, defuzzification for

converting a fuzzy number to a crisp number is required for
quantitative comparison. A simple procedure to de-fuzzify
the fuzzy number uses the mean value of the fuzzy number
with TFNs as an example, as indicated in Eqs. (4) [19], (5)
[28], and (6) [29]. Equation (7) [30] presents the
defuzzification method integrated with a centroid function,
which is a physically prevalent defuzzification function.

S ¼ ðs1 þ 2s2 þ s3Þ=4, (4)

S ¼ ½ðs3 – s1Þ þ ðs2 – s1Þ�=3þ s1, (5)
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S ¼ s2 þ ½ðs3 – s2Þ – ðs2 – s1Þ�=4, (6)

S ¼
!uðsÞsdt
!uðsÞdt

, (7)

where S is the crisp value of TFNs and u(s) is the
membership function. An intuitive meaning reflected by
Eq. (7) is that the crisp value is the center of the area under
the membership function curve.

3 System and problem description

3.1 Remanufacturing system description

Crankshaft remanufacturing generally includes disassem-
bly, cleaning, testing, component reprocessing, and
reassembly. After engine disassembly, all of the used
components indiscriminately undergo cleaning and testing.
However, each type of component has its specific
processing route, and even identical types of used
components with diverse damage degrees experience
different remanufacturing process routes and varying
processing times. This condition induces scheduling
problems in machine allocation and job sequencing for
energy efficiency. This study focuses on the scheduling of
the crankshaft reprocessing step. According to our
investigation at the engine remanufacturer, two processing
routes are applied to returned crankshafts, which are
roughly classified as slightly damaged and severely

damaged. As stated by Ref. [31], a critical technical
barrier in the remanufacturing industry is the lack of
technical standards and specifications. The classification of
used crankshafts in practice is roughly based on the
inspection of the wear dimension. Abrasion over 0.04 mm
(for the F82 journal) and 0.09 mm (for the F100 journal)
is regarded as severe damage. Details on these processing
routes are displayed in Fig. 2. The restoration of waste
crankshafts requires seven processes for the severely
damaged parts and five for slightly damaged ones. As
shown in Fig. 2, the fourth and seventh processes are
cleaning steps and share the same machine (m5), and P3,
P5, and P6 have two parallel machines. The buffer capacity
before each process is assumed to be infinite. Notably, the
cleaning process (P4 and P7) can deal with multiple
components simultaneously, which is different from the
prior assumption in conventional manufacturing, i.e., one
machine at most for one job at a time.
Generally, machines in the system have four states:

Starting up, idle, processing, and shutdown. Given that the
time duration of starting up and shutdown is short, energy
use in these phases is disregarded in this study, which is in
line with previous scheduling problems [16]. Table 1 lists
the power of machines under idle and operation states and
the duration of each process in the form of TFN.

3.2 Problem description

For the crankshaft remanufacturing process, FJSSP
comprises a total of n jobs Ji (i = 1, 2, …, n), including
severely and slightly damaged crankshafts. Considering

Fig. 2 Configuration of the crankshaft remanufacturing process.

Fig. 1 Comparison of three approximate maximum methods.
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the different processing routes of crankshafts shown in
Fig. 2, we assume that the slightly damaged crankshaft has
two virtual processes (P1 and P2) operating on the virtual
machine (m10). The relevant operation time and energy
consumption are zero. Therefore, each job consists of
seven operations, and FJSSP has 10 machines. For
processes P3, P5, and P6, the operation oij (j = 1, 2, ...,
7) denoting the jth operation of the ith job can be
performed on multiple machines. The TFN ~tijk ¼
ðt1ijk , t2ijk , t3ijkÞ indicates the processing time of operation
oij on machine Mk (k = 1, 2, …, 10).
Given that crankshaft damage is classified into two

types, the returned crankshafts can be described by a 0-1
matrix Rn�2, in which the row and column represent the
returned crankshaft (or job) and processing route (or
damage type), respectively. For example, element “1” in
the first column (processing route for severely damaged
components) of matrix R indicates that a job should be
processed through this route, and “0”means not processed.
The ratio of the quantity of “1” in the first column to total
jobs n reflects the possibility of severely damaged parts.
Determination of possible damages mainly depends on
statistical data. As presented in Eq. (8), the matrix H2�7

shows the machines of operations in the two routes.

H ¼
1 2 ð3,4Þ 5 ð6,7Þ ð8,9Þ 5

10 10 ð3,4Þ 5 ð6,7Þ ð8,9Þ 5

" #
: (8)

The first and second rows of matrix H indicate the
operations for severely and slightly damaged crankshafts,
respectively. In this matrix, “10” denotes the virtual
machine, and the two numbers in parentheses suggest
that either of the machines is optional. Matrix JM, the
product of matrices R and H, denotes the operations and
corresponding machines for the crankshafts required to be
remanufactured.
The following commonly used hypotheses are adopted

in this FJSSP: (1) All jobs share the same priority; (2) all
machines are available at time 0; (3) an operation cannot be
interrupted until it is completed on a machine; and (4) each

operation of a job is only processed on no more than one
machine at a time. The objective of this study is to
minimize the energy consumption E of remanufacturing
returned crankshafts. As shown in Eq. (9), the total energy
use has two parts, namely, processing energy consumption
Epr and idle energy consumption Eidle.

E ¼ Epr þ Eidle

¼
Xn
i¼1

X7
j¼1

X10
k¼1

xkijEoði,j,kÞ

þ
Xn
i¼1

X7
j¼1

X10
k¼1

Eidði,j,kÞ, (9)

Eoði,j,kÞ ¼ Po,ktijk , (10)

Eidði,j,kÞ ¼ Pid,kfmaxðSTk
i,j,    CT

kí
i,j –1Þ – STk

i,jg,

Eidði,j,kÞ ¼ Pid,kfmaxðSTk
i,j,    CT

k
ií, jÞ – STk

i,jg, (11)

where Eo(i, j, k) and Eid(i, j, k) indicate the processing and
idle energy consumption of the jth operation of the ith job
on the kth machine, respectively, Po,k and Pid,k denote the
operation and idle power, respectively, and xkij is the
engagement indicator of the kth machine. When the jth
operation of the ith job is performed on the kth machine,
xkij ¼ 1; otherwise, xkij ¼ 0. STk

i,j and CTkí
i,j –1 mean the

starting time of the kth machine (i.e., the available time of
the kth machine for the jth operation) and the completion
time of the (j–1)th operation on the k'th machine,
respectively. The maximization operation in Eq. (11)
adopts Lei’s criterion. The constraints on machines and
jobs in this FJSSP are described in Eqs. (12)–(17).

STk
ij£CTk

ij ,

CTk
ij0 þ tij0k£CTkí

ij ,
  8i,j,j0,   i 2 ½1, 2, :::, n�,

(

Table 1 Energy-rated information on workshop equipment

Equipment Processing capability Operation power/kW Idle power/kW Time duration/min

m1 Surface coarsening 1.50 0.9 (1.4, 2, 2.9)

m2 Spray coating 20.00 12.0 (0.8, 1, 1.6)

m3 Grinding 1.50 0.9 (8, 10, 12)

m4 Grinding 2.00 1.2 (7, 8, 11)

m5 Cleaning 42.76 – (2, 2.5, 3.1); (2.2, 3, 3.5)

m6 Polishing 2.50 1.1 (4.2, 5, 6.1)

m7 Polishing 3.00 1.4 (3.2, 4, 4.9)

m8 Dimension inspection – – (3.9, 5, 6.1)

m9 Dimension inspection – – (3.5, 4, 5.5)

Note: Dimension inspection is implemented manually, and the time durations (two TFNs) of m5 refer to cleaning in P4 and P7.
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k     and    k# 2 ½1, 2, :::, 10�,    j    and    j0 2 ½1, 2, :::, 7�,    

j0 < j, (12)

STk
ij þ tijk$xijk ¼ CTk

ij ,                8i,j,k,      i 2 ½1, 2, :::, n�,    

k 2 ½1, 2, :::, 10�,    j 2 ½1, 2, :::, 7�, (13)

X10
k¼1

xkij ¼ 1,           8  i,j, (14)

x5ij ¼ 1,   yjoi4   or   yjoi7, (15)

CTk
ij –CT

k
iíj þM$ð1 – xkijÞ³tijk , 8i,j,k≠5,  i≠i#, (16)

d³maxðCTk
ij Þ,      8i,j,k, (17)

where the constraint set Eq. (12) specifies the precedence
relationship of two successive operations of a job
implemented on the kth and k'th machines. The new task
of a machine can be initialized after task completion on this
machine, and the new operation of a job can be started after
the completion of the previous operation. Interruption of
the operation on machines is forbidden, as implied in
constraint Eq. (13). Constraint Eq. (14) ensures that at least
one machine is available for any operation of a job. The
cleaning equipment in the remanufacturing process can
deal with multiple waste components simultaneously,
which is different from the assumption in previous studies
that each machine only processes one job at a time.
Constraint Eq. (15) limits the starting condition of the fifth
machine, namely, the cleaning process. y is the quantity of
crankshafts simultaneously processed in a cleaning batch.
The cleaning equipment can be initiated if the amounts of
oi4 or oi7 are evenly divisible by y. Constraint Eq. (16)
indicates that all of the machines, except for the fifth one,
can process only one operation at a time. M is a large real
number. Constraint Eq. (17) shows that the completion
time (pessimistic value) of the last job would not exceed
due date d.
In the 84 returned crankshaft samples collected at Jinan

Fuqiang Power Co., Ltd., the probabilities of severely and
slightly damaged components are approximately 0.25 and
0.75, respectively. In this study, we assume that the
remanufacturing comprises four severely damaged and
eight slightly damaged components and transform the case
into a 12�7 (number of jobs � number of operations)
FJSSP.

4 Solution algorithm

GA is a widely applied heuristic algorithm for JSSP.

However, traditional GA has an inherent drawback, that is,
the constant crossover probability and mutation probability
fail to regulate the convergent process and result in
premature convergence. To efficiently and accurately
obtain the solution of this FJSSP, we propose an improved
adaptive GA for energy minimization of the crankshaft
remanufacturing process. The basic processes are pre-
sented in Fig. 3. The following sections describe the main
points illustrated in this figure.

4.1 Initial population

The generation of chromosomes or populations in GA
depends on the encoding process. In this study, a dual layer
representation method is proposed for encoding, as shown
in Fig. 4. A schedule can be represented by two integer
strings: Job sequencing and machine allocation strings.
Matrix JM12�7 indicating all the processing operations of
returned components depicted in Eq. (18) is used to
understand the encoding process thoroughly. The elements
in JM refer to machine numbers, and the two numbers in
parentheses in matrix JM suggest two optional machines
for relevant operations. Additionally, the columns denote
the seven operations, and the first and sixth rows refer to
the processing route for severely damaged components.

JM ¼

1

M

6

M

    

1 2 ð3,4Þ 5 ð6,7Þ ð8,9Þ 5

M M

1 2 ð3,4Þ 5 ð6,7Þ ð8,9Þ 5

M M

2
66664

3
77775: (18)

The job sequencing and machine allocation strings
contain 84 elements because the problem size is 12�7. As
indicated in Fig. 4, the job sequence determines the
operation orders of components. For example, the first
three numbers “1”, “5”, and “6” appearing for the first time
pertain to the first operation of the first, fifth, and sixth
components, i.e., o11, o51, and o61. The second and third
“6” in the job sequencing string refer to the second and
third operations of the sixth component, namely, o62 and
o63. The machine allocation string determines the machine
candidate for each operation. For example, given that the
first operation is conducted on the unique machine (#1)
shown in matrix JM, the first “1” in the machine allocation
string corresponding to o11 refers to machine #1. The “2”
in this string corresponding to o63 denotes the second
candidate, namely, machine #4, because the third operation
can be operated on two machines (#3 and #4). Each
randomly generated individual in the initial population can
be regarded as a feasible solution of FJSSP, and the
relevant chromosome is jointly determined by the job
sequencing and machine allocation strings.
To generate feasible chromosomes for the scheduling,

the encoding procedure is implemented as follows:
Step 1: Generate an indicator vector v1�12 and set all
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elements equal to 7.
Step 2: Randomly create an integer belonging to [1, 12]

as a job sequencing element and location sign. The value in
vector v located by this integer minus 1. With this integer
(component number), the corresponding value (remaining
operations) in vector v, and matrix JM, the amounts of
optional machines could be determined.
Step 3: Repeat Step 2 for 84 times until vector v = 0 then

produce a chromosome for scheduling.
Step 4: Repeat Steps 1–3 above for N times to generate

the required initial populations.
However, several chromosomes generated by these steps

are illegal because the cleaning process (P5) can process
multiple components (supposedly two here) at a time, and
this necessitates the checking and modification of these
chromosomes. Checking and modification are also applied
to crossover and mutation, in which illegal chromosomes
might be generated. The detailed procedure is as follows:

Step 1: Check and modify the job sequencing string (S1)
number-wisely.
Step 1.1: Extract a number “x” from S1. If the quantities

of “1” or “4” (“1” and “4” refer to remanufacturing
cleaning) in vector v are less than 2 and v(x)= 1 or 4, then
shift x to the end of v and continue with Step 1.1.
Step 1.2: If the quantities of “1” and “4” in vector v are

not less than 2 and v(x)= 1 or 4, then randomly select a
location y of “1” and “4” in vector v and assign x and y to
new job sequencing string S2, v(x)= v(x)–1. If v(y)= v(y)–1
assign y to vector pos.
Step 1.3: If x is a member of vector pos, then assign 0 to

the location of x in vector pos; otherwise, assign x to the
chromosome S2, v(x)= v(x)–1.
Step 1.4: Repeat Steps 1.1–1.3 until all the numbers in

the original job sequencing string S1 have been extracted.
Step 2: Check and modify the machine allocation string

(A1) number-wisely.
Step 2.1: Extract a number x from S2, find the first x in

S1, locate its position p, S1(p)= S1(p)–1, and assign the
corresponding machine number in A1 to a new machine
allocation string A2, A2(p)= A1(p).
Step 2.2: Repeat Step 2.1 until all the numbers in S2

have been extracted.
The chromosomes created by these steps correspond to

specific Gantt charts. Figure 5, which is in the form of a
fuzzy Gantt chart, reflects the operations and machines in
the Fig. 4. Different from the traditional Gantt chart using
actual processing time, the fuzzy Gantt chart utilizes TFNs

Fig. 3 Implementation procedure of a GA for FJSSP.

Fig. 4 Encoding method for the generation of the initial population.
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to represent the time of operations. TFNs under the solid
line are the starting time of the operation, and those above
the solid line refer to the completion time.

4.2 Decoding and fitness function

The decoding procedure compiles the chromosomes into
the energy consumption of remanufacturing the used
crankshafts. Similar to the population generation, the
remanufacturing process should focus on decoding. The
relevant steps for decoding a chromosome are as follows:
Step 1: Extract numbers j and k from the job sequencing

and machine allocation strings, respectively, and determine
the corresponding job, machine, operation number, avail-
able time (STk

i,j) of machine k, and completion time

(CTkí
i,j – 1) of the prior operation of job j.

Step 2: If k≠5 (remanufacturing cleaning equipment),
then determine the energy consumption according to
Eqs. (9)–(11) and record the completion time of this
operation and machine.
Step 3: If k = 5, then extract several numbers (j+ 1 and

k+ 1) that also experience an identical cleaning process,
determine the energy consumption, and record the
completion time of the machine and operations of two jobs.
Step 4: Repeat Steps 1–3 until all numbers in the string

have been extracted.
Generally, the objective function is regarded as a basis

for the fitness function. However, this method has a scaling
problem and causes premature convergence in low
selection pressure (SP) [32]. This study uses rank-based
fitness assignment to overcome this drawback and
demonstrates that this assignment has good robustness
[32]. Equation (4) is used to transform the TFNs into crisp
values for the ranking because the objective function

values are TFNs. The fitness value of individuals (Fit) can
be determined by Eq. (19) in a linear ranking form:

FitðPosÞ ¼ 2 – SP þ 2ðSP – 1ÞðPos – 1Þ
N – 1

,            

SP 2 ½1:0, 2:0�, (19)

where N is the size of the population, Pos denotes the
individual ranking position in the population, and SP is the
selection pressure. SP in the present study is fixed at 2, and
the fitness values of populations range from 0 to 2.

4.3 Selection and elitism

Notable selection techniques include roulette wheel,
tournament, and local selection. In this study, for the
population of one generation, 80% of individuals are
selected for reproduction by using the stochastic universal
sampling method. The optimal solution in these selected
individuals is stored as an elite and directly added to the
next generation without gene recombination by crossover
or mutation, which could enable enhanced propagation of
the individual with the highest fitness value. The selected
chromosomes experience crossover and mutation in the
evolution of populations toward the global optimal
solution.

4.4 Crossover

As a basic operator for producing new offspring, crossover
creates new chromosomes that inherit features or genetic
materials from both parents. The power of GA stems from
the crossover process, which induces a randomized and
structured exchange of genes between two chromosomes

Fig. 5 Fuzzy Gantt chart based on chromosomes.

Jiali ZHAO et al. Energy-oriented scheduling for engine remanufacturing systems 481



with the possibility of producing “better” solutions [33].
The commonly used crossover approaches are single-
point, multi-point, and uniform types. This study adopts a
five-point crossover method.
The crossover rate or crossover possibility (pc) and

mutation possibility (pm) are unchanged in traditional GA,
which might limit the search capability and cause
premature convergence and a low convergence rate. The
balance between the two characteristics, namely, capacity
to converge to the optimum and capacity to explore new
areas, is controlled by pc and pm. No uniform guidance is
available to determine the values of pc and pm in specific
cases. In most GA practices, pc is moderately large (0.5–
1.0), and pm is relatively small (0.001–0.05) [33]. The
trade-off between exploitation and exploration is realized
by adaptively varying pc and pm. The fundamental idea is
that the values of pc and pm are closely related to the fitness
values of populations. These values increase when
solutions are stuck in a local optimum, and they decrease
when solutions are scattered in the solution space. The
standard deviation σ of the fitness values is a yardstick for
adaptive modification. σ is likely to be small when
individuals converge to an optimum. In this regard, pc
and pm should be increased to avoid the local optimum.
When the population tends to converge to the global
optimum, high pc and pm may disrupt the near-optimal
solutions. Therefore, different individuals in one popula-
tion with high fitness values should be subject to low
crossover and mutation rates in order to preserve “good”
individuals.
An adaptive technique of the crossover and mutation

possibility is derived from the hormone modulation
mechanism. Farhy et al. [34] proposed a general law for
hormone secretion (F(G)) by hormone glands. F(G)
exhibits obvious non-negativity and monotonicity. The
rising function Fup(G) and declining function Fdown(G) for

hormone adjustment are consistent with the Hill function,
as shown in Eqs. (20) and (21):

FupðGÞ ¼
Gn

Tn þ Gn , (20)

FdownðGÞ ¼
Tn

Tn þ Gn , (21)

where T (T> 0) is the threshold, G is an independent
variable, and n (n≥1) refers to the Hill parameter. T and n
jointly determine the slope of the curve. Figure 6 displays
the rising and declining functions with T = 1. Notably, F
rises or declines exponentially with G, which implies swift
hormone modulation with external variable G. Supposing
that the excretion of hormone h1 is affected by hormone
h2, the relation between the excreting speed (Fh1) of h1 and
the concentration (Gh2) of h2 can be expressed by Eq. (22):

Fh1 ¼ aFðGh2Þ þ F#h1, (22)

where F#h1 denotes the initial excreting speed of h1 and a is
a constant.
According to Eqs. (21) and (22) and the analysis of the

crossover rate variation, adaptive pc is designed as follows
to accelerate the convergence and promote individual
diversity.

pc ¼ p0c þ
1

gen

� �α1

– α2
�nc

�nc þ
�
maxðFitÞ –FitðiÞ

�nc ,

(23)

where gen denotes the number of generations, σ is the
standard deviation, Fit(i) is the fitness value of the ith
individual, Fit denotes the fitness values of the population,
α1, α2, and nc are all constants, and p0c is the initial
crossover possibility.

Fig. 6 Curves of the Hill function under varying parameters: (a) Upward curves and (b) downward curves.
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Subsequently, the multipoint crossover procedure is
implemented as follows:
Step 1: Randomly generate five points to segregate the

job sequencing strings of two chromosomes, but these
points should not separate the successive machine (#5) in
the corresponding machine allocation strings. As shown in
Fig. 7, the last segregation point is illegal, and another
point should be regenerated.
Step 2: Identify the missing or abundant numbers and

locations in offspring 1 and 2. The missing numbers in
offspring 1 are the abundant ones in offspring 2 and vice
versa.
Step 3: Exchange the abundant numbers in the two

offspring.
Step 4: Check and modify the job sequencing and

machine allocation strings by using the procedures (Steps
1.1–1.4, 2.1 and 2.2) in Section 4.1.

4.5 Mutation

Mutation in GA involves bringing unexpected genetic
materials into the chromosome with certain probability pm.
This behavior avoids premature convergence to the local
optimum solution. The role of mutation in GA is usually
regarded as a background operator and ensures the
possibility of searching any areas and recovering “good”
genetic materials. Similar to the crossover possibility,
mutation possibility pm is also associated with generation
number gen, standard deviation σ, and maximum fitness
value of the population; it can be determined with Eq. (24):

pm ¼ p0m þ 1

gen

� �β1

– β2
�nm

�nm þ
�
maxðFitÞ –FitðiÞ

�nm ,

(24)

where b1, b2, and nm are constants and p0m is the initial
mutation possibility. In the former generations, the
mutation rate is higher for an extensive search in the
solution space. Individuals with a highly scattered
population or a high fitness value require a low mutation
rate for the diversity of the population and maintenance of
good chromosomes. The mutation procedures are imple-
mented as follows:

Step 1: Randomly select two numbers from the job
sequencing string of a chromosome. If their corresponding
machine numbers contain “5” (similar to the crossover
procedure), then repeat the number selection. Otherwise,
exchange these two numbers in the job sequencing string.
Step 2: Legalize the mutated chromosome through the

checking and modification of job sequencing and machine
allocation strings by using the procedures (Steps 1.1–1.4,
2.1 and 2.2) in Section 4.1.

4.6 Reinsertion and termination

The crossover and mutation processes above are performed
on 80% of the selected individuals in a population.
Afterward, the generated offspring is inserted into the
current population, namely, partly replacing parents with
offspring to form a new generation. The insertion is fitness-
based selection and replacement. All of the generated
offspring after crossover and mutation replace the least-fit
parents. The termination condition of this IAGA rests on
the maximum generation. If the repetition of the principal
steps reaches the predefined maximum generation, then the
search work will be terminated. Then the best solution,
relevant schedule, convergent generation, and run time will
be provided as systematic outputs.

5 Computational results

IAGA is implemented on the MATLAB platform and run
on a personal computer with 4.0 GB of RAM and 2.4G
CPU under Windows 10. The parameters of this algorithm
are set as follows: The population size is 100; the
maximum generation number is 90; initial crossover
possibility p0c and initial mutation possibility p0m are 0.8
and 0.6, respectively; nc= nm= 1; α1= α2= 0.5; b1= 0.5; and
b2= 0.7. Through the computation of the proposed IAGA,
the minimal energy consumption for 12 returned crank-
shafts is E = (23.66, 30.54, 37.52) kW∙h. The relevant
operation sequences are presented in Fig. 8. Considering
the explicitness of the conventional Gantt chart, we display
the operation of jobs in the traditional form instead of the
fuzzy Gantt chart (Fig. 5) to avoid inconvenient observa-
tion of the figure. A large amount of the resulting

Fig. 7 Multipoint crossover for the job sequencing string.
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Fig. 8 Gantt chart of an optimal solution in traditional form: (a) Optimistic situation, (b) pessimistic situation, and (c) most plausible
situation.

484 Front. Mech. Eng. 2019, 14(4): 474–488



information is decomposed into three situations, namely,
optimistic, pessimistic, and most plausible, which is
consistent with the fuzzy Gantt chart.
Figure 8 indicates that the remanufacturing cleaning

equipment deals with two components simultaneously.
Given that each job involves two cleaning operations, the
equipment is required to complete a total of 12 operations
for all jobs. Another noteworthy point in this figure is that
the #6 machine only processes the #2 job during the entire
scheduling. Although the rated power of the #6 machine is
smaller than that of its counterpart #7 machine, its
processing efficiency is much lower. Therefore, the fifth
operation of most jobs is arranged on the #6 machine for
energy conservation. However, this task may lead to
imbalanced utilization of the machine. If the due date
variable is fully relaxed or neglected, one machine tool for
the polishing operation is presumably enough for crank-
shaft remanufacturing, which helps reduce the investment
budget. To decrease the energy consumption of idleness,
machines usually perform processing successively, as
reflected in Fig. 8. Given that the #9 machine (manual
operation) is free of energy use and the #5 machine shuts
down directly after completing an operation, the minimum
energy consumption obtained by this algorithm can be
regarded as the global optimal value.
Crankshaft remanufacturing belongs to small-lot pro-

duction. Slightly and severely damaged components share
several identical processes. Thus, returned components are
not classified but randomly selected to reprocess during the
remanufacturing process. According to the 100 legal
chromosomes or schedules randomly created using the
method of initial population generation, the average energy
consumption for the batch of crankshafts is E =(24.94,
32.17, 39.66) kW∙h, which implies approximately 1.7
kW∙h of energy saving. Therefore, the energy efficiency
improvement under the optimal schedule is around 5%.
To demonstrate the superiority of IAGA, we compare

this algorithm with traditional GA, an adaptive GA (AGA)
proposed by Wei et al. [35], and random key GA (RKGA)
[36]. These algorithms share identical parameters, such as
generation number, population size, and generation gap.
Additionally, apart from the determination of crossover
and mutation rates, they experience the same procedures
described in Section 4 and are executed under an identical
evolutionary environment for a fair comparison. Figure 9
depicts the evolution of the objective variable under these
algorithms. The Y-axis means the total energy consump-

tion defuzzied by Eq. (4). As can be observed from Fig. 9,
IAGA shows good convergent speed, but it is slightly
slower than RKGA. It can obtain better results compared
with the other algorithms.
To mitigate the effects of random factors, we perform 20

computation trials to examine the performance of the
algorithms. A comparison is made in terms of average
optimal values, run time, and convergent generation.
Table 2 summarizes the computational results of the four
algorithms. The disparities in energy consumption in
vertical or horizontal comparison are remarkably small.
This phenomenon is arguably attributed to the small size of
this FJSSP. The average convergent generation number of
IAGA is slightly smaller than those of GA and AGA but
larger than that of RKGA. This value in the specific
algorithm is unstable and presents a large standard
deviation in the 20 trials. In addition, the average run
time of IAGA is approximately 2.2, 3.3, and 2.7 s less than
those of GA, AGA, and RKGA on the average,
respectively. Adaptive modification of crossover and
mutation can avoid unnecessary crossover and mutation
processes, which could result in reduced run time. RKGA
presents good performance in convergent speed, and the
numerical results are close to those of IAGA. However, the
run time is greater than those of GA and IAGA. Although
the average convergent generation number and run time of
AGA are slightly greater than those of GA, its optimization
result is better in terms of minimum, average, and
maximum energy consumption. Adaptive crossover and

Fig. 9 Comparison of the convergent curves of four algorithms.

Table 2 Computational results of four algorithms

Algorithm
Minimum energy consumption

/(kW∙h)
Average energy consumption

/(kW∙h)
Maximum energy consumption

/(kW∙h)
Convergent
generation

Run
time/s

GA (23.70, 30.55, 37.59) (23.79, 30.62, 37.67) (23.87, 30.65, 37.74) 31.25 13.96

AGA (23.71, 30.56, 37.55) (23.76, 30.59, 37.62) (23.83, 30.63, 37.67) 33.50 15.09

RKGA (23.68, 30.55, 37.53) (23.75, 30.58, 37.61) (23.81, 30.62, 37.66) 19.80 14.42

IAGA (23.66, 30.54, 37.52) (23.75, 30.58, 37.61) (23.80, 30.61, 37.65) 30.25 11.75
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mutation possibility rationally enable extensive searches in
the solution space, maintenance of diversity, and protection
of “good” individuals during the evolution stage. Thus,
incorporating the adaptive mechanism into the operator of
crossover and mutation provides good results with high
possibility.

6 Experimental study

To validate the effectiveness of the IAGA proposed in this
study, we use three additional instances with a size
(number of jobs � number of operations) of 10�6, 9�9,
and 12�11, hereby denoted as Problems 1, 2, and 3,
respectively. Problems 1 and 2 are derived from Li [37] and
Peng et al. [38], and Problem 3 is designed as shown in
Table A1 in the Appendix for the minimization of energy
consumption. Similar to the energy conservation problem,
Problem 1 pertains to the minimization of the processing
cost. The objective of Problem 2 adopts the case in Ref.
[38] to minimize the energy use in the remanufacturing
process. The computational results of the four algorithms
under these instances are shown in Table 3.
Given that the size of Problem 1 is small, all of the

algorithms could find the optimal solution in 20 trials, but
the traditional GA is inferior in terms of the average value.
In Problem 2, AGA, RKGA, and IAGA have identical
optimal values. The average values of RKGA and IAGA
overlap, i.e., the pessimistic value of IAGA is less than that
of RKGA, whereas the optimistic value of IAGA is
greater; most of their plausible values are equal. In
Problem 3, IAGA has an edge over the other algorithms
in terms of optimal and average values.

7 Discussion and implications

Operation scheduling to facilitate manufacturing sustain-
ability has elicited increasing interest from the industrial
community. The reduction of energy consumption in
manufacturing is one of the most critical strategies to
promote the sustainability of manufacturing. For the three

pillars of sustainability (environmental, economic, and
social), energy conservation directly facilitates environ-
mental and economic performance. Implementation of
energy-aware scheduling of the remanufacturing process
would not only improve energy efficiency but also cut the
energy cost. Energy-cost-effective scheduling that con-
siders the peak power load was investigated by Ref. [39].
The primary strategy in this study was to shift the energy
consumption from on-peak hours to off-peak or mid-peak
hours. However, sometimes, doing so in consideration of
labor price is unrealistic in practice because at night when
the labor cost is high, the electricity price is usually low.
Therefore, energy efficiency improvement continues to be
the core of energy cost reduction. Given that the regular
production period usually focuses on on-peak hours, the
electricity reduction (around 1.7 kW∙h) in processing 12
returned crankshafts means increased cost saving.
The environmental performance of the manufacturing

process has received extensive attention during decision
making and is considered an additional objective in multi-
objective optimization for production planning and
scheduling [40]. Aside from the cost-saving benefit,
energy conservation through scheduling lowers the
environmental burdens of the remanufacturing system.
Electricity generation in China primarily depends on hard
coal and releases tremendous amounts of greenhouse
emissions [41]. As analyzed above, scheduling for
crankshaft remanufacturing improves energy efficiency
by approximately 5%. Therefore, the environmental
performance proportionally increases.
Crankshaft, as a single research object in this study, is

one of the “seven pieces” in a diesel engine; the others are
the cylinder head, connection rod, cylinder block, fly
wheel, gear box, and fly wheel housing. Comprehensive
scheduling that considers all of the components at the
factor level or even at the level of the entire supply chain is
expected to provide tremendous energy conservation.
Thus, follow-up work on this inclusive scheduling is
desirable. Energy savings result in considerable economic
cost reduction and positive environmental effects, which
might further motivate the research on energy-aware
scheduling for remanufacturing systems.

Table 3 Computational results on three problems

Instance Type Problem 1 Problem 2 Problem 3

GA Average (0.403, 0.470, 0.567) (379.82, 409.86, 439.86) (54.96, 74.46, 90.59)

Optimal (0.358, 0.446, 0.542) (379.22, 408.94, 438.75) (53.72, 72.67, 88.18)

AGA Average (0.370, 0.456, 0.552) (379.58, 409.64, 439.62) (54.60, 73.92, 89.89)

Optimal (0.358, 0.446, 0.542) (378.97, 408.70, 438.46) (53.60, 72.54, 88.06)

RKGA Average (0.358, 0.446, 0.542) (379.54, 409.53, 439.48) (54.56, 73.85, 89.82)

Optimal (0.358, 0.446, 0.542) (378.97, 408.70, 438.46) (53.48, 72.50, 88.02)

IAGA Average (0.358, 0.446, 0.542) (379.68, 409.53, 439.42) (54.54, 73.70, 89.48)

Optimal (0.358, 0.446, 0.542) (378.97, 408.70, 438.46) (53.37, 72.33, 88.00)
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8 Conclusions

Under legislative pressure and market competition, a
successful remanufacturing system requires careful con-
sideration of energy efficiency. This study considers the
differences between remanufacturing and conventional
manufacturing processes, particularly the uncertain pro-
cessing time and routes. Uncertain parameters are
presented in the form of TFNs. In accordance with the
investigation at the engine remanufacturer, the returned
crankshafts are roughly classified into two types (slightly
and severely damaged) and subjected to two different
reprocessing routes. A basic assumption in traditional
manufacturing scheduling is that one machine can process
only one job at a time. By contrast, the remanufacturing
cleaning equipment can handle multiple components
simultaneously, which complicates its modeling, algo-
rithm, and programming. Through the introduction of
virtual operations and machines, we formulate the
crankshaft remanufacturing process into a 12�7 fuzzy
scheduling problem. To solve this FJSSP, an IAGA is
developed by adopting the hormone modulation mechan-
ism, which can swiftly modulate the crossover and
mutation possibility. Comparison with traditional GA and
AGA indicates that IAGA is superior in terms of average
run-time and convergent generation and minimum,
average, or maximum energy consumption. Simulation
results indicate that compared with random operation
sequences in practice, the optimal scheduling scheme with
energy consumption E =(23.66, 30.54, 37.52) kW∙h saves
approximately 1.7 kW∙h of electricity. The energy
efficiency of the crankshaft remanufacturing process is
increased by around 5%. Energy conservation brings
additional benefits, such as cost saving and environmental
burden reduction. Therefore, energy-aware job-shop
scheduling should be integrated into the sustainability-
related decision making of enterprises.
Uncertainties in the remanufacturing system are multi-

variant and originate from multiple sources. We merely
considered the uncertainty of processing time and routes.
Other uncertainties, such as returned quantity and time of
engines, always exist in the remanufacturing system.
Inclusive integration of these uncertainties into scheduling
would significantly increase complexity. Future efforts
should be exerted to model and consider additional
uncertainties. The present study only investigated crank-
shaft remanufacturing irrespective of remanufacturing
other engine components, which also have a large potential
for energy conservation. Comprehensive capture of engine
parts in scheduling remains a topic for future research.
Moreover, the problem size in this study is small. When the
scheduling involves a large number of components, such
as entire engine parts, the computation process becomes
time-consuming. Therefore, enhancement of computa-
tional efficiency and robustness should be explored in
the future.
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