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Abstract This paper presents a manufacturing cost
constrained topology optimization algorithm considering
the laser powder bed additive manufacturing process.
Topology optimization for additive manufacturing was
recently extensively studied, and many related topics have
been addressed. However, metal additive manufacturing is
an expensive process, and the high manufacturing cost
severely hinders the widespread use of this technology.
Therefore, the proposed algorithm in this research would
provide an opportunity to balance the manufacturing cost
while pursuing the superior structural performance through
topology optimization. Technically, the additive manufac-
turing cost model for laser powder bed-based process is
established in this paper and real data is collected to
support this model. Then, this cost model is transformed
into a level set function-based expression, which is
integrated into the level set topology optimization problem
as a constraint. Therefore, by properly developing the
sensitivity result, the metallic additive manufacturing part
can be optimized with strictly constrained manufacturing
cost. Effectiveness of the proposed algorithm is proved by
numerical design examples.

Keywords topology optimization, manufacturing cost,
additive manufacturing, powder bed

1 Introduction

Topology optimization is a mathematical method to
optimally distribute materials within a given design
domain subject to the physical boundary conditions [1].
Its key advantage is in exploring a larger design space
(compared to size and shape optimization) with faster

convergence (compared to global optimization). The past
few years have witnessed the rapid expansion of topology
optimization in covering increasingly more multidisciplin-
ary structural design problems [2,3]. On the other hand,
even though designers have greatly enjoyed the creative
design power of topology optimization, manufacturing
engineers often take issues with the organic shapes
produced by topology optimization being difficult or
even impossible to manufacture, even though many efforts
have been put into this aspect [4]. These days, additive
manufacturing (AM) technology emerges and has partially
relieved many of the manufacturability issues since the
layer-by-layer material deposition process of AM makes
manufacturing of any complex geometry much cheaper
and faster [5]. Hence, topology optimization for AM has
recently become very popular and has attracted attention
from both academia and industry. Many tough topology
optimization for AM issues have been addressed including
self-support design to eliminate need of the costly support
structure [6–11], material anisotropy issue to address the
tool path or build direction-induced anisotropic material
properties [12–16], multi-scale design to explore the
extreme design space enabled by AM [17–21], and many
others [22]. These achievements lead to a better marriage
between topology optimization and AM.
On the other hand, AM so far is still an expensive

technique compared with conventional subtractive
machining or casting for most parts. Based on our
experience collaborating with the industry, the authors
have received many requests to take manufacturing cost
into consideration when performing topology optimiza-
tion. However, no such research has been done even
though this topic is very useful to the industry. Hence, the
main motivation of this research is to develop a topology
optimization algorithm that has the manufacturing cost as a
constraint with regard to the powder bed-based metal AM
process.
So far, we have seen some works on AM cost estimation.

For instance, Ruffo et al. [23] developed the cost model for
low-to-medium volume laser sintering and a saw tooth
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shaped curve is derived of the cost per part on production
volume. Then, Ruffo and Hague [24] polished their model
by involving the situation of mixed part production.
Baumers et al. [25] developed the estimation models of
build time, cost, and energy consumption of the EOS
M270 Direct Melting Laser Sintering (DMLS) system,
wherein the full platform fill is emphasized to save average
cost. Beyond only estimating the cost, some other works
have utilized the cost models to instruct design for AM.
For example, Huang et al. [26] developed a general cost
model for metal AM and innovatively used it to configure
the cost minimization topology optimization subject to
structural compliance constraint. Barclift et al. [27]
realized CAD-based cost estimation for powder-bed-
based metal AM through API programming and used
this tool to optimize the part build orientation.
Even though AM cost-constrained topology optimiza-

tion is not totally new, there lacks a thorough and in-depth
study. For instance, the part height, support volume, and
build batch size all significantly affect the AM cost. They
have been included in different cost models but have not
been carefully addressed for topology algorithm. The
reason may lie in the difficulties in deriving the relevant
sensitivity results; e.g., it is non-trivial to calculate
sensitivity on the part height variable. Therefore, the
main contribution of this paper is to develop a cost
estimation model for EOS M290 DMLS system, integrate
it as a constraint of the topology optimization problem, and
perform optimization to explore features of the cost-
constrained topological design.

2 AM cost model

The cost model for powder bed-based metal AM is
composed of three parts: Material cost, argon gas cost, and
operation cost (including labor and utility):

CAM ¼ Cmaterial þ Cargon þ Coperation: (1)

Among the three terms, material cost is calculated by

summarizing material consumption of both the part and the
support, as:

Cmaterial ¼ Vpart�þ Vsupport�
� �

Cunit
material, (2)

where, � is material density and � is material density of the
support, which is usually around 40% of � because of the
porous infill, Cunit

material indicates unit price of the metal
powder.
The argon gas cost is calculated by

Cargon ¼
0:6TRh

Lt
þ 3

� �
Cunit
argon, (3)

where 0.6 is the average argon consumption per hour in m3,
TR is the recoater cycle time, h is the build height, and Lt is
the layer thickness, and Cunit

argon indicates unit price of the
argon gas. A value of 3 m3 is the volume required for the
initial machine purge of argon.
Then, the operation cost is calculated using Eq. (4),

which is calculated by multiplying the operation time with
the labor and utility cost:

Coperation ¼ ToperationðCunit
labor þ Cunit

utilityÞ,

Toperation ¼ Tsetup þ
TRh

Lt
þ Vpart þ Vsupport�

�

� �
=Srate:

8><>:
(4)

where Tsetup means the average machine setup time and
Srate is the volume scanning rate.
By analyzing Eqs. (2)–(4), the terms Vpart, Vsupport, and h

are identified as design-dependent variables, and if the
design problem maintains a consistent material volume
fraction, the designable variables will be further reduced to
only Vsupport and h. Therefore, the cost model can be re-
formulated into

CAM ¼ a0 þ a1Vsupport þ a2h, (5)

where

a0 ¼ Vpart�C
unit
material þ ðTsetup þ Vpart=SrateÞðCunit

labor þ Cunit
utilityÞ þ 3Cunit

argon,

a1 ¼ �Cunit
material þ ðCunit

labor þ Cunit
utilityÞ�=ð�SrateÞ,

a2 ¼ ð0:6TR=LtÞCunit
argon þ ðCunit

labor þ Cunit
utilityÞTR=Lt,

8>><>>:
and a0, a1, and a2 are the cost coefficients.

3 Level set method and problem
formulation

3.1 Basic introduction to level set method

Briefly speaking, a level set function, ΦðXÞ : Rn
↕ ↓R,

represents any structure in the implicit form, as

ΦðXÞ > 0, X 2 Ω=∂Ω,

ΦðXÞ ¼ 0, X 2 ∂Ω,

ΦðXÞ < 0, X 2 D=Ω,

8><>: (6)

where Ω represents the material domain, D indicates the
entire design domain, and thus D=Ω represents the void, X
indicates the coordinate vector.
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Then, the Heaviside and Dirac delta functions are
adopted to formulate the numerical region and boundary
integrations, respectively; see Eqs. (7) and (8).

HðΦÞ ¼ 1,Φ³0,

HðΦÞ ¼ 0,Φ < 0,

(
(7)

δ Φð Þ ¼ ∂HðΦÞ
∂Φ

, !
1

–1δðΦÞdΦ ¼ 1: (8)

In addition, level set method provides an effective
technique to track and update the boundary profile, i.e.,
with the properly calculated boundary velocities, the
Hamilton-Jacobi equation can be solved to effectively
and efficiently update the boundary profile. For structural
optimization problems, the boundary velocities are calcu-
lated through the sensitivity analysis.
Another important characteristic of the level set function

is the signed distance regulation, or in other words, Eq. (9)
is satisfied (at the most area) wherein the absolute level set
value at any point represents its shortest distance to the
structural boundary. The signed distance characteristic
enhances numerical stability and also provides a powerful
tool for flexible geometric control.

jrΦðXÞj ¼ 1: (9)

Note that, the level set function discussed earlier is based
on the discrete definition which is adopted in this work.
Parametric level set functions are also available to support
structural topology optimization, which however, demon-
strate very different features in numerical details [28–31].

3.2 Level set representation of the cost models

Given that the structural optimization will be performed
with the level set method, the AM cost model have to be re-
formulated by transforming the design-dependent vari-
ables into functions on the level set function.
Specifically, Eq. (5) is re-formulated into Eq. (10) by

assuming the build direction aligning the z-axis.

CAM ¼ a0 þ a1VsupportðΦÞ þ a2hðΦÞ: (10)

Here, we would mention that it is trivial to numerically
calculate the support volume if the part is represented by
the level set function. The following algorithm can be
used:
1) Have the signed-distance level set field ΦðXÞ as the

input.
2) Identify the support-needed overhang areas with the

following equations: Find the solid element with center
coordinate ðx,y,zÞ, which satisfies

0 <Φðx,y,zÞ£1,

n⋅B£ – cos �
� �

,

n ¼ –
rΦðx,y,zÞ
jrΦðx,y,zÞj,

where n is the unit normal vector at the structural boundary
and B is a unit vector in the build direction, and � is the
threshold overhang angle and the overhang areas with the
inclination angle smaller than that would need support
structures.
3) For each support-needed overhang element, the

related support elements can be simply counted in the
–B direction till encountering the next solid element.

3.3 Optimization problem formulation

Inserting the above AM cost model into the conventional
compliance-minimization topology optimization problem,
we formulate a new multi-objective problem, as shown
below:

min J ¼ w1

!
D
DeðuÞeðuÞHðΦÞdΩ

Comp*
þ ð1 –w1Þ

CAM

C*
AM

,

s:t: aðu,v,ΦÞ ¼ lðvÞ, 8v 2 Uad,

!
D
HðΦÞdΩ ¼ Vmax,

aðu,v,ΦÞ ¼ !
D
DeðuÞeðvÞHðΦÞdΩ,

lðvÞ ¼ !
Γ
τ⋅vdS,

(11)

in which að⋅Þ is the energy bilinear form, lð⋅Þ is the load
linear form, u is the deformation vector, v is the test vector,
and eðuÞ is the strain, Uad ¼ v 2 H1ðΩÞdjv ¼ 0 on ΓD

� �
is the space of kinematically admissible displacement field,
τ is the boundary traction force, and the force loading
boundary area is considered non-designable, Vmax is the
upper bound of the material volume fraction, and Comp*
and C*

AM are the initially calculated structural compliance
and AM cost for normalization purpose.
Note that Eq. (11) can be trivially re-configured into an

AM cost constraint problem, which will also be addressed
in this paper.

4 Solution of the optimization problem

Sensitivity result of material volume-constrained compli-
ance problem is well known as shown in Eq. (12). The
sensitivity analysis process will not be specified and
interested readers can refer to Refs. [32,33] for details.

L# ¼ !
D
RδðΦÞΦ#dΩ,

R ¼ –DeðuÞeðuÞ þ l,

8<: (12)
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where l is the Lagrange multiplier, and L is the Lagrangian
constructed to solve this optimization problem.
Then, the derivative information of the AM cost model

will be presented here:

∂CAM

∂t
¼ a1

∂VsupportðΦÞ
∂t

þ a2
∂hðΦÞ
∂t

: (13)

Regarding the first term in Eq. (13), volume of the
support structure is calculated based on the current
geometry; however, it is non-trivial to derive an analytical
expression of VsupportðΦÞ. Then, we quantify this derivative
by considering a worst case scenario [34], where an
approximated sensitivity result is derived which evaluates
the effect of boundary evolution on the support volume
change, as

∂VsupportðΦÞ
∂t

¼ –!
DþδðΦÞΦ#dΩ, (14)

where, Dþ indicates the overhang areas and the boundary
areas at bottom of the support. Different from Ref. [34], the
support volume is not developed as a function of the
overhang angle since homogeneous porous support
structure is often adopted by metal AM.
The second term in Eq. (13) is also not derivable. Here,

we assume that the normal vector of the top surface

coincide with the build direction, which is generally true.
Therefore, the design update of the top surface with the
velocity VN would change the height of the part by VNΔt.
Hence, we can approximate the sensitivity of the part
height by

∂hðΦÞ
∂t

¼
!

DeδðΦÞΦ#dΩ
!

DeδðΦÞjrΦjdΩ

¼
!

DeδðΦÞVN jrΦjdΩ

!
DeδðΦÞjrΦjdΩ

, (15)

where De means the top surface area of the part. In
Eq. (15), VN represents the change rate of the height of the
top surface. However, the numerator performs the integra-
tion along the top surface which actually reflects the area
that the top surface moves through. Therefore, the surface
area is calculated and employed as the denominator to
make the right side of Eq. (15) a proper calculation of the
height change rate.
Therefore, the complete sensitivity result of Eq. (11) is

summarized below:

L# ¼ !
D

–
w1

Comp*
DeðuÞeðuÞ þ l

� �
δ Φð ÞΦ#dΩþ ð1 –w1Þ

C*
AM

– a1!
DþδðΦÞΦ#dΩþ a2

!
DeδðΦÞΦ#dΩ

!
DeδðΦÞjrΦjdΩ

0B@
1CA: (16)

5 Numerical examples

For all the numerical examples, the finite element analysis
is performed based on fixed quadrilateral or hexahedral
meshes and artificial weak material is employed for voids
in order to avoid the singularity of the stiffness matrix,
which is

DV ¼ 10 – 3D, (17)

in which DV is the elasticity tensor of the void.
The volume constraint is enforced by the augmented

Lagrange method which employs the Lagrange multiplier
as

lkþ1 ¼ lk þ
1

�k
!

D
HðΦÞdΩ –Vmax

� �
,

�kþ1 ¼ β�k , 0 < β < 1,

8<: (18)

in which �k is the penalization factor and β is its
adjustment parameter.
The data used for cost modeling is listed in Table 1, and

then Eq. (10) can be specified as shown in Eq. (19).

CAM ¼ 65:36þ 0:0288VpartðΦÞ
þ 0:0116VsupportðΦÞ þ 5:1283hðΦÞ: (19)

5.1 Cantilever problem

In this example, the cantilever structure is optimized. The
design domain and boundary conditions are demonstrated

Table 1 Data used for cost modeling

Parameter Value

� 4.42 g/cm3

Cunit
material 4500 USD/kg

Cunit
argon 5.13 USD/m3

TR 9 s

Lt 0.06 mm

�=� 0.4

Cunit
labor þ Cunit

utility 120 USD/h

Tsetup 0.5 h

Srate 3.75 mm3/s
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in Fig. 1, where a unit force is loaded at the middle of the
right edge, while the left edge is fully clamped. We assume
the material has a Young’s modulus of 1.0 and a Poisson’s
ratio of 0.3. The maximum material volume fraction of this
optimization problem is 40%. Correspondingly, the
optimization results with different weight factors are
shown in Fig. 2. The related data is shown in Table 2.

We can see from Table 2 that, the weight factor
determines the balance between the strain energy and the
AM cost. A larger weight factor leads to a smaller strain
energy value, but causes more AM cost. Then, in order to
exactly constrain the manufacturing cost, another imple-
mentation is performed by constraining the AM cost with

the limit of 380. The optimization result is shown in Fig. 3,
and the convergence curve is plotted in Fig. 4. We can see
that the AM cost has been successfully restricted at 380,
and the finally derived strain energy and AM cost are 48.02
and 377.06, respectively.

5.2 3D L-bracket problem

Next, the 3D L-bracket problem is explored. The problem
setup is shown in Fig. 5, wherein the top surface is fixed
and a line load of magnitude of unity per distance is
imposed at the right-side top edge. We assume the material
has a Young’s modulus of 1 and a Poisson’s ratio of 0.3.
The maximum material volume fraction of the optimiza-
tion problem is 40%. Correspondingly, the optimization
results without and with cost constraint are demonstrated
in Figs. 6 and 7, respectively. The AM cost limit is set to
815. The AM cost has the unit of USD if the dimension is
measured in mm.
In this case, the part is built from bottom to top which is

straightforward as demonstrated in Fig. 5. However, the
top surface of the part is applied of the zero-displacement
boundary condition, which cannot be evolved to reduce the
part height. Therefore, we count the part height from top to
bottom because raising the bottom surface is equivalent to
reducing the part height. It is assumed that, the lowest point

Fig. 1 Design domain and boundary condition of the cantilever
problem (size: 100�50)

Fig. 2 Optimization results with different weight factors. (a) w1 ¼ 1:0; (b) w1 ¼ 0:9; (c) w1 ¼ 0:7; (d) w1 ¼ 0:5; (e) w1 ¼ 0:3

Table 2 Data of the cantilever optimization results (AM cost in USD if the dimension is measured in mm)

Weight factor w1 Strain energy Support volume Part height AM cost

1.0 39.58 2126 50 404.03

0.9 41.48 1878 50 401.15

0.7 42.35 1695 50 399.03

0.5 51.12 1477 44 365.73

0.3 59.24 1329 40 343.51
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of the bottom surface contacts the build platen. Then, the
part height is defined to be the projection of the distance
between the highest point and the lowest point of the solid
part onto the build direction. The part height control can be
applied to the top surface (cantilever case), the bottom
surface (L-bracket case), or simultaneously both.
We can see that very different results are produced after

imposing the cost constraint. The constrained design
(Fig. 7) has the AM cost of 812.76, which is cheaper
than 852.12 of the unconstrained design in Fig. 6. Given
the specifications, the part height of the constrained design
is 54 and the support volume is 338, both of which are

smaller than 60 and 1078 for the unconstrained design.
Therefore, we can see that, the large overhangs in Fig. 6
does not show in Fig. 7, and in Fig. 7, there only exists a
narrow internal void which is almost self-supporting by
referring to the side cross-section view. Of course, the
trade-off is that the strain energy of the constrained design
is 828, which is higher than the 804 for the unconstrained
design.
Another issue worth mentioning is that, both optimiza-

tions have generated internal voids, which is a difficult-to-
manufacture feature for powder bed-based AM process.
For instance, the internal support structure can hardly be
removed, and even if they are self-supporting, powders
would be trapped inside and are tough to remove.
Therefore, casting level set method [35–37] may be a
better option for our optimization problem, since it
produces undercut- and internal void-free topological
design, which makes it trivial to post-processing the AM
part.

6 Conclusions

AM cost-constrained level set topology optimization was
performed in this work. With the AM cost for the EOS
M290 DMLS system, we can see that the support volume
and part height play the key role in determining the
manufacturing cost, especially for the latter which
significantly increases the layer number and thus the
powder recoating time. Therefore, reducing the support
volume and part height would be effective in decreasing
the manufacturing cost. In this paper, the proposed
algorithm has demonstrated the effectiveness of minimiz-
ing the AM cost by reducing the part height and support
volume simultaneously. Very importantly, the sensitivities
on both the support volume and part height cannot be
analytically calculated, and to address this issue,

Fig. 3 Cantilever design with constrained AM cost. (a) Level set
representation of the design; (b) voxel view of the design (the
yellow color shows the support volume)

Fig. 4 Convergence history
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approximate sensitivities have been developed. Regarding
this approximation, the related technical foundation has
been discussed, and the effectiveness has been proved by
the numerical examples.
The current algorithm is developed under the level set

framework. However, with the density-based topology
optimization method, many researchers have used the
density gradient information to approximate the boundary
profile and related normal vectors [38]. Therefore, it is
trivial to numerically calculate the part height and the
overhang boundaries based on the density field informa-
tion. Also, performing shape optimization under the
density-based framework is also possible [39], which can
achieve a similar design update effect as compared with
level set method. Therefore, we can conclude that a similar
algorithm can be developed using density-based topology
optimization method, even though extensive calibrations
are required.
For future work, topology optimization method without

generating internal voids would need to be addressed.
Unlike the current casting level set method, undercut

Fig. 6 Optimization result without cost constraint

Fig. 5 Design domain and boundary condition of the L-bracket
problem (size: 60�60�15)

Fig. 7 Optimization result with cost constraint
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features may be allowed but those areas should be
accessible by 5-axis CNC machining, so that support
structures can be removed and those surface areas can be
polished for good surface quality. Another issue to address
is to include post-machining cost in the AM cost model, so
that we could concurrently constrain the post-machining
cost, which currently can be as high as the AM cost.
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