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Abstract In this paper, a parametric level-set-based
topology optimization framework is proposed to concur-
rently optimize the structural topology at the macroscale
and the effective infill properties at the micro/meso scale.
The concurrent optimization is achieved by a computa-
tional framework combining a new parametric level set
approach with mathematical programming. Within the
proposed framework, both the structural boundary evolu-
tion and the effective infill property optimization can be
driven by mathematical programming, which is more
advantageous compared with the conventional partial
differential equation-driven level set approach. Moreover,
the proposed approach will be more efficient in handling
nonlinear problems with multiple constraints. Instead of
using radial basis functions (RBF), in this paper, we
propose to construct a new type of cardinal basis functions
(CBF) for the level set function parameterization. The
proposed CBF parameterization ensures an explicit impose
of the lower and upper bounds of the design variables. This
overcomes the intrinsic disadvantage of the conventional
RBF-based parametric level set method, where the lower
and upper bounds of the design variables oftentimes have
to be set by trial and error. A variational distance

regularization method is utilized in this research to
regularize the level set function to be a desired distance-
regularized shape. With the distance information
embedded in the level set model, the wrapping boundary
layer and the interior infill region can be naturally defined.
The isotropic infill achieved via the mesoscale topology
optimization is conformally fit into the wrapping boundary
layer using the shape-preserving conformal mapping
method, which leads to a hierarchical physical structure
with optimized overall topology and effective infill
properties. The proposed method is expected to provide a
timely solution to the increasing demand for multiscale and
multifunctional structure design.

Keywords concurrent topology optimization, parametric
level set method, cardinal basis function, shell-infill
structure design, conformal mapping

1 Introduction

Structures containing cellular infills or micro/meso archi-
tectures can possess fine-tuned properties and extra
functionalities with a low density [1–4]. With the help of
modern additive manufacturing technologies [5–7], the
multiscale structures are foreseeing a wide range of
engineering applications [8–10]. However, how to identify
the exact structural layout at different scales to maximize
the performance is a challenging topic.
At micro/meso scale, topology optimization of meta-

materials or lattice structures has been well studied since
Sigmund’s pioneering work [11], where the material is
optimally distributed inside the design domain to achieve
desired effective material properties. The homogenization-
based topology optimization method [12–14], the solid
isotropic material with penalization (SIMP) method
[15,16], the level set method (LSM) [17–19], and the
evolutionary method [20] are most commonly used
approaches in this field. With an inverse homogenization
method, Sigmund designed truss-like base cells with
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different material properties [21,22]. With the SIMP
method, Sigmund and Torquato [23] elaborated the
three-phased microstructure designs with extreme thermo-
elastic properties. As for the conventional LSM, Mei and
Wang [24] designed multimaterial microstructures utiliz-
ing the “color” level sets. Vogiatzis et al. [25] employed a
reconciled level set approach to design multimaterial
microstructures with negative Poisson’s ratio (NPR). As an
extension to the conventional level set approach, Wang et
al. [26] employed a numerically robust parametric level set
method (PLSM), in order to design a series of micro-
structures with different Poisson’s ratios. In this systematic
computational design framework, the homogenization was
used for calculating the material property and PLSM was
used for updating the structural shape and topology. With
the evolutionary approach, a series of papers have been
published for designing microstructures with extreme
properties [27–29]. A comprehensive review for the
metamaterial design using evolutionary structural optimi-
zation is provided in Ref. [30].
Instead of merely designing the micro/meso structures,

recent years have witnessed more and more researches on
optimizing both the structure and its constructing material
properties in a concurrent manner [31]. The SIMP-based
concurrent structural design was reported by Rodrigues
et al. [32] and Coelho et al. [33], for designing the overall
structural geometry and its infill metamaterials. Liu et al.
[34] uncoupled the macro and the micro densities in the
SIMP method, to carry out a concurrent topology
optimization of truss-like material. Deng and Chen [35]
studied the concurrent topology optimization by designing
structures with multiple porous metamaterials under radon
field loading uncertainty. To achieve a high-performance
shell-infill structure, Wu et al. [36,37] proposed a
concurrent SIMP-based topology optimization with a
local volume constraint to design bone-like structures.
The SIMP-based concurrent approach has also been
extended to designs utilizing thermal elastic materials
[38]. Within the level set framework, Sivapuram et al. [39]
concurrently optimized the overall topology and the
metamaterial properties with a decomposition formulation
for an easy algorithm parallelization. Wang et al. [40]
reported a concurrent multiscale design with a shape
metamorphosis technology, aiming at ensuring the con-
nectivity of the adjacent microstructures. Li et al. [41]
proposed an integrated multiscale structure design, where
SIMP is used for macroscale structure design and a radial
basis functions (RBF)-based PLSM is used for microscale
structure design. Li et al. [42] further developed the
multiscale structure design based on the concurrent PLSM
approach, in which the connectivity between the adjacent
microstructure patches were ensured by virtual kinematic
connectors. Via the evolutionary approach, Xia and
Breitkopf [10] designed the overall structural topology
and local material property concurrently, using the
multilevel finite element approach (FE2) to handle the

material nonlinearity. Readers interested in evolutionary
approaches to concurrent designs of multiscale structures
can be referred to Refs. [43–46] for further details. In this
paper we employ the level set approach and improve it to
make it suitable for multiscale topology optimization.
With an implicit design representation, the designs

represented by the level set model has clear design
boundaries. Mathematically, the level set model can
possess extra geometrical information such as curvatures,
and can handle topological changes in a robust way. In the
conventional level-set-based topology optimization, the
Hamilton-Jacobi partial differential equation (PDE)
describes the dynamics of the boundary motion [47]. The
design velocity field derived from shape sensitivity
analysis [19,48,49] drives the design boundary to its
optimum location. However, the conventional LSM has
several numerical limitations [50–52]. Besides, introdu-
cing multiple constraints to the design can be challenging
when the Lagrange multiplier method is used. When
utilized for multiscale structure design, introducing extra
design variables can be difficult for the conventional level
set approach. To increase the numerical efficiency and
robustness of conventional LSM, Wang et al. [53]
proposed PLSM with the RBF [54]. By utilizing the
method of moving asymptotes (MMA) [55] as the
optimizer, numerical efficiency can be improved and
design constraints can be imposed in a straightforward
way. The PLSM provides the flexibility in parameterizing
the structural topology as well as the material properties,
which enables the concurrent topology optimization
for multiscale structures. Apart from using RBF, the
R-function and B-spline are also used in the level set
parameterization scheme. The readers can be referred to
Refs. [56–58] for further details.
The RBF-based PLSM approximates the level set

function as the weighted summation of RBF kernel
functions. As design variables, those kernel function
weights are updated during the optimization. However,
those kernel function weights have no exact physical
meaning, and their lower and upper bounds cannot be
explicitly defined. In practice, those bounds are set by trial
and error. To get the explicit bounds for the design
variables, a cardinal basis function (CBF) was constructed
based on the RBF partition of unity collocation method
[59]. The CBF satisfies the Cardinal properties which
equals to 1 at the selected node and equals to 0 elsewhere.
This means when CBF is used as the kernel function, the
corresponding weights have the physical meaning of being
the heights of the level set function. Moreover, a distance
regularization energy functional [60,61] can be introduced
to regularize the level set function to be a distance function
in a zone along the boundary and flat surfaces elsewhere.
The regularized distance function can ensure an accurate
material property interpolation from the level set model to
the physics model. The flat surfaces can impose preferred
numerical stability and can help the creation of new holes
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[62]. Besides, the signed distance function can preserve the
distance information directly. This means with one level
set function, a shell-infill multiscale structure can be
designed [63–65]. The shell layer of this structure can
function as a protective coating against loading or extreme
exterior conditions [66] while the infills can provide the
designed functionalities.
Another important issue of multiscale structure optimi-

zation is to consider its manufacturability. The proposed
multiscale structure is generated by mapping the optimal
infill into its wrapping shell. This process will be tricky on
the boundary areas, since the infill cells will be rotated or
deformed. A rotated or deformed anisotropic infill cell
cannot preserve its designed property. To address this
issue, an isotropic infill micro/meso structure is designed to
be filled into the interior infill region. The isotropy of the
infill structure is ensured by imposing the isotropy
constraint [67–70] to the topology optimization process.
As for the mapping, a local shape-preserving conformal
mapping is employed in this research. With the conformal
mapping, the material properties of the designed infill
structure can be mathematically preserved. The final
mapped structure can be sent to 3D printer directly to be
manufactured with a high fidelity of its designed material
property.
To sum up, in this research, the concurrent multiscale

structure design is carried out via a variational CBF-based
PLSM. The infill properties are treated as design variables
to be updated together with the structural design
simultaneously. A unified isotropic infill metamaterial is
designed to lower the computational cost for the
prefabrication of 3D printing. With a modified Heaviside
material property interpolation, from macroscale, the void,
the wrapping shell, and the infill material region will be
naturally discriminated. By constructing a user-defined
distance regularization energy functional, the distance
regularization effect can be directly controlled. A second
stage optimization is directly carried out to find out the
isotropic infill metamaterial layout. With both the overall
geometry and the infill structure design in hand, the local
shape-preserving conformal mapping is performed to
integrate them together. To make the mapping adaptive
to complicated geometries, instead of using the conven-
tional Ricci flow with four control points [71], in this
paper, a multi-control-point conformal mapping is pro-
posed so that it is much flexible in controlling area
distortions, especially for irregular domains.
The remaining paper is organized as follows. In Section

2, the strain energy method is introduced to calculate the
effective material properties of a unit cell. In Section 3, the
level set representation, its parameterization, and the
distance regularization are elaborated. The general
problem setting for the proposed concurrent optimization
is formulated in Section 4. The detailed concurrent
optimization for given problems are detailed in Section 5

with numerical results. The conformal mapping method is
introduced in Section 6, together with mapped multiscale
structure results. At last, this work is summarized in
Section 7.

2 Prediction of the effective material
properties based on the strain energy method

For a given unit cell, noting its homogenized elasticity
tensor as CH

ijkl, a constitutive law can be formulated based
on the Hooke’s law:

�ij ¼ CH
ijklεkl, (1)

where �ij and εkl are the effective stress and strain tensor,
respectively. Under a linear elastic problem setting, the
stress and the strain tensors of the homogeneous medium
should be equal to the average stress and strain in the

microstructure, as �ij ¼
1

V
!�ijdV and εkl ¼

1

V
!εkldV ,

where V is the volume of the unit cell.
With a 2D plane-stress assumption, Eq. (1) can be

expanded to the form of Eq. (2):
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On the other hand, another equilibrium equation can be
built based on the fact that the strain energy stored inside
both the homogeneous medium, noted as UH, and inside
the unit cell, noted as U, is the same. With four special
strain field as shown in Fig. 1:
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Four strain energies can be calculated accordingly asU1,
U2, U3 and U4. For example, with the first loading case, as
listed in Eq. (3):
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2
VCH

1111 ¼ U1: (4)

For a unit cell with volume of 1, CH
1111 ¼ 2U1. Similarly,

based on different boundary conditions, the elastic tensor
can be re-written as
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3 Level set representation,
parameterization and the
distance-regularized level set function

3.1 Level set implicit boundary representation

The level-set based implicit boundary representation [72]
can be expressed as

Φðx,tÞ > 0 ðx 2 ΩÞ
Φðx,tÞ ¼ 0 ðx 2 ΓÞ
Φðx,tÞ < 0 ðx 2 DnΩÞ

,

8><
>: (6)

where F represents the level set function. Within the

design domain D, the structure region is denoted by W and
the design boundary is represented as G. x signifies an
arbitrary point in the design domain D and t is a pseudo
time for the dynamic shape optimization process. This
implicit boundary representation is illustrated in Fig. 2.
The dynamic boundary evolution is governed by the
Hamilton-Jacobi PDE as

∂Φ
∂t

–VnjrΦj ¼ 0, (7)

where the Vn is the normal design velocity field.

3.2 Parameterization of the level set function using a kernel
function

With a given kernel function, the level set function can be
written as the weighted summation form:

ΦðxÞ ¼
Xn
j¼1

ΨjðxÞ�j: (8)

In this study, �j, representing �ðxjÞ for simplicity, is the
weight on the jth node. ΨjðxÞ (j = 1,2,..,n) is the newly
constructed CBF, with the Kronecker delta property as

ΨjðxiÞ ¼
1, if i ¼ jð Þ
0, if i≠jð Þ

j ¼ 1,2,:::,n :

(
(9)

Fig. 1 The different loading cases for a unit cell. (a) Load case 1; (b) Load case 2; (c) Load case 3; (d) Load case 4
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The readers can be referred to Ref. [62] for the complete
construction procedure of the CBF kernel function. A
comparison is made in Fig. 3 between a regular Gaussian
RBF and the CBF. One thing needs to be mentioned is that
with the analytical parametric level set function expres-
sion, the optimization results generated via PLSM can be
manufactured via the high-resolution layer-image-based
continuous liquid interface production (CLIP) 3D printing
technology [63,73]. By bridging the PLSM design
methodology and the CLIP printing process, the optimal
structure can be manufactured at a lower prefabrication
computational cost.

3.3 Distance-regularized level set function

To maintain a distance-regularized level set evolution, a
distance regularization energy functional is introduced in
the current study. Generally, for a given level set function
Φ, the distance regularization energy functional RðjrΦjÞ
can be expressed as

RðjrΦjÞ ¼ !
Ω
PðjrΦjÞdΩ, (10)

where PjrΦj is the regularization energy potential.
To obtain a distance-regularized level set function, Li

et al. [60] proposed the “double-well” regularization
potential which takes the form:

PðjrΦjÞ ¼

1

ð2πÞ2 ½1 – cosð2πjrΦjÞ�, jrΦj < 1,

1

2
ðjrΦj – 1Þ2, jrΦj ³ 1:

8>>>><
>>>>:

(11)

The “double-well” potential PðjrΦjÞ, and its diffusive
rate D ¼ dpðjrΦjÞ are plotted in Fig. 4, where the
diffusive rate has the form:

D ¼ dpðjrΦjÞ ¼ P#ðjrΦjÞ
jrΦj : (12)

It can be seen from Fig. 4(b) that this “double-well”
distance regularization effect will be affected by the
“selecting point” at 0.5. With the minimization of the
energy R, when the jrΦj is below the selecting point 0.5,
with a positive diffusive rate, jrΦj tends to be driven to 0.
Oppositely, when jrΦj is above the selecting point 0.5 but
below 1, with a negative diffusive rate, jrΦj tends to be
driven to 1. When jrΦj is above 1, with a positive
diffusive rate, jrΦj tends to be driven to 1. This will
regulate the level set function Φ to a desired distance-
regularized shape.
Easily, this selecting point at 0.5 can be modified based

on needs. One of the constructing procedures was recently

Fig. 2 Level set model for implicit boundary representation. (a) The three-dimensional level set function; (b) the embedded boundary
(highlight in red) as the zero level set

Fig. 3 Illustration of two kernel functions. (a) The Gaussian RBF; (b) the newly constructed CBF
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reported in Ref. [61]. By following a similar procedure and
choose 0.25 as the “selecting point”, a new energy
potential Pn used in this research can be built as

PnðjrΦjÞ ¼ jrΦj2
2

–
3

64
  �3ln  �  ���64jrΦj2 – 80jrΦj þ 34  ���  �

þ10arctan
8jrΦj – 5

3
  �: (13)

As can be seen from Fig. 5, when the jrΦj is below the
selecting point 0.25, with a positive diffusive rate, jrΦj
tends to be driven to 0 and when jrΦj is above the
selecting point 0.25 but below 1, with a negative diffusive
rate, jrΦj tends to be driven to 1. When jrΦj is above 1,
with a positive diffusive rate, jrΦj tends to be driven to 1.
With a wider range for jrΦj to be driven to 1, the
corresponding level set function will be relatively more
likely to be driven to a signed distance function near the
design boundary. In this case, the shell region for the
multiscale structure will be well maintained.
To provide an intuitive process of imposing the distance

regularization energy functional, the whole process is
visualized in Fig. 6. By importing a black/white image (TO
is short for topology optimization) as a binary initial level
set function and minimizing the distance regularization
energy according to it, the final distance-regularized level
set function can be achieved, as shown in Fig. 6(c). It can
be noticed that the overall “TO” shape is preserved. As can
be seen from the zoom-in view in Figs. 6(d) and 6(e), the
transition area of the level set function is regularized into a
signed distance function while the rest areas are kept flat.
The signed distance function can be used to discriminate
the wrapping shell region from the interior infill region,
which can provide an accurate mapping from the level set
model to the physics model.

4 General concurrent optimizing settings
for multiscale structure design

To formulate the proposed multiscale concurrent structural
topology optimization in a general way, the level set nodal
height �, together with the infill material properties
(Young’s modulus E and the Poisson’s ratio v) are set to
be the design variables. Within the distance regularized
parametric level set framework:

Fig. 4 (a) The distance regularization energy P of Eq. (11); (b) the corresponding diffusive rate D

Fig. 5 (a) The new distance regularization energy Pn of Eq. (13); (b) the corresponding diffusive rate Dn
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Minimize
�,E,v

: Jtot ¼ Objective  functionþ wR,

Subject  to : Governing  equations,

Design  constraints, (14)

where the total objective function Jtot contains the distance
regularization energy functional R with weight w.
To discriminate a wrapping shell region and the infill

region from the macroscale, the corresponding material
interpolation from the level set model to the physics model
needs to be modified. Conventionally, the material
property interpolation is done by directly getting the

Heaviside function value of the level set function. This
process will generate a binary field in order to separate the
material region from the void region, as shown in Figs. 7(a)
and 7(b). In the proposed material interpolation scheme, a
second Heaviside function is calculated within the material
region at a given transition width Δ. In this case, the design
domain will be separated into three phases, which can be
used to represent the void, the wrapping boundary layer,
and the interior infill region of the multiscale structure, as
shown in Fig. 7(d).
With the gradient-based optimizer MMA, the optimiza-

tion process requires the calculation of sensitivities. The

Fig. 6 The distance regularization effect. TO: Topology optimization. (a) The initial binary image; (b) the binary value level set function
based on the binary image; (c) the distance regularized level set function; (d) the zoom-in view of the binary level set function; (e) the
zoom-in view of the distance regularized level set function

Fig. 7 The material property interpolation. (a) The conventional level set implicit boundary representation by the level set function and
the zero level-set; (b) the material region Ω, the design boundary Γ and the design domain D represented by the conventional level set
model; (c) the proposed shell-infill representation by the level set function and the level Φ ¼ 0 and Φ ¼ Δ (Δ is the selected shell width);
(d) within the material regionΩ, the shell regionΩs and the infill regionΩi are bounded by the shell boundary Γs and the infill boundary Γi

in the design domain D, respectively
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sensitivities with respect to � will be derived based on
different optimization problems. The sensitivities for the
material properties can be analytically calculated via a
forward finite difference scheme. Generally, the derivative
of a given function f at Point x can be defined by the limit:

f #ðxÞ ¼ lim
h↕ ↓0

f ðxþ hÞ – f ðxÞ
h

: (15)

After the concurrent topology optimization process, the
optimal macroscale structural topology and the optimal
infill material properties can be obtained. To find out the
actual layout of the infill structure, a second optimization
can be set up in a least square manner. An extra isotropic
condition is also included as an optimization constraint to
ensure the isotropy of the infill structure.

Minimize
�

: Jinfill ¼
1

2

Xn
ijkl

ðCH
ijkl –C

*
ijklÞ2 þ w#R,

Subject  to !
D
HðΦÞdΩ ¼ Vconst,

aðu,vÞ ¼ lðvÞ,
C*
1212 ¼ ðCH

1111 þ CH
2222Þ=4 –CH

1122=2,

(16)

where CH
ijkl is the component of the homogenized elasticity

tensor and their optimal value targets, got from the
concurrent optimization, are noted as C*

ijkl, HðΦÞ is the
Heaviside function of the level set Φ, Vconst is the design
volume constraint, u is the displacement field, and v is the
test function. The weight of the distance regularization
energy functional R is noted as w#. The bilinear energy
form a(u,v) and the linear load form l(u) inside the
computational domain D, with p representing the body
force and τ representing the boundary traction, are
described as

aðu,vÞ ¼ !
Ω
EijklεijðuÞεklðvÞdΩ,

lðvÞ ¼ !
Ω
p$vdΩþ!

Γ
τ$vds:

8><
>: (17)

The structural isotropy [68] is ensured when

C*
1212 ¼ ðCH

1111 þ CH
2222Þ=4 –CH

1212=2: (18)

Essentially, the isotropy is ensured when the current
CH
1212 hits the targeted C*

1212 calculated from Eq. (18).
One more thing that needs to be mentioned is the

monitoring of the isotropy during the optimization. Ideally,
when this least square optimization comes to its conver-
gence, the selected elastic tensor entries will hit the
targeted values. However, in practice, this condition may
not be satisfied 100%. But even without hitting all the
selected targets, the isotropy may still be valid as long as
the condition in Eq. (18) is hold. An isotropy polar plot
index [70] is utilized in this research to visualize the
isotropy of the infill structure throughout its optimization
process, for an easy isotropy monitoring. The details are
introduced as follows: For a unit cell with a rotation of
angle �, as shown in Fig. 8, the original elastic tensor will
be transformed as shown in Eq. (19) and the corresponding
expressions are listed in Eq. (20).

CH
1111 CH

1122 0

CH
2211 CH

2222 0

0 0 CH
1212

2
664

3
775 )

C
H
1111 C

H
1122 0

C
H
2211 C

H
2222 0

0 0 C
H
1212

2
6664

3
7775,

(19)

C
H
1111 ¼ CH

1111cos
4�þ CH

2222sin
4�þ 2ðCH

1122 þ 2CH
1212Þsin2�cos2�,

C
H
2222 ¼ CH

1111sin
4�þ CH

2222cos
4�þ 2ðCH

1122 þ 2CH
1212Þsin2�cos2�,

C
H
1122 ¼ C

H
1111 þ C

H
2222 – 4C

H
1212

� �
sin2�cos2�þ C

H
1122ðsin4�þ cos4�Þ,

C
H
1212 ¼ C

H
1111 þ C

H
2222 – 2C

H
1122 – 2C

H
1212

� �
sin2�cos2�þ C

H
1212ðsin4�þ cos4�Þ:

8>>>>>>><
>>>>>>>:

(20)

By plotting the normalized value of each expression in
Eq. (20) with � changing from 0° to 360°, an ideal isotropic
material will generate a circle with the radius of 1. If the
material is not isotropic, the plot will deviate away from

the standard circle. This is illustrated in Fig. 9 where the
red dashed line circle with a radius of 1 represents a plot of
an isotropic material while the blue curve represents an
anisotropic one. By plotting the current material with blue

Fig. 8 The coordinates change of a unit cell
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curve to be compared with the stand red circle throughout
the optimization process, the isotropy of the structure can
be monitored.
Another detail that needs to be mentioned is how to

determine the bounds for the infill structure material
properties. The bounds should be chosen reasonably to get
a valid design. However, since the infill structure only
occupies a portion of the total volume of the design
domain, the overall Young’s modulus in each direction
would be lower than the constructing material itself [74]. In
the current research, the bounds are set by using Ref. [27]
as a reference, where microstructures were designed to

reach maximum material properties.
At last, a systematic flowchart is drawn in Fig. 10 for a

more intuitive representation of the entire proposed
concurrent topology optimization process.

5 Application examples and numerical
results

5.1 The concurrent design of a Michell-type structure and
its infill material property

In this section, a two-by-one design domain is used for the
designing of a multiscale Michell-type structure with
fixed-fixed supports and multiple loads. The design
domain is shown in Fig. 11. The forces F1= 1 and F2=
0.5 are applied at the bottom edge. The overall structure
optimization statement can be made as

Minimize
u,E,v

: OBJ ¼ !
D
EijklεijðuÞεklðvÞHðΦÞdΩþ w1R,

Subject  to : !
D
HðΦÞdΩ ¼ Vconst,

aðu,vÞ ¼ lðvÞ, (21)

where EijklεijðuÞεklðvÞ represents the strain energy density
inside the design domain. The sensitivity analysis can be

Fig. 9 The isotropy polar plot

Fig. 10 The flow chart for the concurrent topology optimization process

Long JIANG et al. Concurrent optimization of structural topology and infill properties 179



taken from Ref. [62], which takes the form of Eq. (22). In

these equations, a smoothed Dirac delta function is
represented as δðΦÞ. As can be noted, the shape derivative
is extended to the whole design domain naturally.
In this example, the design domain is discretized into

100�50 quadrilateral elements. The Young’s modulus for
the shell material is set to be 1 and the void to be 0.001. As
for the infill region, the range for the E varies from 0.01 to
0.165 and the range for the Poisson’s ratio varies from 0.3
to 0.4. The minimum mean compliance optimization is
carried out under the total volume constraint of 60%. The
optimization convergence history, together with the level
set evolution and the design evolution are shown in
Fig. 12. The optimal infill material properties E is 0.165
with infill material Poisson’s ratio 0.3. The overall
objective function is minimized to 12.4199 and the final
total volume is 0.60246.

∂!
D
EijklεijðuÞεklðvÞHðΦÞdΩ

∂�j
¼ –!

D
EijklεijðuÞεklðvÞδðΦÞΨjðxÞdΩ,

∂R
∂�j

¼ – div½dpðjrΦjrΦÞ�ΨjðxÞ,
∂Vconst

∂�j
¼ !

D
δðΦÞΨjðxÞdΩ,

j ¼ 1,2,:::,n:

8>>>>>>>><
>>>>>>>>:

(22)

With the optimal infill material property targets, the infill
structure optimization can be carried out following
Eq. (16). The optimization convergence history, the
evolution-history for the level set function, the design
evolution and the final design polar isotropy plot are shown
in Fig. 13. It can be seen from Fig. 13(a) that with the least
square objective function minimized, the selected targets
are hit. The isotropy of the infill structure can be verified
intuitively from Fig. 13(b) where the blue-color polar
plot of the current infill structure is almost overlapping
with the reference red unit circle at the end of the

optimization process.

5.2 Concurrent designing of an NPR structure and its infill
material property

To achieve a structure with desired Poisson’s ratio, a
common approach is to formulate a least square problem to
design a structure with a specified elastic tensor. However,
from the authors’ experience, trying to hit all targets
simultaneously requires fine adjustment of parameters
inside the optimization algorithm, which is tricky in most

Fig. 11 The boundary condition for designing the Michell-type
structure with fixed-fixed supports and multiple loads

Fig. 12 Convergence history and the design evolution for the macroscale Michell-type structure with fixed-fixed supports and multiple
loads. Upper: The level set function evolution; lower: The corresponding design evolution
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of the times. To decrease the number of adjustable weights,
NPR structure design can be formulated directly as

Minimize
�,E,v

: J1 ¼
1

2

CH
1122

CH
1111

– vt

� �2

þ w2R,

Subject to : !
D
HðΦÞdΩ ¼ Vconst,

aðu,vÞ ¼ lðvÞ,
CH
1111 ¼ CH

2222, (23)

where vt is the Poisson’s ratio target. To ensure an overall
orthotropic structure behavior, C1111 and C2222 are
constrained to be equal. Considering that the homogenized
elastic tensor entries can be isolated out by the aforemen-
tioned strain energy method, the design sensitivities can be
borrowed from Eq. (22).
In this example, a 1�1 domain is discretized into 50�50

quadrilateral elements. The Young’s modulus for the void
region is 0.001 and 1 for the wrapping shell, respectively.
For the infill structure, the Poisson’s ratio is given a range

from 0.4 to 0.5. The range of the Young’s modulus of the
infill structure is from 0.01 to 0.13. The total volume is
constrained within the range from 49% to 51%. The overall
Poisson’s ratio target is set to be – 0.3. The design
evolution and the convergence history are shown in Fig.
14. The final total volume ratio is 0.5098 and the final
overall Poisson’s ratio is – 0.25841. For the infill structure,
the final Young’s modulus is 0.13 and Poisson’s ratio is
0.4.
With the infill material properties achieved, the second-

stage topology optimization is formulated in the least
square manner. The design domain and the material
properties for void and material are kept the same. The
design evolution and the convergence history for the infill
structure are shown in Fig.15.
Furthermore, the NPR performance for the entire

multiscale structure is verified in Fig. 16. A 0.3 downwards
displacement is added on a 4�4 multiscale NPR structure
array. The boundary conditions are shown in Fig. 16(a) and
the pre/post-deformation simulation results for the multi-
scale structure are shown in Figs. 16(b) and 16(c),

Fig. 13 Convergence history and the isotropy of the infill structure design for the Michell-type structure. (a) The convergence history
and design evolution for the infill structure: The level set function evolution (upper) and the corresponding design evolution (lower);
(b) the isotropic polar plot of the corresponding infill structure throughout the optimization process: Reference standard circle (red) and
isotropic polar plot of the current infill structure (blue); (c) the elastic tensor of the corresponding infill structure
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Fig. 14 Convergence history and the design evolution for the macroscale NPR structure. Upper: The level set function evolution; lower:
The corresponding design evolution

Fig. 15 Convergence history and the isotropy of the infill structure design for the NPR structure. (a) The convergence history and design
evolution for the infill structure: The level set function evolution (upper) and the corresponding design evolution (lower); (b) the isotropic
polar plot of the infill structure throughout the optimization process: Reference standard circle (red) and isotropic polar plot of the final
infill structure (blue); (c) the elastic tensor of the corresponding infill structure
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respectively. A shrink from the right side of the structure
array can be observed from Fig. 16(c), which verifies the
NPR performance.

6 Multi-control-point conformal mapping,
the mapped optimization results and its
manufacturing

With the achieved optimal overall structure and the optimal
infill structure, in this section, these two parts are
integrated together via the local shape-preserving con-
formal mapping [75]. The shape preserving effect can be
visualized in Fig. 17, as the small circles on a human face
will remain their circular shape after the conformal
mapping.
Firstly, the concept of conformal mapping is introduced

here in smooth settings. Let ω ¼ f ðzÞ : ℂ↕ ↓ℂ be a
complex function on the plane. Denote

∂
∂z

:¼ 1

2

∂
∂x

þ i
∂
∂y

� �
, (24)

where i is the unit imaginary root. Then f is said to be
conformal if

∂f
∂z

¼ 0: (25)

In this research, the local shape-preserving character can
ensure that the infill structure will maintain its designed
material properties. This can be a great advantage
compared with putting the infill structure into the design
in a periodic manner and trim the ones on the design
boundary. In that case, the elements cut by the design
boundary might result in overhanging structure, isolated
islands and some other unwanted results. Those defects
will sabotage the designed infill structural properties and
bring challenges to the manufacturing process.
Under discrete settings, conformal mappings can be

computed by discrete Ricci flow method [76–78]. Some
more discrete Ricci flow algorithms regarding efficiency
and adaptivity improvements are reported in Refs. [79,80].
For further conformal mapping algorithms, the readers are
referred to Ref. [81] for more information.
Given a triangular mesh Σ ¼ ðV ,F,EÞ, a face element is

denoted with corner vertex vi, vj, and vk by fijk, and the

angle between rays are denoted as ij
↕ ↓

and ik
↕ ↓

by �jki . Then the
discrete Gaussian curvature at vertex vi is defined by

Fig. 16 The NPR effect verification. (a) A 3�3 array of the macroscale structure; (b) one unit cell of the macroscale structure (the outer
shell is shown in blue and the inner infill is shown in green); (c) one unit cell of the infill structure

Fig. 17 The local shape preserving effect of conformal mapping
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Ki ¼
2π –Σfijk 2F�

jk
i if   vi =2 ∂Σ,

π –Σfijk 2F�
jk
i if   vi 2 ∂Σ,

8<
: (26)

where ∂Σ is the boundary of mesh Σ. Now the discrete
Ricci flow is defined as follows. Given a circle packing
metric to Σ, i.e., on each vertex vi a positive real number is
defined as γi, then the edge length between vertices vi and vj
is lij ¼ γi þ γj. With those parameters, all angles can be
calculated in Σ. Denote ui= logγi, then the discrete Ricci
flow is defined as

duiðtÞ
dt

¼ Ki –Ki, (27)

where k ¼ K1,K2,:::,Kn

	 
T
is the user defined target

curvature.
In our case, a conformal mapping from an irregular

planar region to a polygonal region needs to be found such
that the inner angles are either π=2 or 3π=2. The polygonal
region is filled with regular infill structures, and then they
are mapped back with the inverse of the computed
conformal mapping, which is also a conformal mapping
that preserves local shapes. To realize this, on the boundary
of input mesh ∂Σ, multiple control points W :¼
fw1,w2,:::,wkg � ∂Σ can be selected based on the need.
Then the target curvature on each vertex are defined by

Ki ¼
0 if vi =2 ∂Σ,

0 if vi =2 ∂ΣnW ,

– π=2 or π=2 if vi =2W ,

8><
>: (28)

where Ki ¼ π=2 is chosen if the target polygonal region
has an outward right angle and Ki¼– π=2 is chosen if the
target polygonal region has an inward right angle at Point
vi. Compared to Ricci flow method with only four control
points, as shown in Fig. 18, which will eventually map the
input region to a rectangular region, the proposed multi-
control-point method provides more flexibility with the
benefit of lower area distortion. The proposed mapping
process is illustrated in Fig. 19 using the mapping of the

Mitchell-type structure as an example. Considering the
symmetry, only the right half of the structure is taken into
the mapping procedure and the final structure, as shown in
Fig. 19(i) is achieved by a simple mirroring technique.
Following the proposed mapping process, both the mapped
Mitchell-type structure and the NPR structure are shown in
Figs. 20 and 21, respectively. It is worth noting that after
the mapping, the infill and the shell are integrated together.
However, the actual material used for the final multiscale
structure should be less than its designed total volume ratio
since the mapped infill structure is porous. Practically, the
actual volume ratio for the entire multiscale structure
should be the macroscale structural volume ratio times the
infill micro/meso scale structural volume ratio.
With the mapped structural design, the final manufactur-

ing process can be carried out. The mapped result is sent to
a fused deposition modeling (FDM) 3D printer and
manufactured by using polylactic acid (PLA) filament.
The printed result is shown in Fig. 22.

7 Conclusions

In this paper, a concurrent CBF-based PLSM topology
optimization is proposed for the designing of multiscale
structures. By using the newly constructed CBF, the
explicit design variable bounds can be passed to the
optimizer, which is a significant advantage over the RBF-
based PLSM. Driven by MMA, the proposed approach can
efficiently handle multiple constraints. Coupled with
mathematical programming, the multiscale structural
topology optimization can be directly carried out in a
concurrent manner. The distance-regularized level set
function is used to discriminate the shell and the infill
region from the macro scale. From the micro/meso scale,
the isotropic infill structure will bring advantages to the
structural mapping/manufacturing process. With the help
of the local shape-preserving conformal mapping, the infill
material properties can be mathematically preserved. By
introducing multiple control points, the current proposed
conformal mapping can be more flexible and adaptive in

Fig. 18 The conventional conformal mapping Ricci flow method with four control points
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Fig. 19 The multi-control-point conformal mapping process. (a) The shell-infill structure optimization result; (b) half of the original
design; (c) the infill region; (d) the meshed infill region with multiple control points (red) and one central point (green); (e) the zoom-in
view of the triangular mesh; (f) the isotropic infill unit cell; (g) the mapped infill structure; (h) half of the shell-infill mapped structure;
(i) the final shell-infill multiscale structure

Fig. 20 The conformal mapping result for the Mitchell-type structure
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handling complex geometries. The mapped multiscale
structure can be directly sent to 3D printers for
manufacturing, to conclude the design-mapping-manufac-
turing multiscale structure topology optimization process.
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