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Abstract Spinning production is a typical continuous
manufacturing process characterized by high speed and
uncertain dynamics. Each manufacturing unit in spinning
production produces various real-time tasks, which may
affect production efficiency and yarn quality if not
processed in time. This paper presents an edge comput-
ing-based method that is different from traditional
centralized cloud computation because its decentralization
characteristics meet the high-speed and high-response
requirements of yarn production. Edge computing nodes,
real-time tasks, and edge computing resources are defined.
A system model is established, and a real-time task
processing method is proposed for the edge computing
scenario. Experimental results indicate that the proposed
real-time task processing method based on edge computing
can effectively solve the delay problem of real-time task
processing in spinning cyber-physical systems, save
bandwidth, and enhance the security of task transmission.

Keywords edge computing, real-time task, scheduling,
CPS, spinning

1 Introduction

Spinning is the process of transferring fiber from a
disorganized state to an orderly arranged state in the
longitudinal direction. It is a typical continuous mass
production multi-process with high speed and dynamic
characteristics. The core of spinning smart factories is the
cyber-physical system (CPS). The physical space of
spinning CPS is composed of screws, machines, materials,
methods, and rings involved in yarn production in spinning

production plants. The information space mirrors the
physical space. All types of data are processed in the
physical space and continuously and iteratively optimized
into a base that provides knowledge on spinning design,
process, manufacturing, and testing. The information space
is considerably important in improving the efficiency of
yarn production, tracking yarn quality, reducing produc-
tion costs, and other aspects of yarn production. Physical
and information spaces interact through the industrial
Internet of Things (IoT) constructed by various intelligent
sensors, radio frequency identification, Wi-Fi, tags, and so
on. Figure 1 shows a simplified structure of a spinning
CPS.
Spinning strictly requires a real-time property. A task

must be handled promptly; otherwise, the spin process may
be interrupted and production will become stagnant, which
cause huge losses to the enterprise. The tasks in spinning
CPS can be summarized in several cases, which are listed
in Table 1.
The existing information space of spinning CPS is

typically deployed in remote cloud centers due to its strong
computational, analytical, and processing capabilities to
perform data processing and storage in spinning CPS in a
resource-focused manner. However, with the continuous
expansion of the production scale and the transformation
and upgrading of enterprises, the amount of production
equipment required in spinning considerably increases
together with various intelligent sensors, detectors,
embedded systems, or smart objects. This increment
requires remote spinning CPS cloud centers to meet two
critical requirements.
Real-time requirements: 1) First, a large amount of data

is produced in the spinning CPS physical space within a
short time and transmitted to the cloud center as tasks
waiting for processing. Given that the amount of real-time
data from the entire manufacturing system is extremely
large, such data can easily disrupt the industrial network.
Reliability cannot be guaranteed in this situation.
2) Second, the cloud computing center is far from the
manufacturing site, and the bandwidth for communication
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is limited. These factors delay real-time task processing
and cannot meet real-time requirements.
Security requirements: Risks involving data and order

may arise during the transmission of real-time tasks
between production equipment and the cloud center. This
risk may cause interference or leakage and is thus a
security issue.
A method based on edge computing is proposed in this

study to solve real-time tasks and meet the security
requirements of task processing in spinning CPS. Edge
computing node (ECN) and real-time task models are
established. The task scale threshold is set. Large-scale
tasks are separated for remote cloud center processing to
compensate for the lack of real-time processing and ensure
the security of centralized cloud computing.
Published studies are reviewed in Section 2 of this paper.

The development of the real-time task processing-related
model and the algorithm design are illustrated in Section 3.
A case study is presented in Section 4, and the conclusion
is provided in Section 5.

2 Related work

Many scholars have conducted detailed research on real-

time CPS data processing and resource allocation. A real-
time data center was introduced in a previous study to
store, retrieve, and process large amounts of real-time data
efficiently [1]. Real-time and parallel data processing are
supported to balance the loads of the CPS-aware data
center. However, this approach is inapplicable to CPS
manufacturing loads. Considering the importance of the
packet retransmission protocol decision, Ref. [2] proposed
a new congestion control mechanism for CPS data
collection to minimize the estimation and reconstruction
errors of physical phenomena. Reference [3] developed a
scheduling strategy with minimum energy efficiency on
the basis of wireless network topology while considering
the sleep scheduling of wireless nodes and processor
execution models simultaneously. However, the strategy
focuses on the single-hop network mode and is unsuitable
for CPS application. To minimize the energy consumption
of the sensor network, Ref. [4] studied linear sensor setting
problems in CPS and solved power configuration issues
through mixed-integer linear programming. An integrity-
protecting cluster-based private data aggregation protocol
was proposed in Ref. [5] to resolve data aggregation and
protect the privacy and integrity of data during CPS data
aggregation. Reference [6] proposed a periodic fault-
tolerant CPS task model to achieve CPS stability, and a

Table 1 Common types of tasks and examples in spinning CPS

No. Task category Example

1 Tasks related to personnel Manually issue control signals, start and stop the machine, etc.

2 Tasks related to equipment Equipment failure, equipment preventive maintenance tips, etc.

3 Tasks related to the item or work in progress Added raw materials, products with anomalies, etc.

4 Tasks related to the process Parameter adjustment, process switching, etc.

5 Tasks related to the environment Adjustment of the control temperature, humidity, etc.

Fig. 1 Diagram of spinning CPS
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new scheduling mechanism was developed to prove the
practicability of this model. The model can enhance the
stability and effectiveness of CPS and reduce operating
costs. A CPS control scheduling algorithm was designed in
Ref. [7] for the CPS task scheduling problem constrained
by the feedback control rule. The algorithm achieves
balance between stable scheduling and schedulable power
consumption. A new task model called rhythm task was
presented in Ref. [8] to deal with the problem of combining
the traditional periodic task model and ordinary schedule
for CPS task processing. A concept of buffer time was
introduced in Ref. [9] to enhance traditional preemptive
task scheduling, improve the performance of real-time task
scheduling and utilization of system resources in the
physical network in the systems, and reduce the time of
task switching. A dynamic multi-priority scheduling
strategy for CPS based on large-scale sensor networks
was proposed in Ref. [10] to meet the diversity require-
ments of CPS tasks, which traditional scheduling algo-
rithms cannot achieve. A rapid and extensible static
sequential scheduling method was proposed in Ref. [11]
for applications with rigid waiting time requirements and
fixed binding on multiprocessor platforms. This method
makes scheduling decisions on the basis of new metrics to
find feasible schedules that can meet the time requirements
as quickly as possible. Given that preemptive scheduling
easily leads to frequent task switching and affects real-time
CPS task issues, a real-time scheduling algorithm based on
the reservation model was proposed in Ref. [12]. Task
switching times were reduced, and the real-time perfor-
mance of CPS was improved by setting the threshold of
relaxation time and the protection model. A polynomial-
time optimal data retrieval algorithm was proposed in Ref.
[13] for the multi-interval availability-constrained fresh
data retrieval problem of CPS. A novel control decision
structure based on the cloud-supported CPS concept for
process manufacturing was proposed in Ref. [14].
The complexity of a data center that consumes energy

results in many difficulties during resource management. A
macro resource management level was proposed in Ref.
[15] to allocate energy in a coordinated manner. A new
data center control strategy was proposed in Ref. [16] as a
replacement for traditional methods of controlling network
and physical resources independently. The proposed
strategy can effectively manage different processing
interfaces of a data center and assign tasks to ensure
maximum service quality and minimum energy consump-
tion. A method based on resource scheduling was
developed in Ref. [17] by using the queue model to
implement constant revision of the scheduling policy while
considering objectivity and data locality simultaneously.
Reference [18] introduced a resource-based scheduling
method based on classification to achieve balance between
the utilization and cost benefits of equipment. The method
implements priority scheduling of suitable resources while

avoiding task interference. Meanwhile, an online and
scalable resource scheduling method that uses collabora-
tive filtering technology to solve the resource allocation
issue in online application was proposed in Ref. [19]. The
method can schedule resources rapidly and accurately and
deals with heterogeneity and interference in multiple
shared resources. An accurate power model in data centers
was proposed in Ref. [20] for time-constrained servers in
cloud computing. Reference [21] developed an agent-
based server system approach that improves the resource
sharing between heterogeneous wireless sensor networks
(WSNs) in IoT/CPS providers.
Given that technologies related to cloud computing

cannot efficiently handle massive amounts of data from
devices located at the edge of networks, computing models
continue to be developed; these include micro-data centers
[22], cloud-sea computing for humans and subsystems
facing the physical world [23], cloud integration sensor
networking, peer-to-peer networking, network virtualiza-
tion, configuration management technology for fog
computing [24–26], and cloudlet. Cloudlet focuses on
business logic to connect cloud mobile devices and cloud
servers in mobile cloud computing [27] and is considered
to be the key to reduce the mobile core utilization and
latency of mobile terminal users at the edge of mobile
computing [28–31]. These technologies enable computing
on the edge of networks and represent the development of
executing edge computing of downstream data-represented
cloud services and upstream data-represented IoT services
[32].
Research on CPS in manufacturing has been extensively

conducted, but only a few studies on the processing of real-
time tasks in CPS are available. Edge computing is a new
type of computing mode that provides near-end services by
means of network, computing, storage, and other technol-
ogies on the production side. Resources, timeliness, and
other factors are often considered in industrial production,
and edge computing can benefit real-time task processing.

3 Modeling and algorithm design

3.1 Edge computing-based intelligent spinning
manufacturing CPS

Figure 2 shows the framework of the centralized comput-
ing mode in spinning CPS. Under this framework, the real-
time tasks produced by physical entity of spinning CPS are
transmitted to the cloud center through industrial Internet.
The tasks are subsequently processed to become knowl-
edge, and intelligent decisions are made to control the
physical entities.
The disadvantages of the centralized CPS system are

prominent. The system can satisfy real-time task proces-
sing requirements in a high-speed production environment,
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but security is not guaranteed. In this study, the functions
of the cloud center are transferred near the physical entity.
For the spinning manufacturing feature, two modes
performing edge computing are designed, and their core
is a distributed ECN, as illustrated in Fig. 3. Digital twin
focuses on the establishment of a completely virtualized
digital object [33,34], which is a CPS unit with complete
features. Edge computing is a subset of the digital twin and
focuses on finite task computation and communication.
1-1 ECN: Each physical entity has its own ECN. The

carding frame corresponds to the computing node on the
edge of this frame, the spinning frame corresponds to the
computing node on the edge of this frame, and so on. The
communication and negotiation mechanisms between
ECNs is presented in Fig. 3(a).
n-1 ECN: Multiple physical entities have a common

ECN and require few computing nodes installed at the side.
However, this condition increases the complexity of
calculation and scheduling, as shown in Fig. 3(b).
The mode adopted depends on the specific application

scenario. For a high-speed ring-spinning workshop, the 1-1
ECN mode can be selected in the carding process and the
n-1 ECN mode in the drawing–roving–spinning process to
achieve a combination of these modes. For a single ECN,
tasks can be time-sequence real-time tasks from a single
entity or time-sequence real-time tasks from multiple
entities.

3.2 Constitution of spinning ECN

A single spinning ECN includes the basic elements of the
manufacturing unit, such as tasks and process, resource,
and quality requirements, as depicted in Fig. 4.
Task agent: It detects the scale of tasks to determine

whether to drive directly to the cloud center or to the buffer
queue.
Task buffer: It accepts related tasks that satisfy the

requirements.

Task scheduling: It schedules tasks in task buffers.
Resource monitoring: It monitors local edge node,

external edge node, and cloud center resources through the
interaction interface to provide a fundamental basis for
resource allocation.
Resource allocation: It allocates resources for scheduled

tasks.
Communication and interface: They serve as the channel

for local ECNs to interact with the external nodes and to
monitor the external node resource situation being
monitored by other external nodes.
Production parameter reconfiguration: It is implemented

to dynamically reconfigure the production process para-
meters according to the resources allocated and the actual
needs of related task processing.
For simplicity, the following assumptions are made:
Assumption 1: Every single physical entity in CPS only

commits a real-time task at a moment; the real-time task is
independent and inseparable and can only be performed on
one ECN;
Assumption 2: ECNs must be able to handle any single

real-time task from the buffer queue;
Assumption 3: The cloud center can deal with all tasks,

that is, although a real-time task is delayed due to the
inability to be processed by the ECN, the task can be
processed when transmitted to the cloud center.
The computing capability of ECNs is limited compared

with that of cloud centers. For example, when the scale of a
task is too large for an ECN and beyond its memory
capacity or when the operation time of the node is longer
than the longest delay time that the task can accept because
of the performance of the central processing unit (CPU),
the task needs to be transmitted to the cloud center.
The task is then sent to a task agent in advance before the
task is accepted into buffers by the ECN, where it is judged
via a previously set threshold to decide whether to step
into buffers or be transmitted to the cloud center for
processing.

Fig. 2 Architecture of spinning CPS in the centralized computing mode
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3.3 Modeling

3.3.1 ECN model

The studied ECN is an intelligent agent connected with the
physical entity in the CPS, and it can store, compute, and
communicate.
Definition 1: ECN is defined as

e ¼ ðm, s, f max, b, pmax, trTime, task�agent,

task�buffer, CRpool, interaction�windowÞ:
Definition 1 describes 10 tuples of ECN, in which m and

task_buffer refer to the memory (GB) and real-time task
buffer (MB), respectively, and are related to storage; s, fmax,
task_agent, and CRpool refer to the CPU’s computing
speed (MIPS, million instructions per second), maximum
frequency (MHz), maximum power (W), real-time task
agent, and computing resource pool, respectively, and are
concerned with computing; b and trTime refer to the
bandwidth (Mb/s) and time (s) to transmit data from a node
to the cloud center, respectively, which pertain to

transmission on the Internet; and interaction_window
refers to the interface for the ECN to interact with external
nodes.
Definition 2: A set of ECNs is given as

E ¼ fe1, e2, :::, eng,
in which n refers to the number of nodes. This definition
describes the set of all ECNs of the entire spinning CPS
physical space.

3.3.2 Resources of edge computing model

Definition 3: It pertains to the resource pool of ECN ei.
CRpooli= {ri1, ri2, ..., rim}, i2 [1, n], in which m refers to
the number of resource blocks of ei.
Definition 3 describes the resource pool of any node

ei. This pool is the sum of all resources the node has, and
rik (k 2 [0, m]) refers to each resource block.
Definition 4: Resource block rik=(mik, sik, fik, bik, pik, cik),

i2 [1, n].
Definition 4 describes five tuples for a resource block of

any ECN, in which mik, sik, fik, bik, and pik refer to the

Fig. 3 Architecture of spinning CPS edge computing mode. (a) A unique ECN per entity; (b) ECN shared by multiple entities
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memory, CPU computing speed, CPU frequency, band-
width, and power that ei distributes to each resource block;
cik refers to the state of the CPU, namely, occupied, ready,
or idle.

3.3.3 Task model

In CPS, independent tasks are submitted independently by
users.
Definition 5:

Task t ¼ ðlength, comeTime, startTime, endTime,

runTime, turnAroundTimeÞ:

Definition 5 describes six tuples of a task, as follows:
length (s) refers to the time length of a task; comeTime
refers to the time for the task to arrive; startTime and
endTime refer to the start and end times of a task,
respectively; runTime refers to the operation time of a task;
and turnAroundTime refers to the turnaround time of a
task. The framework for describing a task is presented in
Fig. 5.
Definition 6: Set of tasks T = {t1, t2, ..., tp}.
Definition 6 describes the set of tasks that a node

receives, and p refers to the number of tasks received at one
moment.
Assuming that tasks numbered p–c are transmitted to the

cloud center for processing because their scale is beyond

Fig. 4 Components and process logic of ECN. Mfg.: Manufacturing; O: Output; I: Input; t: Task

Fig. 5 Framework for describing a task
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the computing capability of a node, other tasks numbered c
are processed at ECNs.
The completion time of a task is

timej ¼ runTimej þ startTimej – comeTimej

¼ turnAroundTimej:

The total time for all tasks processed at local nodes is

total time ¼
Xc

j¼1

turnAroundTimej:

3.4 Real-time task process based on edge computing

3.4.1 Real-time task process

The CPS real-time task process based on edge computing
proceeds as follows.
Step 1: The task is accepted.
Step 2: Task agent: The task is processed according to

the behavioral processing model. The scale of the task is
checked. If the scale is greater than or equal to the set size
threshold, then the task is transmitted directly to the cloud
center. Otherwise, Step 3 is implemented.
Step 3: The task enters the task buffer and waits for task

scheduling.
Step 4: Task scheduling is implemented according to the

scheduling algorithm.
Step 5: Resources are allocated to the scheduled tasks

according to the resource monitoring situation.
Step 6: The resource allocation results are produced.

3.4.2 Real-time task processing algorithm design

According to the process of real-time task processing, the
algorithm design for real-time task processing is as
follows:
Input: Real-time set of tasks T ¼ ft1, t2, :::, tpg; the set

of ECNs E ¼ fe1, e2, :::, eng; the set of available
resource blocks of all ECNs rik; and the cloud center.
Output: The resource block allocated for each task.
(1) Task buffer = Null, taskScale = taskScaleMax;
(2) while new ti∈T do
(3) read tlength;
(4) if (tlength>= taskScale), transmit ti to cloud

center;
(5) else ti step into Task buffer;
(6) end while
(7) while (Task buffer != Null) do
(8) scheme a task ti;
(9) if (local resources meet the requirement of ti),

allocate resources to ti
(10) else for other ECNs resources do
(11) if (resources meet the requirement of ti),

allocate resources to ti; break;

(12) else ti transmit to cloud center;
(13) end for
(14) end if
(15) end while

4 Experiment and discussion

4.1 Experiment design

This experiment is based on the real production environ-
ment of a spinning workshop under the CPS architecture.
The workshop has 2 opening frames, 20 carding frames, 8
combing frames, 16 drawing frames, 13 roving frames, 30
spinning frames, and 13 winding frames.
According to the actual layout of the workshop, 1

opening frame, 4 carding frames, 2 combing frames, 4
drawing frames, 4 roving frames, 8 spinning frames, and 2
packing-stacking machines are selected as experimental
machines and compared. The compared machines operate
normally under the CPS architecture.
In accordance with the diagram illustrated in Fig. 6, the

simulation environment is set up, and the same number of
machines (the same number of object entities) is selected.
ECN1 only connects one opening frame to realize the 1-1
ECN mode. ECN2 connects a part of the spinning frames,
carding frames, and palletizer. ECN3 connects a part of the
spinning and combing frames, and ECN4 connects the
roving and drawing frames to realize the n-1 ECN mode.
Four ECNs are interconnected through a bus then
connected to the cloud center through a local server.
Each ECN has three normal resource blocks (for use by
this node task) and two spare resource blocks (available for
local and neighbor nodes). The enterprise 2015 version of
Microsoft C# language is selected for the simulation
environment for the following reasons. (1) The .NET
framework is well accepted and can be created for a
portable code that runs on iOS, Android, and Windows
tablets/phones, desktops, servers, and embedded systems.
(2) Everything from the compiler to the core runtime is
open source. The program runs in the following environ-
ment: Windows 10, Intel (R) CoreTM i5-5200U 2.20 GHz
CPU, and 8.0 GB of RAM. The application types of C#
include Windows console, Windows forms, and ASP.NET
web service applications. We select Windows forms
application programming to implement our simulation. In
the experiment, 15 common tasks, such as broken yarn
joint, yarn cutting, and material requirement processing,
are used for the simulation.

4.2 Experimental results and discussion

4.2.1 Experiment 1: Effect of different scheduling
algorithms on real-time task processing

The 15 common tasks shown in Table 2 are used for
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simulation. The task length threshold set in the experiment
is 15 min. The resource allocation and execution of the 15
tasks received on ECN2 implemented with the “first in,
first out” (FIFO) scheduling method are depicted in
Table 2.
The t2 task, which has a length of 901 s and exceeds the

set threshold, is transferred to the cloud center for
processing. Therefore, the runTime and turnAroundTime
of t2 are not calculated in this experiment.
When a new task arrives at ECN, the size of the task is

detected by the task agent, that is, the interface time α of
the task is calculated, as shown in the fourth column in
Table 2. Thereafter, in accordance with the real-time
monitoring results of the resource monitoring and quick
allocation window, whether the task should enter the task

buffer or not is determined (that is, whether task scheduling
time t needs to be calculated). When t1 and t3–t12 reach
ECN2, the resources that can be directly allocated to the
tasks are sufficient without calculating scheduler time t (as
shown in the fifth column in Table 2). However, when t13–
t15 arrive, no resources are available for the time being,
and these tasks are sent to the task buffer to wait for
scheduling. The scheduling time t of the task consists of
the time waiting for scheduling in the task buffer and the
scheduling time of the scheduling algorithm. The values of
resource assignment time d of the tasks in Table 2 are
distributed in two intervals, [24, 38] and [147, 163]. The
tasks (t1, t3–t6, t14) where the d values fall in the first
interval are assigned with local resources, and the tasks
(t7–t13, t15) where the d values fall in the second interval

Table 2 Resource allocation and execution of tasks

No.
Task
name

Length/s
Interface
time/ms

Scheduler
time/s

Resource
assignment
time/ms

Resource
allocation

Run
time/s

Turnaround
time/s

1 t1 240 5.7521 0 28.4385 ECN2.1 240.0526 240.0868

2 t2 901 5.9254 – – Cloud center – –

3 t3 285 5.7945 0 28.5256 ECN2.2 285.0512 285.0855

4 t4 320 5.7789 0 37.9196 ECN2.3 320.0651 320.1088

5 t5 240 5.6214 0 28.6335 ECN2.spare1 240.0489 240.0831

6 t6 350 5.8012 0 27.6193 ECN2.spare2 350.0693 350.1027

7 t7 210 5.6287 0 162.8069 ECN3.spare1 210.0446 210.2130

8 t8 180 5.6146 0 147.578 ECN4.spare1 180.0479 180.2011

9 t9 270 5.6812 0 150.4799 ECN1.spare1 270.0512 270.2073

10 t10 195 5.6349 0 147.3993 ECN1.spare2 195.0456 195.1987

11 t11 305 5.7871 0 162.5112 ECN4.spare1 305.0660 305.2343

12 t12 95 5.4243 0 153.7191 ECN1.spare2 95.0384 95.1975

13 t13 310 5.6479 82.3154 156.2954 ECN1.spare2 310.0732 392.5505

14 t14 25 5.2273 111.0159 24.9676 ECN2.1 25.0080 136.0469

15 t15 72 5.3394 108.3160 140.6214 ECN1.spare2 72.0025 180.4645

Fig. 6 Experimental diagram
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are assigned with external resources. Therefore, the d value
of a task includes the time for assigning resources and for
migrating from the local node to external resources.
Figure 7 shows the resource assignment time d for each
task.

ECN2 has a priority in using its own resource blocks;
therefore, t1–t6 (t2 is transferred to the cloud center)
allocate resource blocks 1–3 and spare resource blocks 1
and 2 in their order of arrival. When the t7 task arrives, all
resources of ECN2 are occupied. In this case, the resources
of the neighboring ECNs are determined, and that of ECN1
is determined first. However, ECN1’s two spare resource
blocks are also occupied. ECN3 is determined subse-
quently. At this time, ECN3’s spare resource block 2 is in
the free state, and ECN2 migrates t7 to this free state for
processing. The resources for t8–t15 are allocated
similarly. Table 2 shows that ECN3’s spare resource
block 2 and ECN4’s spare resource block 2 have not been
assigned to the tasks from ECN2, indicating that the two
spare resource blocks are always occupied.

Figure 8 compares the resource configuration results of
two different task scheduling algorithms, namely, highest
response ratio next (HRRN) and FIFO. When tasks t1–t12
arrive, the resource blocks of ECN2 are sufficient, and
waiting is not required. The allocation of resources is
achieved in accordance with the arrival order of the tasks.
When tasks t7–t15 arrive, the resources of the local edge
node and its neighbor edge nodes are allocated, and no
resources are available. Therefore, tasks t7–t15 enter the
task buffer and wait. Owing to the differences between
scheduling algorithms, tasks are scheduled from the buffer
queue in a different order, and the allocated resources are
also different. Nonetheless, from the perspective of delay
rate, no effect exists, and the difference is due to the
refreshing frequency of the program calculation.
Figure 9 shows a comparison of the delay rates in the

three cases: normal operation of the spinning CPS
architecture and edge computing task scheduling with
FIFO and HRRN algorithms. The delay rate is calculated
via the following formula.

Delay rate ¼
X

turnRoundTime –
X

length
X

length
� 100%,

where turnRoundTime is the turnaround time of the tasks
and length is the length of the tasks.
The delay rate of the tasks is 26.528% under the

spinning CPS architecture. After adding the ECNs in the
simulation experiment, the total turnaround time of tasks is
reduced, resulting in a reduced processing delay rate of the
tasks. When FIFO and HRRN scheduling algorithms are
utilized, the delay rate decreases by 62.63% and 62.75%,
respectively, compared with the delay rate under the
spinning CPS architecture. The real-time task processing
of the spinning CPS with increased ECNs is advanced.

Fig. 7 Resource assignment time of tasks

Fig. 8 Resource allocation results
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4.2.2 Experiment 2: Impacts of task scale on real-time task
processing

In this experiment, real-time tasks are submitted artificially
by different physical entities of the spinning CPS for a
period of time, and real-time tasks of the same scale (same
length and number of tasks) are submitted in the simulation
experiments. The numbers of tasks are 15, 50, 100, 200,
and 500.
Figure 10 shows a comparison of the effects of different

numbers of real-time tasks on the delay rate. The
experimental results indicate that the delay rate of the
edge computing mode of the spinning CPS is much lower
than that of the computational mode. In the centralized
computing mode, all real-time tasks are transmitted to the
cloud center for processing. In the edge computing mode,
the real-time tasks are processed at the edge nodes near the
physical entities, which reduces the transmission time of
the tasks. When the real-time tasks are increased to a
certain number, the delay rate of the edge computing mode
becomes stable, but that of the centralized computing mode
increases. This result occurs because the resource of the
ECN is limited, and the tasks are processed using the
established scheduling algorithm. When the number of
tasks in the centralized computing mode increases, the

bandwidth of the transmission becomes limited, which
exacerbates the congestion extent.

4.2.3 Experimental summary

The three experiments show that the delay rate in the real-
time task processing of spinning CPS can be reduced by
using a reasonable configuration of the resources of ECNs
and applying appropriate scheduling algorithms. The
majority of the tasks are processed at the ECNs, which
reduces various security risks that are incurred during the
task transfer to the remote cloud center. In addition, the
concurrent tasks transmitted to the remote cloud center are
reduced so that sufficient bandwidth exists for transmitting
the tasks that cannot be processed by the local ECNs to the
cloud center; this also helps improve the effectiveness of
real-time task processing.

5 Conclusions

This study established a model of tasks, ECNs, and edge
computing resources and proposed a method for real-time
task processing on the basis of edge computing to address
the problem of processing delays, bandwidth shortage, and
security risks in the process of real-time tasks being
transferred to a remote cloud center. By setting the task
scale threshold, the method allocates large-scale tasks to
the cloud center and small-scale tasks to the local ECNs for
processing while effectively solving the problem of delay
in the processing of real-time tasks. This method can
ensure sufficient bandwidth and avoid security risks during
task transmission.
In industrial production, edge computing is expected to

play an increasingly important role in particular cases, such
as low/intermittent connectivity, instant analysis, and
access to temporal data for real-time analysis. Edge
computing can support predictive maintenance and
resource or energy efficiency management. Therefore,
edge computing can be applied to other industrial
practices, especially in continuous manufacturing, such
as weaving in textile manufacturing, chemical fiber
production, and pharmaceutical and food industries.
We will conduct further research from two aspects:

practical case study and development of the task schedul-
ing algorithm. First, on the basis of the results of the
experimental simulation, the effect of real-time ECNs on
task processing is presented. After balancing the demands
and costs of real-time task processing, physical entities in
the spinning CPS can utilize ECN devices with reasonable
configuration resources and then use the production data to
verify the real-time effect of edge computing in handling
CPS tasks. Second, the real-time performance of task
processing is related to the task scheduling algorithm,
resource quantity, and processing capability of resources.

Fig. 9 Comparison of delay rates

Fig. 10 Effect of number of tasks on the delay rate
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Improved algorithms are required for task scheduling. In
addition, the number of ECNs should be set based on the
actual physical layout of the spinning workshop, and the
processing capability of the resources should be rationally
allocated.
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