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Abstract Nano-precision positioning stages are charac-
terized by rigid-flexible coupling systems. The complex
dynamic characteristics of mechanical structure of a stage,
which are determined by structural and dynamic para-
meters, exert a serious influence on the accuracy of its
motion and measurement. Systematic evaluation of such
influence is essential for the design and improvement of
stages. A systematic approach to modeling the dynamic
accuracy of a nano-precision positioning stage is
developed in this work by integrating a multi-rigid-body
dynamic model of the mechanical system and measure-
ment system models. The influence of structural and
dynamic parameters, including aerostatic bearing
configurations, motion plane errors, foundation vibrations,
and positions of the acting points of driving forces, on
dynamic accuracy is investigated by adopting the H-type
configured stage as an example. The approach is
programmed and integrated into a software framework
that supports the dynamic design of nano-precision
positioning stages. The software framework is then applied
to the design of a nano-precision positioning stage used in
a packaging lithography machine.

Keywords nano-precision positioning stage, analysis and
design, structural and dynamic parameters, dynamic
accuracy, systematic modeling

1 Introduction

Nano-precision positioning stages have been widely

applied in semiconductor fabrication equipment, high-
precision machine tools, and biomedical instruments to
meet the requirements of large-range motion with high
speed and extreme precision. The accuracy of nano-
precision positioning stages has increased continually and
reached the level of sub-nanometer in the past decades
[1–3]. Emerging technologies, such as direct drive, floating
support, flexible structures, and vibration isolation, have
been utilized in nano-precision positioning stages to
eliminate friction and reduce vibration transmission
[2,4–7]. Thus, a nano-precision positioning stage is
featured by a rigid-flexible coupling system, whose
complex dynamic behavior is strongly determined by
structural and dynamic parameters, such as mass properties
of the moving parts, floating bearing configurations, form
errors of motion planes, and foundation vibrations [7–9].
This complex dynamic behavior not only exerts a
significant influence on motion accuracy but also varies
the measurement beam paths of interferometers, which in
turn affects measurement accuracy. A quantitative evalua-
tion of the effects of these factors is crucial in designing
mechanical systems of nano-precision positioning stages.
However, understanding of the factors that affect dynamic
errors, the extent of the effect, and the mechanisms behind
the effect remains unknown. Therefore, a parameterized
system accuracy model that considers multiple structural
design factors and integrates dynamics and measurement is
essential to achieve a comprehensive analysis of dynamic
accuracy.
Many researchers have focused on addressing such

issues and attempted to build system models for analyzing
accuracy characteristics. The dynamic characteristics of
ultra-precision motion systems and the influence of
structural design factors on these dynamic characteristics
have been investigated. For example, Chen et al. [10] and
Li et al. [11] conducted a numerical analysis to investigate
the influence of gas slip effects, gas supply pressure, and
gap parameters on the bearing capacity characteristics of
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aerostatic bearings. He and Chen [12], Chen and Li [13],
and Bao and Mao [14] established dynamic models of
ultra-precision positioning stages, including equivalent
models of aerostatic bearings, and analyzed the influence
of the stiffness characteristics of aerostatic bearings on the
dynamic behavior of the stages. Denkena et al. [15]
established a finite element (FE) model of an ultra-
precision positioning system and applied model order
reduction to obtain a state space model for compensating
dynamic errors. Li et al. [16] used an FE model to analyze
and optimize the natural frequency of a micro grinding
machine tool structure that contains a vertical motion
stage. The H-type structural configuration is typical and
popular in nano-precision positioning stages [2,17,18]. For
the H-type stage, Chen et al. [19] proposed an assumed-
mode method based on simplified mode shapes to
formulate a dynamic model that considers beam flexibility.
Kilikevičius and Kasparaitis [20] built an FE model of the
H-type stage in an angle measurement comparator and
investigated the influence of vibrations on carriage
deformations, which increase the angle calibration error,
by a modal analysis. However, these studies focused on
specific instances of components and systems, and the
analysis results are presented in the form of natural
frequency, modal shapes, and transfer functions. Hence,
they lack direct representations of motion and measure-
ment result errors.
Researchers have also focused on the influence of

structural design factors on the generation and propagation
of motion and measurement errors. For example, for multi-
axis precision machines, Zhou et al. [21], Guo et al. [22],
Chen et al. [23], and Tian et al. [24] established mapping
relationships between the main geometric errors on each
axis and tool positioning accuracy and achieved system
error compensations. Zhang et al. [25] and Cheng et al.
[26] achieved optimal allocation of the geometric toleran-
ces of each motion axis in multi-axis precision machines
by analyzing the influence of geometric errors in the main
structural parts on tool positioning errors. Liu et al. [27]
established an error model of an H-type ultra-precision
positioning stage that considers error factors, such as
straightness, thermal deformation, structural deformation,
and variations in air bearing gaps to evaluate measurement
uncertainty. Gao et al. [28–30] analyzed the influence of
the geometric and installation errors of interferometers and
reflectors on measurement results by using a simplified
model of the measurement beam path of interferometers;
they designed a novel six-degree-of-freedom (6-DOF)
measurement method for an ultra-precision motion plat-
form and optimized the geometric tolerance allocation.
Teng et al. [31] and Wen et al. [32] established an
interferometer measurement model that considers the
orientation errors of reflector mirrors to compensate the
result errors of the measurement system of the ultra-
precision motion platform. By analyzing laser ray paths
affected by linear and angular errors of interferometers and

optics, Liu et al. [33] developed a 6-DOF geometric error
measurement method for a long linear stage.
However, most of the error analyses in these studies

either considered only the static error factors in structures,
or simplified dynamic error factors into static error factors.
These analyses lacked the evaluations of the influences of
static error factors on the dynamic behavior of the
mechanical systems and the resulting dynamic errors in
motion and measurement.
It is essential to model and simulate a large number of

system instances with various design factor configurations
to comprehensively analyze the influence of structural and
dynamic design factors on system dynamic errors. There-
fore, a systematic accuracy modeling method should be
parameterized and modularized. Modifying parameter
values and replacing modules can rapidly modify design
factors, such as aerostatic bearing configurations, mass
properties of main structural parts, flatness errors of motion
planes, external excitations, and even the configurations of
measurement and mechanical systems. In the above-
mentioned studies, accurate models were built for specific
and detailed instances of systems and components.
However, these models are complex. Integrating them
into a systematic accuracy model, modifying their design
factors, and changing their system configurations are
difficult.
A parameterized dynamic accuracy model of the H-type

nano-precision positioning stage is built in the current
study, and the effects of structural design factors on the
dynamic errors are analyzed comprehensively. The system
dynamic accuracy model integrates the multi-rigid-body
dynamic model of the mechanical system and the
measurement models. Nonlinear stiffness models of
aerostatic bearings are built in the dynamic model, which
consider the influence of the flatness errors of motion
planes. Homogeneous transformation matrices, which
represent the pose of the plane mirrors with respect to
the interferometers, are used as interfaces to connect the
dynamic model and measurement models. The effects of
the positions of acting points of the driving and aerostatic
bearing supporting forces, the nonlinear stiffness of
aerostatic bearings, the motion plane errors, and the
foundation vibrations on the dynamic errors are analyzed
based on the system dynamic accuracy model. The
systematic modeling and analysis approaches are pro-
grammed as the parameterized model templates of key
modules in the system dynamic accuracy model and the
simulation scripts for dynamic error analysis. The model
templates and simulation scripts are integrated into the
prototype system of a software framework supporting the
dynamic design of nano-precision positioning stages.
The remaining parts of this work are organized as

follows. The modeling approach for the dynamic accuracy
of the H-type stage is introduced in Section 2. The
influence of structural and dynamic design factors on
dynamic errors is analyzed in Section 3. In Section 4, the
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modeling and analysis approach is programmed and
integrated into a software framework supporting the
dynamic design of nano-precision positioning stages.
The conclusions are drawn in Section 5.

2 Dynamic accuracy modeling of H-type
nano-precision positioning stage

2.1 Structural and measurement configurations of an H-type
nano-precision positioning stage

An H-type nano-precision positioning stage is investi-
gated, which adopts a single stage configuration to achieve
nano-precision motion in x, y, and Rz directions. The
movement range of the H-type stage is 200 mm. The
measurement resolution of the interferometer system is
0.15 nm. Within 0.5 s after completing a stepping motion,
the mean of the positioning error is less than 20 nm, and the
maximum standard deviation is less than 35 nm.
As shown in Fig. 1, the H-type stage consists of a base, a

beam, and a slider. The beam is driven by two x-direction
linear motors, and the beam can move in the x direction and
rotate in a small range in the Rz direction. The slider is
driven by a y-direction linear motor and can translate on
the beam in the y direction. A micro-motion stage is
usually attached to the slider to achieve nano-precision
movement in a small range.
A 3-DOF measurement system based on interferometers

is built in the H-type stage. The measurement system uses a

2+ 1 layout that includes a one-axis interferometer in the x
direction and a two-axis interferometer in the y direction
[29]. The interferometers are fixed on the base, and the
long plane mirrors are mounted on the slider. The
translational displacements along x and y directions and
the rotational displacement around the z axis can be
measured. Hence, x, y, and Rz are defined as controlled
directions, and z, Rx, and Ry are defined as non-controlled
directions.
The base is supported by vibration isolators to isolate

vibrations transferred from the foundation. The beam is
supported on the base by AB_bb_v1 and AB_bb_v2. Each
group consists of two aerostatic bearings arranged along
the x direction and is preloaded by permanent magnets [2].
AB_bb_h is attached to the beam with flexure hinges and
adsorbed on the x guide mounted on the base. AB_bb_h
consists of six bearings and is also preloaded by permanent
magnets. The slider is supported on the base by AB_bs_v,
which consists of four bearings and is preloaded by air
vacuum [2]. AB_bs_h is mounted on the slider and
adsorbed on the y guide on both sides of the beam.
AB_bs_h consists of four bearings and is preloaded by an
opposite bearing arrangement [2].

2.2 Dynamic modeling of the H-type stage

The dynamic topology of the H-type stage is shown in
Fig. 2. It includes three rigid bodies, namely, base, beam,
and slider. The base is affected by foundation vibrations.
Ow is defined as the global reference frame. Body-fixed

Fig. 1 Structure of the H-type nano-precision positioning stage
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frames Obs, Obm, and Osc are placed at the mass centers of
the base, beam, and slider, respectively. Body-fixed frame
Ot is placed on the slider to represent the pose (position and
orientation) of the operating point during system motion.
Body-fixed frames Oix and Oiy are fixed on the base
and represent the poses of the x- and y-direction
interferometers, respectively. Body-fixed frames Omx and
Omy are placed on the slider and represent the poses of the
x- and y-direction plane reflector mirrors, respectively.
The aerostatic bearing group can be modeled as a

combination of distributed single bearing models. As
shown in Fig. 3, a single aerostatic bearing can be
equivalently modeled as a spring with nonlinear stiffness
[14,34]. In the aerostatic bearing model, one acting point is
fixed on the moving part and defined as Fab. The other
acting point is defined as B#ab and can slide on the
supporting surface as the moving part moves. The flatness
error of the supporting surface is considered. ez is the
normal distance between B#ab and its projection Bab on the
ideal supporting surface. The normal direction of the

supporting surface changes minimally during system
motion. Hence, we can assume that the direction of the
supporting force is always perpendicular to the ideal
supporting surface.
If the supply gas pressure is stable, then the relationship

between steady supporting force FKab and gas film
thickness h in an aerostatic bearing model can be fitted
by Richards model. The steady supporting force can be
presented as

FKab ¼
a

�
1þ eðb – chÞ

�1
d

¼ a
�
1þ eðb – cðzF – zB – ezÞÞ

�1
d

, (1)

where zF and zB are the z-direction coordinates of Fab and
Bab, and a, b, c, and d are the coefficients of Richards
model and can be obtained by fitting the experimental or
simulation results of aerostatic bearing capacity. As shown
in Fig. 4, the accuracy of Richards model can be verified by
citing experimental data from Ref. [35].
The displacements of the base, beam, and slider can be

Fig. 2 Dynamic topology of the H-type nano-precision positioning stage

Fig. 3 Equivalent dynamic model of a single aerostatic bearing
Fig. 4 Experimental data of aerostatic bearing capacity [35] and
fitting curve based on Richards model
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represented by the generalized coordinates qbs, qbm, and
qsc, respectively. The dynamic model of the H-type stage
can be expressed in the matrix form:

M
d2q

dt2
þ C

dq
dt

þ Kq ¼ F, (2)

where q ¼ ½qbs;qbm;qsc�, t is the time, M is the generalized
mass matrix, C is the damping matrix, K is the stiffness
matrix, and F is the external excitation that includes
driving forces and foundation vibrations.
The parameterized system dynamic model has been

verified to be correct by establishing a dynamic model
based on the parameterized model for an instance of
H-type nano-precision positioning stage and by comparing
its mode results with the FEM reference results, which
have been verified through experiments.

2.3 Measurement model of an interferometer

The ideal measurement beam path of a single-axis plane
mirror interferometer is presented in Fig. 5(a) [36]. The
plane mirror reflector and the interferometer have the same
orientation. R is the mirror image of the cube corner R#

relative to the polarizing beam splitter. Hence, the beam
path lengths have the following relation: jPC#j ¼ jPCj,
jD#Qj ¼ jDQj. The beam transmitted from the interferom-
eter is reflected back by the plane mirror. After being
reflected by the beam splitter and cube corner, it is
transmitted to the plane mirror again and reflected back to
the receiver finally. The beam path lengths have the
following relation: jABj ¼ jBCj ¼ jDEj ¼ jEFj.
The actual measurement beam path is presented in

Fig. 5(b). The plane mirror is deflected relative to the
interferometer. Thus, the measurement beam is not
perpendicular to the mirror. The measurement beam is
returned to the receiver through the path A↕ ↓B↕ ↓P↕ ↓C#
↕ ↓D#↕ ↓Q↕ ↓E↕ ↓F.
Body-fixed frame OM_xyz is placed at the center of the

plane mirror surface, whose z-axis is perpendicular to the
mirror surface. Body-fixed frame OI_xyz is defined on the
output aperture of the interferometer. Its z-axis is
perpendicular to the aperture surface, parallel to the exit
beam, and coincides with the central axis of R. Body-fixed
frame OA_xyz is placed at the exit Point A of the
measurement beam path. Its orientation is consistent with
that of OI_xyz.

Fig. 5 Measurement beam path of a single-axis plane mirror interferometer. (a) Ideal beam path; (b) actual beam path
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The pose of coordinate frame Oj with respect to another
coordinate frame Oi can be represented as homogeneous
transformation matrix i

jT . In frame Oi_xyz, a point can be

represented as Pi ¼ ðxi,yi,zi,1ÞT, and a vector can be
represented as V i ¼ ðxi,yi,zi,0ÞT.
If the distance between the output aperture and R is Ln

and the distances between exit Point A and the central axis
of R are xIA and yIA, then the homogeneous transformation
matrix from OM_xyz to OA_xyz is

A
MT ¼ ðIAT Þ – 1$IMT ¼

1 0 0 xIA

0 1 0 yIA

0 0 1 – Ln

0 0 0 1

2
66664

3
77775

– 1

$IMT : (3)

In the frame OA_xyz, the coordinates of Point A are

PA
A ¼ ð0,0,0,1ÞT. The coordinates of the originM of the

frame OM_xyz are PA
M ¼ A

MT $PM
M ¼ A

MT $ð0,0,0,1ÞT. The
normal vector of the plane mirror surface is
VA

Mn ¼ A
MT $VM

Mn ¼ A
MT $ð0,0, – 1,0ÞT.

The equation of plane mirror surface SAM is

VAí
Mn$ðPA –PA

M Þ ¼ 0: (4)

Point B is the intersection of SAM and the planes ðxA ¼ 0Þ
and ðyA ¼ 0Þ. Hence, its coordinates in the frame OA_xyz

are

PA
B ¼

VAí
Mn

0 1 0 0

1 0 0 0

0 0 0 1

2
66664

3
77775

– 1
VAí

Mn$P
A
M

0

0

1

2
66664

3
77775
: (5)

If LBn is the normal vector of the plane mirror surface
and passes Point B, then Point A1, which is the symmetric
point of Point A with respect to LBn, is on the reflected
beam path BC. The coordinates of Point A1 are

PA
A1 ¼ 2PA

B – 2
VAí

Mn$P
A
B

VAí
Mn$V

A
Mn

$VA
Mn –P

A
A: (6)

Point C is the intersection of R and beam path BC, and
its coordinates are

PA
C ¼ –

ð0,0,1,0ÞPA
B

ð0,0,1,0ÞðPA
A1 –P

A
BÞ
$ðPA

A1 –P
A
BÞ þ PA

B: (7)

According to the characteristic of the cube corner, exit
Point D and incident Point C are symmetrical with respect
to the central axis of R. Incident beam BC is in the same
direction as exit beam DE. Hence, the coordinates of
Points D, E, and F are

PA
D ¼ ðIAT Þ – 1$

– 1 0 0 0

0 – 1 0 0

0 0 1 0

0 0 0 1

2
66664

3
77775
$ðIAT $PA

CÞ, (8)

PA
E ¼ VAí

Mn$ðPA
M –PA

DÞ
VAí

Mn$ðPA
B –P

A
CÞ

$ðPA
B –P

A
CÞ þ PA

D, (9)

PA
F ¼

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

2
66664

3
77775
$PA

E: (10)

The lengths of the beam paths, jABj, jBCj, jDEj, and
jEFj, can be obtained according to the coordinates of
Points A, B, C, D, E, and F. If the beam path in the cube
corner is ignored, then the total length of the measurement
beam path is

L ¼ jABj þ jBCj þ jDEj þ jEFj: (11)

The total length of the measurement beam path at the
initial time is L0, and it becomes Lt at a certain moment t.
The interferometer’s reading is

MLt ¼ ðLt – L0Þ=4: (12)

In the measurement model of the single-axis plane
mirror interferometer, all parameters, except I

MT , are
constant structural parameters of the interferometer.
Thus, the measurement model can be packaged as a
function fmðÞwith I

MT as the input parameter and can be
expressed as

ML ¼ fmðIMT Þ: (13)

2.4 Structure-motion-measurement integrated modeling for
system accuracy analysis

Generalized coordinates qbs, qbm, and qsc can be calculated
by solving the dynamic model of the H-type stage.
Homogeneous transformation matrix w

i T can be estab-
lished (i = bs, bm, sc) based on qbs, qbm, and qsc. Constant
homogeneous transformation matrix sc

t T can also be
established according to the structural features of the
slider. Hence, during motion simulation, homogeneous
transformation matrix w

t T can be calculated in real time
based on w

scT and sc
t T . Given that the rotation angle of the

slider is small during system motion, the displacements of
the operating point with respect to Ow can be obtained
from the matrix element of w

t T .
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w
t T ¼ w

scT$
sc
t T �

1 – �wzt �wyt xwt

�wzt 1 – �wxt ywt

– �wyt �wxt 1 zwt

0 0 0 1

2
66664

3
77775
: (14)

The homogeneous transformation matrices of the
interferometers and plane reflector mirrors relative to Ow
can also be calculated by

w
mxT ¼ w

scT
sc
mxT ,

w
ixT ¼ w

bsT
bs
ixT ,

w
myT ¼ w

scT
sc
myT ,

w
iyT ¼ w

bsT
bs
iyT ,

8>>>>><
>>>>>:

(15)

where bs
ixT and bs

iyT represent the installation poses of the
x- and y-direction interferometers relative to Obs and

sc
mxT

and sc
myT represent the installation poses of the x- and

y-direction plane mirrors relative toOsc. These matrices are
all constant and can be established according to the
structural features of the H-type stage.
Multi-axis plane mirror interferometers are often used in

nano-precision positioning stages [28–32,36]. The
measurement model of a multi-axis interferometer can
be composed of multiple models of single-axis
interferometers. The ii

miT required for each single-axis
interferometer model can be converted from w

i T and w
mT ,

which represent the overall poses of the interferometer and
plane mirror. Given that the matrices representing the
overall poses of the interferometers and plane mirrors can
be obtained from the dynamic model by Eq. (15),
interferometer models can be connected to the dynamic
model with matrices w

ixT ,
w
iyT ,

w
mxT , and

w
myT as interfaces.

The interferometer readings in the measurement system
can be obtained by

X ¼ fmð ixmxTÞ ¼ fmðð wixTÞ – 1 w
mxTÞ,

Y1 ¼ fmð iy1my1TÞ ¼ fmðð wiy1TÞ – 1 w
my1TÞ

¼ fmðð wiyT iy
iy1TÞ – 1ð wmyT

my
my1TÞÞ,

Y2 ¼ fmð iy2my2TÞ ¼ fmðð wiy2TÞ – 1 w
my2TÞ

¼ fmðð wiyT iy
iy2TÞ – 1ð wmyT

my
my2TÞÞ:

8>>>>>>>>><
>>>>>>>>>:

(16)

The reading outputs from the interferometers models are
converted into the displacement measurement results of the
operating point by a displacement solving algorithm
corresponding to the layout of interferometers [29,37]. If
Db is the distance between the two y-direction measure-
ment beam axes, then displacement measurement results x,
y, and �z are calculated as

x

y

�z

2
64

3
75 ¼

1 0 0

0
1

2

1

2

0
1

Db

– 1

Db

2
666664

3
777775

X

Y1

Y2

2
64

3
75: (17)

The system dynamic model and the interferometer
measurement models can be integrated using Eqs. (15) and
(16). After combining with Eqs. (14) and (17) and other
modules, a system dynamic accuracy model can be created
to analyze the motion errors and the errors of displacement
measurement results during system motion, as shown in
Fig. 6. The signals of ideal displacements and ideal
accelerations are outputted from the movement trajectory
generator. The ideal acceleration signals are converted into
the driving forces of the linear motors by the driving force
assignment module and applied to the system dynamic
model. During system motion simulation, the displace-
ments of the operating point are outputted from the system
dynamic model in real time together with the values of w

ixT ,
w
iyT ,

w
mxT , and

w
myT . System motion errors are calculated

based on the outputted displacements. The values of w
ixT ,

w
iyT ,

w
mxT , and

w
myT are received by the interferometer

measurement models and used to calculate the displace-
ment measurement result errors.
Random foundation vibration excitations are outputted

from the foundation vibration generator and applied to the
system dynamic model. The flatness error generator
receives the current coordinates of each aerostatic bearing
model and returns the flatness error value ezi required for
calculating the supporting force of the aerostatic bearing
model. To emphasize the characteristics of the mechanical
system, the system dynamic accuracy model is open-loop
and does not include feedback control.

3 Quantitative analysis of the influence of
structural design factors

The important structural design factors of nano-precision
positioning stages include the positional deviations of the
driving force acting points and center points of aerostatic
bearing groups with respect to the mass centers of main
structural parts, the stiffness characteristics of aerostatic
bearings, the flatness tolerances of motion planes, and the
foundation vibration characteristics. These design factors
affect the system dynamic characteristics and are the main
design goals and constraints in main structure design,
aerostatic bearing selection, motion plane machining, and
vibration isolation system design. In this section, the
influences of these design factors on system motion and
measurement result errors are analyzed using the system
dynamic accuracy model.
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3.1 Influence of locations of driving force acting points

3.1.1 Simulation setup

In this section, ΔzFx is defined to represent the z-direction
displacements of the acting points of the x-direction
driving forces with respect to the mass center of the
x-direction moving part (beam+ slider). Similarly, the
displacements of the acting point of the y-direction driving
force relative to the mass center of the slider are defined as
ΔxFy and ΔzFy. By setting the position parameters of the
acting points of driving forces in the parameterized system
dynamic accuracy model, the values of ΔzFx, ΔxFy, and
ΔzFy are changed, and their influences on the motion errors
and measurement result errors are simulated and analyzed.
During motion simulation, the operating point com-

pletes a “scan–step–scan” movement, and its trajectory is
shown in Fig. 7. During scanning, the maximum
acceleration (amax) is 9.81 m/s2, and the scanning speed (v)
is 250 mm/s. During stepping, the maximum acceleration
is 6.03 m/s2, and the maximum stepping speed is

400 mm/s. The trajectory is employed, and the errors in
different phases of the motion are investigated in the
subsequent simulations.

3.1.2 Results and discussion

As shown in Fig. 8, the positioning errors of the original
model increase constantly in x and y directions because the
driving force assignment module in the system dynamic
accuracy model is designed based on the assumption that
the joints in the mechanical system are ideal. In the driving
force assignment module, the effect of the flexibleness of
the aerostatic bearings and flexible hinges is disregarded,
thus causing driving errors. Hence, the beam and slider fail
to stop accurately at the end of the scanning and stepping
movements.
The driving force in the x direction is transferred to the

slider through the aerostatic bearing group AB_bs_h. The
position of AB_bs_h is not subject to ΔzFx. Hence, ΔzFx
has little inference on the dynamic errors during the
accelerating and decelerating phases in the scanning

Fig. 6 System dynamic accuracy model

262 Front. Mech. Eng. 2019, 14(3): 255–272



Fig. 7 Movement trajectory in system simulation

Fig. 8 Simulation results of dynamic errors corresponding to different positions of driving force acting points
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movements. However, ΔzFx affects the pose oscillation of
the beam during the working phases in the scanning
movements, consequently affecting the vibrations of the
slider through AB_bs_h. The slider is directly driven by
the y-direction driving force. Thus, ΔxFy and ΔzFy have a
significant influence on the dynamic errors during the
stepping movement.
The detailed analysis results of the effects on dynamic

errors are given in Table 1, which includes the motion
errors in controlled directions ex, ey, and e�z, the motion
errors in non-controlled directions ez, e�x, and e�y, and the
measurement result errors emx, emy, and em�z. In Table 1,
Sca signifies the error in the accelerating and decelerating
phases of the scanning motion; and Scw signifies the error
in the working phases of the scanning motion; St signifies
the error in the stepping motion; and PE signifies the
positioning error after the scanning and stepping motion.
The motion errors in Rx and Rz directions affect the

measurement result errors in y direction, as shown in
Fig. 8, because the rotations of the slider in Rx and Rz
directions change the incident angle of the y-direction
measurement beam on the planar mirror. Hence, the length
of the measurement beam path and the displacement
measurement result in y direction are changed. Similarly,
the measurement result error in x direction is affected by
the motion errors in Ry and Rz directions.

3.2 Influence of aerostatic bearing group configurations

3.2.1 Simulation setup

In this section, the relationship between system dynamic
errors and the positions of the center points of aerostatic
bearing groups is discussed. The center point of the
combination of AB_bb_v1 and AB_bb_v2 is defined as
Pbbv, and the center points of AB_bb_h, AB_bs_v, and
AB_bs_h are defined as Pbbh, Pbsv, and Pbsh, respectively.
The x- and y-direction displacements of Pbbv relative to the
mass center of the beam are defined as Δxbbv and Δybbv,
respectively. Δxbbh and Δzbbh represent the displacements
of Pbbh in x and z directions with respect to the mass center
of the beam. Similarly, Δxbsv and Δybsv represent the x- and
y-direction displacements of Pbsv relative to the mass
center of the slider, and the displacements of Pbsh relative
to the mass center of the slider are defined as Δxbsh, Δybsh,

and Δzbsh. By modifying the layout of each aerostatic
bearing group in the parameterized dynamic accuracy
model, different sets of values are assigned to the
displacements, and corresponding system errors are
simulated and analyzed.
Next, the effects of aerostatic bearing stiffness on system

dynamic errors are discussed. Kbbv is defined to represent
the stiffness of the bearings used in AB_bb_v1 and
AB_bb_v2; Kbbh, Kbsv, and Kbsh represent the stiffness of
the bearings in AB_bb_h, AB_bs_v, and AB_bs_h,
respectively. By setting the values of Kbbv, Kbbh, Kbsv,
and Kbsh in the parameterized system dynamic accuracy
model, the effects of the stiffness of each aerostatic bearing
group on dynamic errors are simulated and analyzed.
The influence of the nonlinear stiffness characteristics of

aerostatic bearing on system dynamic errors is also
discussed.
The effects of two kinds of equivalent aerostatic bearing

models on system dynamic errors are compared. In one
model, the stiffness value of aerostatic bearing is constant.
The other model is the equivalent dynamic model with
nonlinear stiffness and is based on Richards model. Two
system models using the aerostatic bearing models are
built. By setting the preloading parameter values, the rated
operating stiffness values of the nonlinear models in one
system model are consistent with the stiffness values of the
corresponding constant models in the other system model.
The two system models are simulated under conditions of
no preloading error, errors in the preloading force of
magnetic and vacuum preloading, and errors in the initial
gas film thickness of the opposite bearing arrangement.
The effects of different nonlinear stiffness models with

the same rated operating stiffness are also compared, as
shown in Fig. 9. Models 1 and 2 use the same type of
aerostatic bearing, but the supply pressures are different.
Model 3 uses another type of aerostatic bearing. The rated
operating stiffness of Model 1 is close to its maximum
stiffness.

3.2.2 Results and discussion

Δxbbv, Δybbv, Δxbbh, Δzbbh, and Δxbsh do not have a
substantial effect on system dynamic errors. As shown in
Figs. 10–12, Δxbsv and Δybsv mainly affect static balance
errors and static measurement result errors, and Δybsh and
Δzbsh affect dynamic errors in the acceleration and

Table 1 Effects of the positions of driving force acting points on dynamic errors

Displacement of the driving
force acting point

ex ey e�z ez e�x e�y emx emy em�z

ΔzFx ↓ Sca ↑, Scw ↓,
St ↑

Scw ↓ Sca ↑, Scw ↓,
St ↑

Scw ↓ Scw ↓ Sca ↑, Scw ↓,
St ↑

Sca ↑, Scw ↓,
St ↑

Sca ↑, St ↑ Sca ↑, Scw ↓,
St ↑

jΔxFyj ↓ PE ↓ (ΔxFy↓) St ↑ St ↓ St ↓ (ΔxFy↓) St ↑

jΔzFyj ↓ St ↓ St ↓ St ↓ (ΔzFy↓) St ↓ St ↓
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deceleration phases of scanning movements. Δybsh≠0 is
one of the main reasons for the increasing positioning error
in y direction. Detailed analysis results on the effects on
dynamic errors are given in Table 2.
Kbbv and Kbbh have minimal influence on dynamic

accuracy. Increasing Kbsv and Kbsh reduces not only the
errors in the stepping motion and the acceleration and
deceleration phases of the scanning motions, but also the
vibrations during the working phases in the scanning

motions, as shown in Table 3. AL signifies the error of the
entire process; SS signifies the error in the entire scanning
and stepping motions; and SB signifies the static balance
error.
Figure 13 shows the comparison results of the dynamic

errors corresponding to the constant stiffness and nonlinear
stiffness models. During the stepping motion and
acceleration and deceleration phases of scanning motions,
the maximum errors corresponding to the nonlinear
stiffness model are slightly smaller than the ones
corresponding to the constant stiffness model, and the
difference is about 5–200 nm/nrad. During the working
phases of scanning movements, the vibrations correspond-
ing to the nonlinear stiffness model are larger than the ones
corresponding to the constant stiffness model, and the
difference is approximately 3–110 nm/nrad.
In the stepping movement and acceleration and

deceleration phases of scanning movements, the slider is
pushed by the driving forces, thus causing the aerostatic
bearing groups fixed on it to deflect and shift in the
supporting direction. The change in gas film thickness
increases the total stiffness of the bearing groups
depending on the nonlinear relationship between film
thickness and bearing stiffness. Hence, the errors are
reduced correspondingly. During the working phases of

Fig. 10 Simulation results of the effects of Δxbsv and Δybsv on dynamic errors

Fig. 9 Aerostatic bearing models with different stiffness
characteristics. 1 bar = 105 Pa

Fig. 11 Simulation results of the effects of Δybsh on dynamic errors
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scanning movements, the vibrations of the beam and slider
cause oscillations of gas film thickness. Thus, the bearing
stiffness fluctuates constantly, thereby slowing the vibra-
tion attenuation.

If errors exist in preloading forces or initial film
thicknesses, then the operating stiffness of aerostatic
bearing groups will exhibit a large deviation from the
rated value when the system reaches static balance. Thus,

Fig. 12 Simulation results of the effects of Δzbsh on dynamic errors

Table 2 Effects of the center point positions of aerostatic bearing groups on dynamic errors

Displacement of
the center point

ex ey e�z ez e�x e�y emx emy em�z

jΔxbsvj ↓ SB ↓ SB ↓, Scw ↓, Sca ↓
(Sca!min, when
Δxbsv≈10 mm)

SB ↓ SB ↓ SB ↓, St ↓

jΔybsvj ↓ SB ↓ SB ↓, St ↓ SB ↓ SB ↓ SB ↓, Sca ↓, Scw ↓

jΔybshj ↓ PE ↓ Sca ↓, Scw ↓ (Δybsh↓) Sca ↑ Sca ↓

jΔzbshj ↓ Sca ↓, Scw ↓ Sca ↓ Sca ↓ St ↑ Sca ↓

Table 3 Effects of the stiffness of aerostatic bearings on dynamic errors

Stiffness of
aerostatic
bearing

ex ey e�z ez e�x e�y emx emy em�z

Kbsv ↑ AL ↓ St ↓, SB ↓ Scw ↓ St ↓ St ↓, SB ↓ Sca ↓, Scw ↓, SB ↓ Sca ↓, Scw ↓, SB ↓ St ↓, SB ↓ SS ↓, SB ↓

Kbsh ↑ AL ↓ PE ↓ SS ↓, SB ↓ Scw ↓ Scw ↓, St ↓ Scw ↓, St ↓

Fig. 13 Simulation results of motion errors corresponding to constant stiffness and nonlinear stiffness models
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the difference between the error results corresponding to
the constant and nonlinear stiffness models will become
more obvious than before, as shown in Figs. 14 and 15.
As shown in Fig. 16, even if the rated operating stiffness

is the same, the system dynamic errors caused by different
nonlinear stiffness characteristics may differ. The error
results of Model 1 are close to the results of the constant
model. Operating stiffness is not easily affected by the
variation in gas film thickness when the rated operating
stiffness is close to the maximum stiffness.

3.3 Influence of flatness errors of motion planes

3.3.1 Simulation setup

The effects of flatness errors of different motion planes on
system dynamic errors are discussed in this section.

The x-y plane on the base is the one where AB_bb_v1,
AB_bb_v2, and AB_bs_v move on, and its flatness error is
identified as ef_bs_xy. AB_bb_h moves on the x-direction
guide plane fixed on the base, and the flatness error of the
plane is identified as ef_bs_x. The y-direction guide planes
for AB_bs_h are on both sides of the beam, whose flatness
error is identified as ef_bm_y.
By setting the parameter values of the flatness error

generator in the system dynamic accuracy model, multiple
sets of values are assigned to ef_bs_xy, ef_bs_x, and ef_bm_y to
simulate the system models with different flatness errors.

3.3.2 Results and discussion

If ef_bs_x≠0, the aerostatic bearing group AB_bb_h will
vibrate in y, Rx, and Rz directions. However, the vibrations

Fig. 14 Simulation results of motion errors corresponding to different preloading errors

Fig. 15 Simulation results of motion errors corresponding to different initial film thickness errors
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will be isolated by the flexure hinges and the bearing group
AB_bs_h and difficult to be transferred to the slider. Thus,
ef_bs_x has little effect on the dynamic errors, as shown in
Fig. 17. ef_bs_xy and ef_bm_y cause the vibrations of
AB_bs_v and AB_bs_h, which directly affect the slider.
Hence, ef_bs_xy and ef_bm_y have much greater effects on
system errors than ef_bs_x. The specific effects on dynamic
errors are given in Table 4.
If the plane of motion is not flat, the variation amplitude

of the gas film thickness of aerostatic bearings will be
larger during system motion, and the influence of the
nonlinear stiffness characteristic on the dynamic error will
be more obvious. The difference between the maximum
dynamic errors of the nonlinear stiffness and constant
stiffness models is about 0.01–1.1 mm/mrad.

3.4 Influence of foundation vibrations

3.4.1 Simulation setup

System errors affected by foundation vibrations with
different amplitudes are discussed in this section. By
setting the parameter values of the foundation vibration
generator, multiple sets of vibration signals, which are
white noise excitations with diverse amplitudes, are
generated. These vibration signals are applied to the base
in the system accuracy model to simulate different

foundation vibration conditions. In the system simulations,
flatness errors are assumed to exist on all motion planes,
that is, ef_bs_xy, ef_bs_x, and ef_bm_y are not equal to 0.

3.4.2 Results and discussion

The error simulation results of the system model with
foundation vibrations and flatness errors on motion planes
are illustrated in Fig. 18. The disturbances in x, y, and Rz
directions caused by foundation vibrations cause the open-
loop motion control to fail. The slider deviates from the
predetermined trajectory and cannot stop accurately. The
motion errors increase as the vibration amplitudes increase.
Hence, foundation vibrations have a significant influence
on the motions in x, y, and Rz directions. Compared with
the flatness errors on motion planes, foundation vibrations
have fewer effects on the motion errors in z, Rx, and Ry
directions. One of the main reasons is that the stiffness of
aerostatic bearing groups is large enough that the slider can
quickly follow the vibration of the base. Thus, the relative
displacements between the base and slider caused by the
foundation vibrations are small. These relative displace-
ments increase the variation of the gas film thickness of the
aerostatic bearing group AB_bs_v, which makes the effects
of the nonlinear stiffness characteristics of aerostatic
bearings highly obvious. The difference between the
maximum dynamic errors of the nonlinear stiffness and
constant stiffness models is increased to 0.05–1.6 mm/mrad.

Fig. 16 Simulation results of motion errors corresponding to different nonlinear stiffness models. 1 bar = 105 Pa

Table 4 Effects of flatness errors of motion planes on dynamic errors

Flatness error of motion plane ex ey e�z ez e�x e�y emx emy em�z

ef_bs_xy↓ SS ↓ SS ↓ SS ↓ SS ↓ SS ↓ SS ↓ SS ↓ SS ↓

ef_bm_y↓ St ↓, SB ↓,
PE ↓

SS ↓ SS ↓ SS ↓ SS ↓
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4 Method encapsulation and application

The methods to establish the system dynamic accuracy
model and quantitatively analyze the dynamic accuracy
and influence of structural design factors are programmed
and integrated into a prototype system of a software
framework supporting the dynamic design of nano-
precision positioning stages, as shown in Fig. 19. This
work was performed to extend the application of the
approach to other system instances and even other
configurations.
A lot of parameterized model templates of the key

components and modules in the system dynamic accuracy
model have been developed based on the systematic
modeling method. And these templates include dynamic
topologies of H-type and other configurations, equivalent
dynamic models of aerostatic bearings, single- and multi-
axis interferometer measurement models, displacement

solving algorithms corresponding to interferometers lay-
outs, foundation vibration generators, flatness error gen-
erators, and driving signal generators. Instance models of
the key components and modules can be rapidly generated
by using the model templates and can then be used to
assemble dynamic accuracy models for different system
instances. On the basis of the assembled system model,
the dynamic accuracy and influence of structural
design factors can be easily analyzed by calling on the
simulation scripts developed through the accuracy analysis
method.
The prototype system was applied to the design of a

stage used in a packaging lithography machine. The
designed structural scheme of the stage was modeled using
the model templates in the prototype system. The structural
and dynamic design factors in the parameterized system
model were modified to optimize the scheme. The
installation position of linear motors and the selection

Fig. 18 Simulation results of dynamic errors affected by foundation vibrations with different amplitudes

Fig. 17 Simulation results of dynamic errors corresponding to flatness errors on different planes
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and layout of aerostatic bearings were modified, which
have little impact on the structural design of other parts, as
shown in Table 5. In the optimized structural scheme, the
acting points of driving forces and the center points of
aerostatic bearing groups were closer to the mass center of
moving parts. The aerostatic bearing product applied in
AB_bs_h was replaced with the one that can reach higher
stiffness by slightly reducing the initial film thickness. The

stiffness characteristics and rated operating stiffness of the
modified bearing are shown in Fig. 20.
Without considering the motion plane error and the

foundation vibration, the system model of the optimized
scheme was simulated, and the positioning accuracy after
completing a stepping motion was investigated. As shown
in Table 6 and Fig. 21, the positioning accuracy was
improved.

Fig. 19 Design framework supporting the dynamic design of nano-precision positioning stages

Table 5 Structural parameters in the original and optimized schemes

Scheme ΔzFx /mm ΔxFy /mm Δxbsv /mm Δybsv /mm Δybsh /mm Bearing in AB_bs_h

Original – 17.8 10.5 10.2 – 3.8 – 3.8 Original bearing

Optimized – 5.0 5.0 5.0 – 2.0 – 2.0 Modified bearing

Fig. 20 Stiffness characteristics of the original and modified
bearings

Table 6 Simulation results of positioning errors of the original and optimized schemes

Scheme Minimum/nm Maximum/nm Mean/nm Standard deviation/nm

Original – 11.0 15.9 – 1.1 5.8

Optimized – 6.4 11.4 – 0.7 3.5

Fig. 21 Simulation results of positioning errors of the original
and optimized schemes
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5 Conclusions

A parameterized system dynamic accuracy model of a
nano-precision positioning stage is built. The system
dynamic accuracy model integrates the multi-rigid-body
dynamic model of the mechanical system and the
interferometer measurement models and can simulta-
neously calculate the motion and measurement result
errors of the operating point during system motion
simulation. In the system accuracy model, the homo-
geneous transformation matrices of the plane mirrors with
respect to the interferometers are used as the interfaces,
through which the interferometer measurement models can
be connected to the system dynamic model. In the system
dynamic model, an aerostatic bearing is equivalently
represented as a nonlinear spring whose acting point can
slide on the motion plane. Richards model is employed to
represent the nonlinear relationship between supporting
force and gas film thickness, and the flatness error of the
motion plane is considered.
Based on the system dynamic accuracy model, the

effects of the structural design factors on the motion and
measurement result errors are analyzed, including the
positions of the driving force acting points and the
center points of aerostatic bearing groups, the stiffness
characteristics of aerostatic bearings, the flatness errors of
motion planes, and the foundation vibrations. The analysis
results indicate that for the 2+ 1 layout 3-DOF inter-
ferometer measurement system, the measurement result
errors in the controlled directions may reach tens of
nanometers or nano-radians due to structural vibrations in
the non-control directions. The acting point of the y-
direction driving force and the center points of the
aerostatic bearing groups fixed on the slider should be as
close as possible to the mass center of the slider, which is
an effective means to reduce system dynamic errors. When
designing aerostatic bearings, the stiffness variation
during system motion caused by the nonlinear stiffness
characteristic of aerostatic bearing should be considered,
together with the resulting effects on system dynamic
errors.
The systematic modeling and analysis approach for

dynamic accuracy are programmed as simulation scripts
and parameterized model templates of key components and
modules. They are integrated into a design framework
supporting the dynamic design of nano-precision position-
ing stages. A stage used in a packaging lithography
machine is designed with the help of the framework.
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