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Abstract This study focuses on establishing non-
conforming crack front elements of quadrilateral and
triangular types for 3D crack problems when the dual
boundary element method is applied. The asymptotic
behavior of the physical variables in the area near the crack
front is fully considered in the construction of the shape
function. In the developed quadrilateral and triangular
crack front elements, the asymptotic term, which captures
the asymptotic behavior of the physical variable, is
multiplied directly by the conventional Lagrange shape
function to form a new crack front shape function. Several
benchmark numerical examples that consider penny-
shaped cracks and straight-edge crack problems are
presented to illustrate the validity and efficiency of the
developed crack front elements.

Keywords Taylor expansion, crack front elements, stress
intensity factors, dual boundary element method

1 Introduction

Experimental [1–4] and numerical [5–9] are two of the
most popular methods to solve engineering problems, such
as solid mechanical, heat transfer, acoustic, and electro-
magnetic problems. In structural mechanical problems
with cracks or V-notch interfaces, physical quantities vary
singularly in the areas near the crack front and interface [5–
9]. Accurate approximation of such singular variations is

important but difficult in numerical methods for these
problems. Many additional methods have been developed
to circumvent these difficulties [5–9]. The finite element
method (FEM) [10–12] and the boundary element method
(BEM) [13–15] are two of the most extensive methods for
structural mechanical problems. Special elements with
specially defined shape functions are typically utilized to
approximate the variations of physical quantities in both
methods and eventually achieve high accuracy and
efficiency. Many specially defined crack elements have
been developed in FEM and BEM implementations to
compute the stress intensity factors (SIFs) along the crack
front accurately and efficiently. The most efficient and
valuable crack front elements are quarter-point triangular
and quadrilateral elements, which can be integrated into
standard FEM [16,17] and BEM [18–21] codes. In BEM
application in crack problems, the dual boundary integral
equation method, in which the traction boundary integral
equation is involved, is the most widely used scheme
[5,19–24].
Non-conforming elements, inside which interpolation

nodes are arranged, are frequently used due to the
existence of hyper-singular integrals. The calculation of
hyper-singular integrals depends largely on the transfor-
mation of traditional conforming quarter-point elements
into nonconforming ones. However, quarter-point trian-
gular and quadrilateral elements are usually regarded as
conforming elements, which are employed in the multi-
domain BEM. The shape functions of non-conforming
crack front elements are obtained by solving linear
equations. The derivation process is tedious, and the
special shape functions are not closely related with
traditional shape functions [20,25,26]. This study proposes
a family of non-conforming crack front elements of
quadrilateral and triangular types for 3D crack problems.
In the deduction of the presented crack front elements,

the shape functions are constructed to capture the
asymptotic behavior of displacement fields in parametric
space. The function of the analytical distribution of
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displacement is expressed by Taylor series up to the second
order to capture the asymptotic behavior. Variable
transformation is performed to generate a square-root
term that captures the variation of the physical quantities.
The shape functions are constructed in consideration of the
square-root term. Then, the conforming element is
transformed into a nonconforming one by a multiplication
of the transforming matrix. Several benchmark examples
are presented to illustrate the accuracy of the new crack
front elements. The advantages of the non-conforming
crack front elements are as follows. The special shape
functions are obtained using the traditional shape functions
and displacement approximate terms in the intrinsic
coordinate system. Unlike the traditional construction
method for crack front elements [20,25,26], the method
proposed in this study can be easily extended to the
construction of special shape functions for V-notch
interfaces, whose displacements may possess a property
of order rα (1>α>0).
The rest of this paper is outlined as follows. In Section 2,

crack front elements within a quadrilateral mesh are
proposed. Then, crack front elements within a triangular
mesh are obtained in the same manner in Section 3. The
process of obtaining SIFs is described in Section 4, and
several numerical examples are presented in Section 5.

2 Crack front elements within a
quadrilateral mesh

We provide a detailed derivation of a three-node, non-
conforming crack tip element. The method for the three-
node, non-conforming crack tip element is then extended
to the 3D boundary surface element.

2.1 Construction of a three-node, non-conforming crack tip
element

As shown in Fig. 1, the coordinates of the distance vector
from arbitrary point P(x, y) in the element to the crack tip
can be expressed as

x – x0 ¼ N0x0 þ N1x1 þ N2x2 – x0

¼ 1

2
� þ 1ð Þ½ð� – 2Þx0 þ 2ð1 – �Þx2 þ �x1�, (1a)

y – y0 ¼ N0y0 þ N1y1 þ N2y2 – y0

¼ 1

2
� þ 1ð Þ½ð� – 2Þy0 þ 2ð1 – �Þy2 þ �y1�, (1b)

where � is the parametric coordinate of the point ðx,yÞ,
ðx,yÞ is the coordinates of any point in the element, ðx0,y0Þ,
ðx1,y1Þ, and ðx2,y2Þ are the coordinates of the three nodes in
Fig. 1 (Points 0, 1 and 2), respectively, N0 �ð Þ ¼ 1

2
� � – 1ð Þ,

N1 �ð Þ ¼ 1

2
� 1þ �ð Þ and N2ð�Þ ¼ ð1þ �Þð1 – �Þ are shape

functions that are defined on these nodes, and ð� þ 1Þ=2
represents the distance property in the parametric space,
which also reflects the distance in the Cartesian space. The
source points in the parametric space are – l, 0, and l.
The displacement u and traction fields t near the crack

tip behave as square root singularity or inverse square root
singularity, which can be written as [27]

u ¼ a0 þ a1
ffiffi
r

p þ a2r þ ⋅⋅⋅, (2)

t ¼ b0=
ffiffi
r

p þ b1 þ b2r þ ⋅⋅⋅: (3)

where ai and bi (i = 0, 1, …) represent the coefficient
vectors, respectively.
For the three-node, non-conforming quadratic element,

the shape functions that are defined based on these
collocation nodes can be written as

N 0
coll �ð Þ ¼ �ð� – lÞ

2l2
,  N1

coll �ð Þ ¼ ð� þ lÞ�
2l2

,

N2
coll �ð Þ ¼ –

ð� þ lÞð� – lÞ
l2

: (4)

where l is the offset parameter, and N0
collð�Þ, N1

collð�Þ, and
N2
collð�Þ are the non-conforming shape functions of the

three collocation nodes in Fig. 1 (Points 0, 1 and 2). Using
a two-order Taylor expansion of u near the crack front, we
can obtain the following:

u ¼ u00 þ u10 � þ 1ð Þ þ 1

2!
u20ð� þ 1Þ2 þ ⋅⋅⋅, (5)

where

u00 ¼
X2
m¼0

dð0ÞNm
collð�Þ

d�ð0Þ
  ����
�¼ – 1

um

Fig. 1 Three-node, non-conforming quadratic element
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¼ 1

2l
þ 1

2l2

� �
u0 þ

1

2l2
–
1

2l

� �
u1 þ 1 –

1

l2

� �
u2,

u10 ¼
X2
m¼0

dNm
collð�Þ
d�

  ����
�¼ – 1

um

¼ –
1

l2
–
1

2l

� �
u0 þ

1

2l
–
1

l2

� �
u1 –

2

l2
u2,

u20 ¼
X2
m¼0

d2Nm
collð�Þ
d�2

  ����
�¼ – 1

um ¼ 1

l2
u0 þ

1

l2
u1 þ

2

l2
u2,

and u0, u1, and u2 are the displacements at three
collocation nodes. u00, u

1
0, and u20 represent the zero- first-

and second-order derivatives at Node 0.
Compared with Eq. (2), Eqs. (4) and (5) show that the

shape functions of the non-conforming quadratic element
cannot reflect the square-root asymptotic behavior of the
displacements and tractions near the crack front. To
introduce the asymptotic behavior of the displacements, a
substitution of ð� þ 1Þ=2 by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið� þ 1Þ=2p
is introduced in

the Taylor expansion. Thus, the Taylor expansion in Eq. (5)
can be transformed into

u ¼ u00 þ u10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð� þ 1Þ

p
þ u20ð� þ 1Þ þ ⋅⋅⋅: (6)

In Eq. (6), u00, u10, and u20 are unchanged. After
substituting expressions for u00, u

1
0, and u20 into Eq. (6),

the following equation can be obtained:

u ¼ 1

2l
þ 1

2l2

� �
u0þ

1

2l2
–
1

2l

� �
u1 þ 1 –

1

l2

� �
u2

       þ ffiffiffi
2

p
–

1

l2
þ 1

2l

� �
u0 þ

1

2l
–
1

l2

� �
u1 –

2

l2
u2

� �

      � ffiffiffiffiffiffiffiffiffiffiffi
� þ 1

p þ 1

l2
u0 þ

1

l2
u1 þ

2

l2
u2

� �
ð� þ 1Þ

    ¼ 1

2l
þ 1

2l2

� �
–

ffiffiffi
2

p 1

l2
þ 1

2l

� � ffiffiffiffiffiffiffiffiffiffi
�þ1

p þ 1

l2
ð� þ 1Þ

� �
u0

      þ 1

2l2
–
1

2l

� �
þ ffiffiffi

2
p 1

2l
–
1

l2

� � ffiffiffiffiffiffiffiffiffiffiffi
� þ 1

p þ 1

l2
ð� þ 1Þ

� �
u1

      þ 1 –
1

l2

� �
–
2

ffiffiffi
2

p

l2
ffiffiffiffiffiffiffiffiffiffiffi
� þ 1

p þ 2

l2
ð� þ 1Þ

� �
u2:

(7)

New shape functions for collocation points can be
defined as

N0
scoll �ð Þ ¼ 1

2l
þ 1

2l2

� �

–
ffiffiffi
2

p 1

l2
þ 1

2l

� � ffiffiffiffiffiffiffiffiffiffiffi
� þ 1

p þ 1

l2
ð� þ 1Þ,

N1
scoll �ð Þ ¼ 1

2l2
–
1

2l

� �

þ ffiffiffi
2

p 1

2l
–
1

l2

� � ffiffiffiffiffiffiffiffiffiffiffi
� þ 1

p þ 1

l2
ð� þ 1Þ,

N2
scoll �ð Þ ¼ 1 –

1

l2

� �
–
2

ffiffiffi
2

p

l2
ffiffiffiffiffiffiffiffiffiffiffi
� þ 1

p þ 2

l2
ð� þ 1Þ,

(8)

where N0
scollð�Þ, N 1

scollð�Þ, and N 2
scollð�Þ are the new shape

functions at collocation points for crack tip elements.
A three-node non-conforming crack tip element can be

successfully constructed with the shape functions of Eq.
(8). In the next section, we extend this crack tip element to
a nine-node quadrilateral crack front element.

2.2 Construction of a nine-node non-conforming crack
front element

A nine-node non-conforming quadratic element is illu-
strated in Fig. 2. The relations between the three-node and
nine-node non-conforming quadratic elements can be
established as follows. In the nine-node non-conforming
quadratic element, interpolation nodes do not coincide
with geometric nodes, a condition that is similar to that in
the three-node non-conforming quadratic element. The
geometric shape functions in the nine-node non-conform-
ing quadratic element are constructed through the products
of shape functions along two different directions:

N0ð�,ηÞ ¼ N1ð�ÞN1ðηÞ,
N1ð�,ηÞ ¼ N0ð�ÞN1ðηÞ,
N2ð�,ηÞ ¼ N0ð�ÞN0ðηÞ,
N3ð�,ηÞ ¼ N1ð�ÞN0ðηÞ,
N4ð�,ηÞ ¼ N2ð�ÞN1ðηÞ,
N5ð�,ηÞ ¼ N0ð�ÞN2ðηÞ,
N6ð�,ηÞ ¼ N2ð�ÞN0ðηÞ,
N7ð�,ηÞ ¼ N1ð�ÞN2ðηÞ,
N8ð�,ηÞ ¼ N2ð�ÞN2ðηÞ, (9)

where Nið�,ηÞ (i ¼ 0,  1,  :::,  8) are the shape functions that
are defined on the eight geometric nodes (from 0 to 8),
N0ð�Þ, N1ð�Þ and N2ð�Þ have been defined before, and �
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and η are the parametric coordinates.
Similarly, the non-conforming shape functions of the

nine-node non-conforming quadratic element can be
obtained through a similar method, which can be expressed
as follows:

N 0
collð�,ηÞ ¼ N 1

collð�ÞN1
collðηÞ,

N 1
collð�,ηÞ ¼ N 0

collð�ÞN1
collðηÞ,

N 2
collð�,ηÞ ¼ N 0

collð�ÞN0
collðηÞ,

N 3
collð�,ηÞ ¼ N 1

collð�ÞN0
collðηÞ,

N 4
collð�,ηÞ ¼ N 2

collð�ÞN1
collðηÞ,

N 5
collð�,ηÞ ¼ N 0

collð�ÞN2
collðηÞ,

N 6
collð�,ηÞ ¼ N 2

collð�ÞN0
collðηÞ,

N 7
collð�,ηÞ ¼ N 1

collð�ÞN2
collðηÞ,

N 8
collð�,ηÞ ¼ N 2

collð�ÞN2
collðηÞ, (10)

where Ni
collð�,ηÞ (i ¼ 0,  1,  :::,  8) are the non-conforming

shape functions that are defined on the eight collocation
nodes (from 0 to 8).
In Fig. 2, given that � ¼ – 1 is the crack front, the

special shape functions can be expressed as

N0
Nscollð�,ηÞ ¼ N1

scollð�ÞN1
collðηÞ,

N1
Nscollð�,ηÞ ¼ N0

scollð�ÞN1
collðηÞ,

N2
Nscollð�,ηÞ ¼ N0

scollð�ÞN0
collðηÞ,

N3
Nscollð�,ηÞ ¼ N1

scollð�ÞN0
collðηÞ,

N4
Nscollð�,ηÞ ¼ N2

scollð�ÞN1
collðηÞ,

N5
Nscollð�,ηÞ ¼ N0

scollð�ÞN2
collðηÞ,

N6
Nscollð�,ηÞ ¼ N2

scollð�ÞN0
collðηÞ,

N7
Nscollð�,ηÞ ¼ N1

scollð�ÞN2
collðηÞ,

N8
Nscollð�,ηÞ ¼ N2

scollð�ÞN2
collðηÞ, (11)

where Ni
Nscollð�,ηÞ (i ¼ 0,  1,  :::,  8) are the new shape

functions on the eight collocation nodes for crack front
elements (from 0 to 8).
The displacement distribution near the crack front can be

accurately approximated using Eq. (11). The results are
demonstrated in the following numerical examples.

3 Crack front elements within a triangular
mesh

In this section, we construct a triangular crack front
element based on a six-node conforming quadratic element
in the first step. The six-node conforming crack front
element is then converted into a six-node non-conforming
crack front element in the second step. The six-node non-
conforming quadratic element is shown in Fig. 3, where k

Fig. 2 Nine-node non-conforming quadratic element

Fig. 3 Six-node non-conforming quadratic element
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is the position parameter. From the geometric meaning of
the area coordinate, ð1 – � – ηÞ represents the distance in the
parametric space, which also reflects the distance in the
Cartesian space. The geometric shape functions of the
element are

N0 ¼ �ð2� – 1Þ,   N1 ¼ ηð2η – 1Þ,
N2 ¼ ð1 – � – ηÞ½2ð1 – � – ηÞ – 1�,   N3 ¼ 4�η,

N4 ¼ 4ηð1 – � – ηÞ,   N5 ¼ 4�ð1 – � – ηÞ: (12)

To perform Taylor expansion of the displacement fields
near the neighborhood of the crack front (� þ η ¼ 1), the
following coordinate transformation is applied:

�1 ¼ 1 – � – η,   η1 ¼ � – η: (13)

Then, Taylor expansion of the displacement fields in the
neighborhood of � þ η ¼ 1 is performed similar to that in
the neighborhood of �1 ¼ 0. We can derive the following
expression:

u ¼ u00 þ u10 �1 – 0ð Þ þ 1

2!
u20ð�1 – 0Þ2 þ ⋅⋅⋅: (14)

where u00 ¼
X5
m¼0

∂ð0ÞNm

∂�ð0Þ1

  ����
�1¼0

um, u10 ¼
X5
m¼0

∂Nm

∂�1
  ����
�1¼0

um,

and u20 ¼
X5
m¼0

∂2Nm

∂�21
  ����
�1¼0

um. um ðm ¼ 0,  1,  :::,  5Þ denotes

the displacements at the six interpolation nodes in the
element. From Eq. (13), we obtain

� ¼ 1 – �1 þ η1
2

,  η ¼ 1 – �1 – η1
2

: (15)

Considering Eq. (15), the following relations are
obtained:

∂Nmð�Þ
∂�1

¼ ∂Nmð�Þ
∂�

∂�
∂�1

þ ∂Nmð�Þ
∂η

∂η
∂�1

, (16a)

∂2N
∂�21

¼ ∂2N
∂�2

∂�
∂�1

∂�
∂�1

þ 2
∂2N
∂�∂η

∂�
∂�1

∂η
∂�1

þ∂2N
∂η2

∂η
∂�1

∂η
∂�1

: (16b)

To introduce the asymptotic behavior of the displace-
ments, we correct the Taylor expansion expression by
replacing �1 with

ffiffiffiffiffi
�1

p
. The Taylor expansion in Eq. (14)

can be transformed into

u ¼ u00 þ u10
ffiffiffiffiffi
�1

p
þ 1

2!
u20�1 þ ⋅⋅⋅, (17)

where

u00 ¼ �ð2� – 1Þu0 þ ð1 – �Þð1 – 2�Þu1 þ 4�ð1 – �Þu3,
u10 ¼ – 0:5½ð4� – 1Þu0 þ ð3 – 4�Þu1 þ 2u2 þ 4u3

– 8ð1 – �Þu4 – 8�u5�,
u20 ¼ u0 þ u1 þ 4u2 þ 2u3 – 4u4 – 4u5:

8>>>>><
>>>>>:
From Eq. (17), we obtain the shape functions for the

conforming crack front element with the crack front at
edge � þ η ¼ 1 as follows:

N 0
scollð�,ηÞ ¼ �ð2� – 1Þ – 0:5ð4� – 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 – � – η
p

þ0:5ð1 – � – ηÞ,
N 1
scollð�,ηÞ ¼ ð1 – �Þð1 – 2�Þ – 0:5ð3 – 4�Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 – � – η
p

þ0:5ð1 – � – ηÞ,
N 2
scollð�,ηÞ ¼ –

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 – � – η

p þ 2ð1 – � – ηÞ,
N 3
scollð�,ηÞ ¼ 4�ð1 – �Þ – 2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 – � – η
p þ 2ð1 – � – ηÞ,

N 4
scollð�,ηÞ ¼ 4ð1 – �Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 – � – η
p

– 2ð1 – � – ηÞ,
N 5
scollð�,ηÞ ¼ 4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 – � – η

p
– 2ð1 – � – ηÞ:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(18)

In the application of the dual BEM for crack problems,
due to the existence of hyper-singular integrals, the
conforming crack front element should be transformed
into a non-conforming one to retain Hölder’s continuity
condition through the following linear transformation:

N0
Nscoll

N1
Nscoll

N2
Nscoll

N3
Nscoll

N4
Nscoll

N5
Nscoll

2
666666666664

3
777777777775

T

¼

N0
scoll

N1
scoll

N2
scoll

N3
scoll

N4
scoll

N5
scoll

2
666666666664

3
777777777775

T
N0
scollðP0Þ N1

scollðP0Þ N2
scollðP0Þ N3

scollðP0Þ N4
scollðP0Þ N5

scollðP0Þ
N0
scollðP1Þ N1

scollðP1Þ N2
scollðP1Þ N3

scollðP1Þ N4
scollðP1Þ N5

scollðP1Þ
N0
scollðP2Þ N1

scollðP2Þ N2
scollðP2Þ N3

scollðP2Þ N4
scollðP2Þ N5

scollðP2Þ
N0
scollðP3Þ N1

scollðP3Þ N2
scollðP3Þ N3

scollðP3Þ N4
scollðP3Þ N5

scollðP3Þ
N0
scollðP4Þ N1

scollðP4Þ N2
scollðP4Þ N3

scollðP4Þ N4
scollðP4Þ N5

scollðP4Þ
N0
scollðP5Þ N1

scollðP5Þ N2
scollðP5Þ N3

scollðP5Þ N4
scollðP5Þ N5

scollðP5Þ

2
6666666666664

3
7777777777775

– 1

, (19)

where Nm
Nscoll ðm ¼ 0,  1,  :::,  5Þ denotes the shape functions

of the non-conforming crack front element, Pm

ðm ¼ 0,  1,  :::,  5Þ denotes the parameter coordinate of the
interpolation nodes in ð�,ηÞ coordinate systems, which can
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be obtained by the position parameter. In this work, Eqs.
(11) and (19) are applied to approximate the distribution of
displacements near the crack front.
The crack front element may lie on another edge. In this

case, we can modify the order of the nodes or construct
another type of shape function in the same manner.

4 Calculation of SIFs

Quadrilateral and triangular non-conforming crack front
elements can be conveniently integrated into the dual
boundary element method (DBEM). To compute the SIFs
along the crack front, we construct a local coordinate
system for Point O on the crack front, as shown in Fig. 4.
The classic one-point formula is used to compute the SIFs,
which is similar to that in Eq. (20) [5]:

KI ¼
E

4ð1 – �2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π
2rcosφ

r
ðuPþ

b – uP –
b Þ,

KII ¼
E

4ð1 – �2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π
2rcosφ

r
ðuPþ

n – uP –
n Þ,

KIII ¼
E

4ð1þ �Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π
2rcosφ

r
ðuPþ

t – uP –
t Þ,

8>>>>>>><
>>>>>>>:

(20)

where E is Young’s modulus, � is Poisson’s ratio, and φ is
the angle between PþO (or P –O) and n. P is the point on
the crack surface, which may be P1, P2, or P3. By using φ,
the distance rP2 ¼ P2O, r

P3 ¼ P3O, K
p2 and Kp3 in Eq.

(21) can be obtained. Then, a two-point formula consider-
ing the whole element can be derived after performing
linear extrapolation between ðrP2 ,Kp2Þ and ðrP3 ,Kp3Þ at
location r ¼ 0. We can compute the SIFs at the crack front
by using Eq. (21):

KO ¼ rp3Kp2 – rp2Kp3

rp3 – rp2
: (21)

5 Numerical examples

Several numerical examples are presented in this section to

verify the accuracy and efficiency of the newly developed
crack front elements. In the first example, the two
constructed non-conforming crack front elements are
tested in the DBEM analysis of a penny-shaped crack
under uniform or linear polynomial tractions. The crack
open displacements, Δu, are obtained for a comparison
with existing results. Efficiency is also verified. In the
second example, a penny-shaped crack under uniform
inclined traction is analyzed with DBEM. Three types of
SIFs, which contain KI, KII, and KIII, are computed, and
their definitions can be found in Ref. [27]. The numerical
results obtained by the two presented elements are
compared with the exact results. In the final example,
straight edge crack problems are compared with existing
finite element analysis and other results.

5.1 Penny-shaped crack under uniform or linear polynomial
tractions

This example concerns a penny-shaped crack embedded in
an infinite space, as illustrated in Fig. 5. The boundary of
the penny-shaped crack is described as

x ¼ acosω,   y ¼ asinω,   z ¼ 0, (22)

where ω varies from 0 to 2π, and a is the radius. The crack
is opened by imposing traction �zzðx,yÞ along the z-
direction symmetrically to the upper and lower surfaces of
the penny-shaped crack. In this example, a = 1.0, Young’s
modulus E = 1.0, and Poisson’s ratio � ¼ 0:25 are
evaluated. Three traction boundary conditions, namely,
�zzðx,yÞ ¼ �0, �zzðx,yÞ ¼ –�0x, and �zzðx,yÞ ¼ –�0y with
constant �0, are imposed on the penny-shaped crack. The
reference solutions to the considered problems are
2�0=

ffiffiffi
π

p
, 4�0x=ð3a

ffiffiffi
π

p Þ, or 4�0y=ð3a
ffiffiffi
π

p Þ, respectively
[28]. In this example, 96 nine-node non-conforming
elements are used inside the crack surface and 32 nine-
node non-conforming crack front elements are employed
near the crack front, as shown in Fig. 5(a).
Figure 6 shows that the KI calculated by non-conforming

crack front elements of the quadrilateral type agrees well
with the reference solutions. The largest errors are
approximately 0.2%, 1.7%, and 2%, respectively.
Then, we perform an analysis using the triangular

elements. As shown in Fig. 5(b), on the crack surface, 162
six-node non-conforming elements, including 26 six-node
non-conforming crack front elements, are involved in the
analysis.
Figure 7 indicates that the KI computed by employing

non-conforming crack front elements of the triangular type
agrees well with the reference solutions. The largest errors
are about 0.9%, 2%, and 2%, respectively.
Figure 8 indicates that the Δu calculated by non-

conforming crack front elements of the quadrilateral and
triangular type agrees well with the reference solutions
[29]. The largest errors are about 1.5% in the two cases.

Fig. 4 Local coordinate system at Point O
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Figure 9 shows that even when position parameter k
varies from 0.1 to 0.3, the SIFs still retain considerable
accuracy with the analytical solution. Notably, k ¼ 1 – l
for crack front elements of the quadrilateral type. The
largest errors are about 1.2% in the two cases.
When the two types of crack front elements are used,

high accuracy can be achieved within 1% by using fewer
elements than Liu’s work [30]. In Liu’s work, 4704
elements are employed and the error is about 1.66%, while
less than 200 elements are employed in our work, and the
errors are within 1% stably.

5.2 Penny-shaped crack under uniform inclined traction

This example concerns the same crack as that in the first
example. The load in this example, however, is different
from that in the first numerical example. In this example,

Fig. 5 Mesh of the crack surface. (a) Non-conforming quadrilateral element; (b) non-conforming triangular element

Fig. 6 Results of the normalized SIF KI calculated by non-
conforming crack front elements of the quadrilateral type

Fig. 7 Results of the normalized SIF KI calculated by non-
conforming crack front elements of the triangular type

Fig. 8 Results of Δu over the crack surface obtained using our
method
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the crack is under a uniform inclined traction, as illustrated
in Fig. 10. The parameters illustrated in Fig. 10 are
evaluated by a = 1.0, � ¼ 1:0, E = 1.0, γ ¼ π=4, and � =
0.25. Here, γ is the angle between the uniform inclined
traction and coordinate plane xoy. The same meshes as
those in the first example are applied. The exact SIFs for
this problem can be found in Tada et al.’s work [31]. The
numerical and exact results are illustrated and compared in
Figs. 11 and 12. The results obtained by our method agree
well with the exact solutions. The largest errors are about
0.3%, 0.7%, 0.7%, 1%, 2%, and 2%, respectively.

5.3 Straight-edge crack compared with existing finite
element analysis

In this example, a single edge crack, as illustrated in
Fig. 13, is considered. The geometry parameters are c/b =
1, t/c = 3,and h/b = 6. Uniform tension is imposed on two
ends. The results are compared with those of the plane
strain solution obtained by Mi and Aliabadi [5], Murakami
and Keer [32], and Raju and Newman [33]. A total of 96
and 88 elements are used for the crack faces. The crack
front elements proposed in this study are employed. In the
work of Mi and Aliabadi [5], BEMwas employed, whereas
in the work of Raju and Newman [33], FEM was
employed. The plane strain solution is 2.827, which can
be found in the work of Murakami and Keer [32]. In our
work, when z = 0, the result is 2.2834 when crack frontFig. 10 Penny-shaped crack under uniform inclined traction

Fig. 11 Results of three normalized SIFs KI, KII, and KIII

calculated by non-conforming crack front elements of the
quadrilateral type

Fig. 12 Results of three normalized SIFs KI, KII, and KIII

calculated by non-conforming crack front elements of the
triangular type

Fig. 9 Influence of position parameter k
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elements of the quadrilateral type are used; the result is
2.828 when crack front elements of the triangular type are
employed. In Raju and Newman’s work [33], the SIF result
is 2.776. Figure 14 shows that the results in the two cases
agree well with those of Mi and Aliabadi [5] when z/ω
changes from 0 to 0.4. When z/ω approaches 0.5, the
results in the two cases agree well with those of Raju and
Newman [33]. This example demonstrates the credibility
of our method.

6 Conclusions

This study developed a family of non-conforming crack
front elements of quadrilateral and triangular types in
DBEM for 3D crack problems. In the deduction of the

special shape functions, the asymptotic behavior of the
distribution of the displacements and tractions near the
crack front is considered. In the neighborhood of the crack
front, the traditional shape function is expanded into Taylor
expansion. The expanded shape function is then modified
by considering the asymptotic behavior of the physical
quantities. For the non-conforming quadrilateral crack
front elements, the relations between the 2D and 3D
Lagrange-type elements are determined. For the
non-conforming triangular crack front elements, the
transformation matrix between the non-conforming and
conforming elements is introduced in consideration of the
positions of the collocation nodes. Then, numerical
examples using these non-conforming crack front elements
are provided to verify the efficiency of our method. The
numerical results are in good agreement with existing
results. The proposed method may serve as a reference for
addressing V-notch problems.
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