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Abstract Maximizing the fundamental eigenfrequency
is an efficient means for vibrating structures to avoid
resonance and noises. In this study, we develop an
isogeometric analysis (IGA)-based level set model for
the formulation and solution of topology optimization in
cases with maximum eigenfrequency. The proposed
method is based on a combination of level set method
and IGA technique, which uses the non-uniform rational
B-spline (NURBS), description of geometry, to perform
analysis. The same NURBS is used for geometry
representation, but also for IGA-based dynamic analysis
and parameterization of the level set surface, that is, the
level set function. The method is applied to topology
optimization problems of maximizing the fundamental
eigenfrequency for a given amount of material. A modal
track method, that monitors a single target eigenmode is
employed to prevent the exchange of eigenmode order
number in eigenfrequency optimization. The validity and
efficiency of the proposed method are illustrated by
benchmark examples.

Keywords topology optimization, level set method,
isogeometric analysis, eigenfrequency

1 Introduction

Topology optimization (TO), which has been extensively
studied over the last decades, is a process of determining
optimal layout of materials inside a given design domain.
TO has been applied to various structural optimization
problems, such as minimum compliance [1,2] vibration
[3,4], and thermal issues [5,6], after Bendsøe and Kikuchi

[7] proposed the homogenization method. Homogeniza-
tion is a material distribution method in which a design
domain is discretized into small rectangular elements, and
each element contains an artificial composite material with
microscopic voids. The proposal of the homogenization
method was followed by a parallel exploration of the solid
isotropic material with penalization (SIMP) method [8,9],
which uses an artificial isotropic material whose physical
properties are expressed as a function of continuous
penalized material density (design variables). The phase-
field method [10,11], which is also a material distribution
method, is based on the theory of phase transitions. A
different type of method called evolutionary structural
optimization (ESO) [12,13] has also been proposed. This
method eliminates elements with the lowest criterion value
on the basis of certain heuristic criteria. ESO is
computationally expensive because it requires a much
larger number of iterations with an enormous number of
intuitively generated solutions compared with material-
based methods.
However, these conventional TO methods, which are

based on element-wise design variables, suffer from
numerical instability problems, such as checkerboards
and mesh dependency. Accordingly, several studies have
proposed prevention methods. The use of high-order
elements has been proven to be an effective means to
prevent checkerboards [14,15], but this method entails a
considerable increase in computation time. Various filter
techniques have been utilized to mitigate checkerboards
and mesh dependency because these techniques require
only a small amount of extra computation time and are
simpler to implement than other methods [16,17]. Notably,
filter schemes are purely heuristic. Other prevention
schemes, such as perimeter control and gradient constraint,
which often make the optimization procedure unstable, are
yet to be improved.
A new type of TO approach is the level set-based

method (LSM), which was developed by Sethian and
Wiegmann [18] to numerically track the motion of
structural boundaries. In LSM, boundaries are represented
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as zero level set contour of an implicit high-dimensional
function (level set function or LSF), in which boundary
motion, merging, and introduction of new holes are
performed. The evolution of a structural interface with
respect to time is tracked by solving a Hamilton-Jacobi
(H-J) partial differential equation (PDE), where transport-
ing LSF along its outward normal direction is equivalent to
moving the boundaries along the descent gradient direc-
tion. The conventional level set-based TO approach uses
shape derivatives coupled with the original LSM for
boundary tracking [19,20]. In this approach, regularization
that reinitializes LSF to be signed distance to a zero level
set is employed to control the slope of LSF. This
conventional approach is updated by solving the H-J
equation via an explicit up-wind scheme [21,22]. Varia-
tions of the conventional approach include parameterizing
LSF using various basis functions, such as finite element
method (FEM) basis functions [23], radial basis functions
(RBFs) [24,25], and spectral parameterization [26], and
corresponding methods for solving the H-J equation. By
defining the interfaces between two material phases via the
iso-contour of LSF, LSM can handle shape and topology
changes during the optimization procedure and provides
optimal structures with clear boundaries that are free of
checkerboard patterns. Notably, most LSMs rely on finite
elements wherein boundaries are still represented by
discretized mesh in the analysis field unless alternative
techniques are utilized to map the geometry to the analysis
model.
Most of these TOs are performed in a fixed domain of

finite elements where FEM is used to solve optimization
problems. Currently used FEMs are often based on
Lagrange polynomials for analysis while the geometrical
representation of structures relies on non-uniform rational
B-splines (NURBS), which are the criteria in computer
aided design (CAD) systems. Thus, conversion of
NURBS-based representation into one that is compatible
with Lagrange polynomials, that is, mesh generation, is
required in structural analysis. The disadvantages of FEM
are as follows. First, the geometry approximation inherent
in the FEM mesh may generate an approximate error.
Second, frequent data interaction between geometry
description and the computational mesh, which can be
found in several calculations (e.g., fluid, large deformation,
and shape optimization problems), is cumbersome and
error-prone. An integrating method, namely, isogeometric
analysis (IGA) [27], for unifying analysis and CAD
processes has been proposed to overcome these disadvan-
tages. This method employs the same basis functions as a
technique for describing and analyzing the geometric
model, which features the IGA method and CAD-based
parameterization of field variables in an isoparametric
manner. The first work on isogeometric approximation
dates back to 1982 [28]; however, this method is
considerably different from the IGA method. Several

methods have been devised to help alleviate the difficulties
faced by IGA. Special parameterization techniques, such
as variational harmonic-based methods [29,30] and
analysis-aware parameterization methods for single [31]
and multi-domain geometries [32], have been proposed for
the computational domain. Alternatives to NURBS, such
as T-splines [33,34], polynomial splines over hierarchical
T-meshes (PHT-splines) [35–37], and Powell-Sabin splines
[38], have been studied for local refinement in IGA due to
the limitation of the tensor product form of NURBS in
computation refinement. Methods of parameterization of
the interior domain while retaining the geometry exactness
from the CAD model have been devised [39,40], and
isogeometric collocation method is one of the most
important among these methods [39]. With regard to
interior discretization obstacles, the isogeometric boundary
element method is a suitable candidate [41] because only
boundary data are required for analysis, and it enables
stress analysis [42], fracture analysis [43,44], acoustic
analysis [45], and shape optimization [46,47]. Considering
that the integral efficiency of IGA is limited by the tensor
product structure of NURBS, an efficient quadrature rule,
which is more suitable for NURBS-based IGA compared
with the Gaussian quadrature rule, has been proposed in
Ref. [48]. IGA has been applied to a wide range of
problems, such as structural vibrations [49], fluid-structure
interaction [50,51], heat conduction analyses [52], shape
optimization [53,54], shell analyses [55], TO [56], and
electromagnetics [57].
IGA-based shape optimization has been extensively

investigated because remeshing is eliminated during the
optimization process. IGA has also been recently applied
to TO. The most commonly used TO approach is material
based, and the most commonly solved TO problem is the
minimum compliance case. In Ref. [58], TO was proposed
based on isogeometric shape optimization. B-spline curves
were introduced to represent the material boundary, and the
coordinates of their control points were considered design
variables. In Ref. [59], the trimmed spline surface
technique was used for spline-based TO. In Refs.
[60,61], optimality criteria (OC) and the method of moving
asymptotes were implemented in the isogeometric-based
SIMP method. In Ref. [62], the TO problem was solved by
using a phase-field model, and IGA was utilized for the
exact representation of the design domain. In Ref. [56],
IGAwas introduced to a level set TO method, and NURBS
basis functions were used for geometry description and
LSF parameterization.
Most studies on TO were restricted to compliance

optimization, and the number of studies on TO of dynamic
problems is limited. Dynamic problems, such as vibration
and noise, are critical in many engineering fields, such as
aeronautical and automotive industries. As a typical
dynamic problem, structure vibration is controlled by the
structure’s dynamic characteristics, which are usually
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represented by the eigenfrequencies of the structure. Thus,
eigenfrequency optimization plays an important role in
improving dynamic characteristics.
As an important research topic, eigenfrequency optimi-

zation has been studied by many scholars. Díaaz and
Kikuchi [63] extended TO to eigenfrequency optimization
within the framework of the homogenization approach.
Tenek and Hagiwara [64] introduced the SIMP method to
structural shape optimization and TO in eigenfrequency
problems. Xie and Steven [65] applied the ESO scheme to
TO, and the specified eigenfrequency of the structure was
used as a constraint. Additional research has also been
conducted on frequency optimization [66–70]. However,
standard density-based TO methods are unsuitable for
eigenfrequency optimization due to localized modes in
low-density areas [71]. Low-density areas are much more
flexible than areas with full densities; hence, they control
the lowest eigenmodes of the entire structure. By changing
the penalization of stiffness in the SIMP method, a
modified algorithm has been proposed and applied to
circumvent this numerical instability problem [3]. LSM
that employs a crisp description of structure boundaries has
advantages over the density-based approach. The LSM
approach can avoid artificial modes localized in the weak
phase, which makes LSM a choice for eigenfrequency
optimization. Many studies have been performed on level
set TO for eigenfrequency problems [72–75].
IGA-based TO has been extensively studied. However,

research on the combination of the level set approach and
IGA is limited, and that on eigenfrequency problems is
absent. In this study, we develop a new optimization
method to formulate the TO problem for cases with
maximum fundamental eigenfrequency by using LSM
under the framework of IGA instead of conventional finite
element analysis (FEA). Given that the OC algorithm is
particularly efficient for problems with many design
variables and few constraints, we consider the OC method
for the solution of the optimization problem and conduct a
sensitivity analysis. The rest of this paper is organized as
follows. In Section 2, IGA and NURBS-based TO are
summarized. The eigenvalue optimization problem is
described in Section 3, and the TO model is proposed in
Section 4. Section 5 presents numerical examples to
demonstrate the validity of the proposed approach. The
conclusions and discussions are shown in Section 6.

2 IGA for level set-based TO

In IGA, geometric modeling and analysis are integrated by
using NURBS, where the basis function is a bridge of the
parameter domain, physical field, and numerical solution.
In the proposed method, we consider the NURBS basis
function as a bound between IGA and parameterized LSM.
We provide a brief review of IGA and NURBS-
parameterized LSM.

2.1 NURBS-based IGA

We assume that geometrical mapping Ψ maps the
parameter domain Ω̂ into the physical domain Ω. Given
a knot vector Ξ ¼ ð�1,�2,:::,�sÞ with a non-decreasing
sequence of values lying in parameter space, the mapping
between two domains can be expressed as

Ψ : Ω̂↕ ↓Ω, Ξ↕ ↓ΨðΞÞ: (1)

The NURBS curve is constructed by linear combina-
tions of its basis functions, in which the coefficients are a
given set of control points. A NURBS curve of p-degree is
defined as

Ψð�Þ ¼
Xn
i¼1

Ri,pð�ÞPi, (2)

where n ¼ s – p – 1 is the number of control points, Pi 2
ℝd is the ith control points in the physical domain, and
Ri,pð�Þ is the ith univariate NURBS basis function defined

in the parameter space Ω̂ as follows:

Ri,p �ð Þ ¼ Ni,pð�ÞωiXn
i¼1

Ni,pð�Þωi

, (3)

where ωi 2 ð0,1Þ are non-decreasing weights associated
with control points and Ni,pð�Þ represents the ith B-spline
basis functions of p-degree; it is defined by the following
Cox-de Boor recursion formula [27].

Ni,0ð�Þ ¼
1 if �i £� < �iþ1,

0 otherwise,

(

Ni,p �ð Þ ¼ � – �i
�iþp – �i

Ni,p–1 �ð Þ þ �iþpþ1 – �

�iþpþ1 – �iþ1
Niþ1,p–1 �ð Þ,

8>>><
>>>:

(4)

where basis function Ni,pð�Þ has its own support domain
½�i,:::,�iþpþ1� in which Ni,pð�Þ is non-zero. A knot vector is
deemed open when the knots are repeated pþ 1 times at
the ends of the vector. In IGA, the open-knot vector is
generally used to satisfy the Kronecker delta property at
boundary points.
A NURBS surface is a tensor product of bivariate

NURBS curves in Ξ and H directions with p- and q-
degrees, respectively, where a knot vector H ¼ ðη1,η2,:::,
ηtÞ is given in H direction.

Ψð�,ηÞ ¼
Xn
i¼1

Xm
j¼1

Rp,q
i,j ð�,ηÞPi,j, (5)

where m ¼ t – q – 1, Pi,j are control points and Rp,q
i,j are

bivariate basis functions of the form:
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Rp,q
i,j ¼ Ni,pð�ÞNj,qðηÞωi,jXn

i¼1

Xm
j¼1

Ni,pð�ÞNj,qðηÞωi,j

, (6)

where Ni,pð�Þ and Nj,qðηÞ are B-spline basis functions
defined on the knot vector Ξ ¼ ð�1,�2,:::,�sÞ and
H ¼ ðη1,η2,:::,ηtÞ, respectively. The interval Ξ�H forms
a patch containing all elements, namely, ½�k ,�kþ1��
½ηl,ηlþ1�, 1£k£nþ p, and 1£l£mþ q, which are
defined by the two knot vectors. The parameter domain
and corresponding physical domain for a surface model are
depicted in Fig. 1.
On the basis of the isoparametric concept, the IGA

approach utilizes the same parameters for geometry and
analysis models, and the basis functions used for geometry
representation are also employed to approximate the
numerical solution of PDEs. With Eq. (2), the numerical
solution u can be expressed as

u ¼
Xn
i¼1

Rið�Þui, (7)

where Ri is the ith basis function. ui, which is referred to as
a control variable at the ith control point, is the coefficient
used to approximate the field variable u, which plays the
same role as the nodal value in FEA. For each element, the
shape function and strain-displacement matrix can be
expressed as

R ¼ ½R1 R2:::Rn�,

B ¼

∂R1

∂x
0 :::

∂Rn

∂x
0

0
∂R1

∂y
::: 0

∂Rn

∂y
∂R1

∂y
∂R1

∂x
:::

∂Rn

∂y
∂Rn

∂x

2
6666664

3
7777775
: (8)

The strain matrix is given by

ε ¼ Bu: (9)

2.2 NURBS-based parameterized LSM

LSM is a TO method that implicitly defines the interfaces
between material and void phases by iso-contours of a
high-dimensional LSF. Thus, this method allows a crisp
description of the material boundary and helps avoid mesh-
dependent problems.
The shape of the interpolating functions of LSF directly

influences the smoothness of LSF and the material domain.
In its most general form, LSF is described by a summation
of interpolating functions scaled by their degree of freedom
(DOF).

ΦðxÞ ¼ fTðxÞs ¼
XN
i

fiðxÞsi, (10)

where x denotes the spatial coordinate, fi comprises
interpolating functions associated with N spatial points,
and si are time-dependent optimization variables.
The most commonly used interpolation functions in

present LSM are FEM shape functions and RBFs, and their
corresponding optimization variables are nodal values and
expansion coefficients, respectively. We introduce NURBS
basis functions, which can be used to approximate a given
set of points with smooth polynomial functions, for
parameterizing LSF. Thus, the NURBS-based parameteri-
zed LSF is constructed as

ΦðxÞ ¼ RTs ¼
XN
i

RiðxÞsi, (11)

where Ri is the ith NURBS basis function and si is the ith
time-dependent expansion coefficient related to the ith
control point.
The evolution of LSF is governed by the following H-J

equation.

Fig. 1 Geometrical mapping Ψmaps the common parameter space ð�,ηÞ onto the physical space
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∂Φðx,tÞ
∂t

þrΦ
dx
dt

¼ 0, (12)

where t denotes pseudo-time, which represents the
evolution of the design in the optimization process. The
speed of movement of a point on the level set surface can
be expressed by V ¼ dx=dt. V n ¼ V⋅n defines the speed
of propagation of all level sets along the external normal
velocity, where n ¼ –rΦ=jrΦj. Therefore, Eq. (12) can
be rewritten as

∂Φðx,tÞ
∂t

¼ V njrΦj: (13)

By substituting Eq. (11) into Eq. (13), the H-J equation
can be written as

RT∂s
∂t

þ V n⋅jðrRÞTsj ¼ 0: (14)

The moving speed of the material free boundary during
evolution is related to the time derivative of the expansion
coefficient as follows:

V n ¼ –
RT

jðrRÞTsj
∂s
∂t

: (15)

3 Optimization problems of maximizing
eigenvalue

3.1 Definition of the eigenvalue problem

We describe the eigenvalue problems in the linear elastic
continuum to facilitate the computation of vibration
frequencies and modes. A linear elastic continuum
structure with a constant mass density is defined in domain
Ω � ℝd ðd ¼ 2 or 3Þ with the boundary Γ ¼ ∂Ω. The
weak formulation of the undamped free vibration problem
can be expressed as

aðu,vÞ – lbðu,vÞ ¼ 0, v 2 U , (16)

where eigenfrequency l and corresponding eigenvector u,
that is, the displacement subdomain in Ω, are solutions of
this eigenvalue problem, v is adjoint displacement, which
satisfies the kinematic boundary condition, and U is a
space of kinematically admissible displacement fields. In
LSM, að⋅,⋅Þ and bð⋅,⋅Þ are respectively defined as

aðu,v,ΦÞ ¼ !
Ω
DijklεklðuÞεijðvÞHðΦÞdΩ, (17)

bðu,v,ΦÞ ¼ !
Ω
�uvHðΦÞdΩ, (18)

where Dijkl stands for the elasticity tensor component, εij is
the strain tensor component, � is the density of the

material, and HðΦÞ is the Heaviside function, which takes
0 for Φ < 0 and 1 otherwise.
The eigenvalue problem has a family of solutions lk and

uk , k³1. The first eigenfrequency and its eigenvector are
related to each other as

l1 ¼ min
!

Ω
DijklεklðuÞεijðvÞHðΦÞdΩ

!
Ω
�uvHðΦÞdΩ

0
B@

1
CA: (19)

3.2 Optimization model

We consider the TO problem by maximizing the first
eigenfrequency under a volume constraint. Under the
NURBS-based level set framework, eigenfrequency TO
can be expressed as

Maximize J ðu,ΦÞ ¼ l1,

subject  to :   aðu,v,ΦÞ ¼ l1bðu,v,ΦÞ,

                                                           !
Ω
HðΦÞdΦ£Vmax,

                                                        smin£si£smax,

(20)

where J ðu,ΦÞ is the objective function, Vmax represents the
maximum admissible volume of the design domain, and
smin and smax stand for the lower and upper bounds of the
design variables, respectively.
However, in the eigenfrequency optimization process,

the value of higher-order eigenfrequency may decrease
whereas that of lower-order target eigenfrequency may
increase, which may possibly lead to the repetition and
exchange of mode order number. Given that the objective
and constraint functions are typically defined based on a
fixed modal order, the sensitivities of these functions are
discontinuous in the repeated eigenfrequency case.
Approaches are often used to maintain the simplicity of
eigenfrequency during the entire optimization process and
overcome this ill-posed problem. The modal assurance
criterion (MAC) method, an efficient and accurate strategy,
is introduced to monitor a single target mode, which is the
first mode in this study. The definition of MAC is

MACðua,ubÞ ¼
juTaubj2

ðuTauaÞðuTbubÞ
, (21)

where ua and ub represent two eigenvectors: One is the
reference eigenvector of the current optimization cycle and
the other is the objective eigenvector of the previous cycle
in the eigenvalue optimization process. The value of MAC
varies between 0 and 1. Theoretically, a MAC value of 1
means that the two eigenvectors representing modal shapes
are exactly the same. However, this condition is impossible
because the structural configuration changes in each
iteration, and the modal shapes of adjacent iterations are
not orthogonal to each other. By comparing a few reference
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eigenvectors with an objective eigenvector uobj, a new
objective eigenvector is obtained in each iteration step of
the optimization process, and it can be expressed as

unobj ¼ unk that      max
k

½MACðun–1obj ,u
n
kÞ�, 

k ¼ 1,2,:::,Nm, (22)

where Nm is the number of modal eigenvectors that need to
be checked, superscript of displacement indicates the
number of iteration step, that is, in the nth iteration,
objective eigenvector of previous iteration step un–1obj is used
to calculate the MAC value.

3.3 Sensitivity analysis

Establishing the relationship between the optimization
function and design variables by using a sensitivity
analysis approach is necessary to solve the optimization
problem. According to the material derivative and the
adjoint method, the Lagrangian function can be defined as

Lðu,ΦÞ ¼ J ðu,ΦÞ þ aðu,v,ΦÞ – l1bðu,v,ΦÞ

þ Λ !
Ω
HðΦÞdΦ –Vmax

� �
, (23)

where Λ is the Lagrangian multiplier. Assuming that

V ðu,ΦÞ ¼ !Ω
HðΦÞdΦ –Vmax is the volume constraint, the

shape derivative of Lagrangian function Lðu,ΦÞ is
∂Lðu,ΦÞ

∂t
¼ l1# þ a# u,v,Φð Þ – l1b# u,v,Φð Þ

– l1#bðu,v,ΦÞ þ ΛV#ðu,ΦÞ, (24)

where the material derivatives of aðu,v,ΦÞ and bðu,v,ΦÞ
are respectively given by

a#ðu,v,ΦÞ ¼ !
Ω
Dijklεklðu#ÞεijðvÞHðΦÞdΩ

þ!
Ω
Dijklεklðu#Þεijðv#ÞHðΦÞdΩ

þ!
Ω
Dijklεklðu#ÞεijðvÞδðΦÞjrΦjV ndΩ, (25)

b#ðu,v,ΦÞ ¼ !
Ω
�u#vHðΦÞdΩþ!

Ω
�uv#HðΦÞdΩ

þ!
Ω
�uvδðΦÞjrΦjV ndΩ, (26)

where u# and v# are partial derivatives of u and v,
respectively, with respect to pseudo-time. δðxÞ is the Dirac
function.
The adjoint state equation can be obtained by the Kuhn-

Tucker condition.

aðu#,v,ΦÞ – l1bðu#,v,ΦÞ ¼ 0, (27)

aðu,v#,ΦÞ – l1bðu,v#,ΦÞ ¼ 0, (28)

1 – bðu,v,ΦÞ ¼ 0: (29)

Given that the real mode u is equal to the adjoint mode v,
Eq. (29) is a normalization condition for the eigenvector. In
this case, Eq. (24) can be simplified as

∂Lðu,ΦÞ
∂t

¼ !
Ω

�
FðuÞ þ Λ

�
δðΦÞjrΦjV ndΩ, (30)

where FðuÞ ¼ DijklεðuÞεðuÞ – l1�uu. By substituting Eqs.
(11) and (15) into the preceding shape derivative equation,
we obtain

∂Lðu,ΦÞ
∂t

¼ –!
Ω

�
FðuÞ þ Λ

�
δ Φð ÞR∂s

∂t
dΩ: (31)

Given that

∂Lðu,ΦÞ
∂s

¼ ∂J ðu,ΦÞ
∂s

þ Λ
∂V ðu,ΦÞ

∂s
¼ ∂Lðu,ΦÞ

∂s
∂s
∂t

, (32)

the sensitivity of the objective function and volume
constraint with respect to the design variables is respec-
tively obtained as follows:

∂J ðu,ΦÞ
∂s

¼ –!
Ω
FðuÞδðΦÞRdΩ, (33)

∂V ðu,ΦÞ
∂s

¼ –!
Ω
δðΦÞRdΩ: (34)

4 Numerical implementation

Many design variables, which correspond to large-scale
nonlinear equations in the eigenvalue problem, exist in
continuum structural TO. Thus, OC is introduced to solve this
eigenvalue TO problem. By properly iterating and updating
the design variables, this optimization problem is guaranteed
to converge to a final solution. Starting from an initial value,
the iterative formula of the design variables is expressed as

sðkþ1Þ
i ¼ cðkÞi sðkÞi : (35)

Theoretically, the iteration coefficients cðkÞi are obtained
by setting Eq. (32) equal to 0, which can be written as

cðkÞi ¼ –
∂J ðu,ΦÞ
∂sðkÞi

=max �,ΛðkÞ∂V ðu,ΦÞ
∂sðkÞi

( )
, (36)

where � is a very small number that can avoid singularity
when the sensitivity of the volume constraint with respect
to the design variables is equal to 0. The Lagrangian
multiplier Λ is calculated by the bisection method [76].
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A flowchart of the structural TO for maximization of the
first eigenfrequency problem is depicted in Fig. 2. Given
the condition of constraints, when the relative difference
value of the objective function in the current and previous
iterations is less than 10–3, this optimization process is
considered convergent, and the current optimization
process is terminated.

5 Numerical examples

In this section, the proposed IGA-based level set TO
framework is applied to two 2D optimization problems.
For all examples, the properties of the isotropic material
are set as follows: Young’s modulus E ¼ 210 GPa and
mass density � ¼ 7:8� 103 kg=m3. The properties of the
artificial weak material are E0 ¼ 210� 10 – 3 GPa and
mass density � ¼ 7:8� 10 – 3 kg=m3. Poisson’s ratio � ¼
0:3 and plane stress state are assumed for all the materials.
The two examples are TO of maximizing the fundamental
eigenfrequency of the plane structure with a unit thickness
of 0:001 m and a prescribed material volume fraction of
α ¼ 50%. In the initial design, the available material is
uniformly distributed over the entire admissible design
domain. In the following examples, the boundary condi-
tions are imposed by the collocation method, which

enforces these conditions to be satisfied pointwise. Given
that NURBS basis functions associated with the interior
control points vanish at the structural boundary when
open-knot vectors are employed, the displacement boun-
dary condition applied on the left and right sides of the
beam is imposed by setting the displacement values at left
and right boundary control points to zero. All results are
produced with programs developed in the MATLAB
R2018a environment on a computer with an Intel Core
i3-3240 CPU, 3.4 GHz clock speed, and 6 GB RAM.
Additional details on the implementation of IGA on the
MATLAB platform were presented in Ref. [77].

5.1 Cantilever beam

The first numerical example of a short cantilever beam for
maximizing the first eigenfrequency optimization problem
is shown in Fig. 3. The entire design domain is a rectangle
with a size of 0.2 m�0.1 m, a Dirichlet boundary, and fixed
displacement at the left edge of the design domain. A
concentrated nonstructural mass M ¼ 15:6 kg that is one-
tenth of the total structural mass of the plate is placed at the
center of the right side. Notably, the structure disappears
without the nonstructural mass because no structure leads
to the highest eigenfrequencies.
In this example, IGA- and FEA-based TO approaches

Fig. 2 Flowchart of the optimization procedure
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are applied to a similar problem for comparison. For this
2D example, equally spaced open-knot vectors are used for
x and y directions, and the degrees of NURBS basis
functions on the two directions are the same, i.e.,
p ¼ q ¼ 2. Nine-node quadratic rectangle elements are
used for FEA, and the element number of both methods is
the same, which facilitates a comparison under identical
conditions.
The computation consumption times of the two methods

are shown in Table 1. Notably, for simplicity in the
proceeding table and figures, IGA-L and FEM-L represent
IGA- and FEM-based LSM, respectively. The solution
time of the system equation includes the time spent on
assembling the stiffness matrix and solving the equation to
obtain an objective function. In this case, when the
numbers of Lagrange and NURBS elements are a� b (a
and b represent the number of elements in x and y
directions, respectively), the number of DOFs of the IGA-
based method is ðaþ 2Þðbþ 2Þ ¼ abþ 2aþ 2bþ 4 and
that of FEM is ð2aþ 1Þð2bþ 1Þ ¼ 4abþ 2aþ 2bþ 1.
The DOF of IGA is much less than that of FEM (nearly a

quarter of FEM) when the element number is sufficiently
large. Table 1 shows that the computation efficiency of
IGA-based LSM is higher than that of FEM-based LSM in
TO due to the fewer DOFs or smaller size of equations in
the IGA-based approach. However, because of the extra
calculations of the basis functions and their derivative in
the IGA-based approach, the ratio between the iteration
time and DOFs of the IGA-based optimization method is
higher than that of the FEM-based method.
The optimal layouts obtained by using IGA and FEA

with 128�64 elements are shown in Fig. 4. In this case, the
results are similar, and the crisp boundary is obtained due
to the level set method. Adopting B-spline basis functions
to parameterize the level set function together with IGA for
calculation instead of FEA leads to the rapid convergence
of the IGA-based optimization process.
The convergence history of optimization using IGA and

FEA with 128 � 64 elements is shown in Figs. 5 and 6.
Figure 5 shows the convergence history of the first
eigenfrequency and volume ratio of the structure by
using IGA- and FEA-based optimization frameworks,
respectively. The initial designs and resultant structures of
both methods are basically the same. In optimization with
the IGA method, the ωi of the initial design and the
resultant optimum are 173.5 and 188.7, respectively. The
volume ratio of the initial design and the resultant optimum
are 0.79 and 0.5, respectively. Thus, the fundamental
eigenfrequency increased by 8.8% and the volume
decreased by 36.7%. Figure 6 shows the iteration history
of the first three eigenfrequencies by using both methods.
The first eigenfrequency always remains simple, whereas
the second and third eigenfrequencies tend to oscillate and

Fig. 3 Design domain of a cantilever beam structure

Table 1 Comparison of IGA- and FEA-based LSM TO

Method Number of elements Number of DOFs Time of each iteration/s Time of solution of system equation/s

IGA-L 256�128 67080 873.26 713.68

FEA-L 256�128 263682 1580.42 1237.16

IGA-L 128�64 17160 30.06 25.31

FEA-L 128�64 66306 54.17 43.97

IGA-L 64�32 4488 6.41 5.18

FEA-L 64�32 16770 8.55 6.85

Fig. 4 Optimized results obtained by using IGA and FEA methods with 128 � 64 elements
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overlap. By using the MAC method, problems regarding
the orders of eigenfrequency exchange during the
optimization process are avoided. The first eigenfrequency
generally increases, and the second and third eigenfre-
quencies decrease as the volume ratio decreases.

5.2 Beam with clamped ends

In this section, we present an example of maximizing the
fundamental frequency of a clamped beam structure shown
in Fig. 7. The working domain has a size of 0.4 m�0.1 m.
A fixed displacement boundary condition is imposed on
both sides, and a concentrated nonstructural massM = 31.2
kg is placed at the center of structure. In this example, the
capability of the proposed method to capture the optimum
topology and the effect of the number of elements are
studied. For this purpose, a clamped beam is solved with
three mesh sizes, namely, 64�16, 128�32, and 256�64.

The degree of NURBS basis function is 2 in both
directions. The resulting layouts shown in Fig. 8 indicate
that the mesh dependency problem is avoided in the
proposed method. This figure also shows that an inaccurate
optimum topology with a rough boundary is obtained as a
consequence of coarse meshes. By refining the mesh, the
smoothness of the boundaries of the optimal layout is
improved. However, when the number of elements is larger
than 128�32, the resulting layout slightly changes.
Accounting for the computation cost and precision of
results, 128�32 meshes are used in this example.

The convergence history of the objective function and
volume ratio is given in Fig. 9. The first eigenfrequency of
the initial design and the resultant topology are 244.3 and
257.4, respectively. The volume ratio of the initial design
and the resultant topology are 0.82 and 0.5, respectively.
Thus, the fundamental frequency increases by 5.4%, and
the volume decreases by 39%. Figure 10 shows the
convergence history of the first three eigenfrequencies. The
fundamental frequency remains simple throughout the
entire optimization process. The value of first eigenfre-

Fig. 5 Comparison of IGA and FEA in terms of convergence
history

Fig. 6 Comparison of IGA and FEA in terms of eigenfrequency
history

Fig. 7 Design domain of a clamped beam structure

Fig. 8 Optimal layouts obtained by using (a) 64�16 meshes,
(b) 128�32 meshes, and (c) 256�64 meshes
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quency gradually increases after the fifth iteration, whereas
that of the second and third eigenfrequencies decline with
the increase in iterations.

6 Conclusions

We solved maximum fundamental eigenfrequency TO
problems with a level set model based on the IGA
technique. IGA combines the fundamental idea of FEM
with the spline technique from a computer-aided geometry
design for the integration of CAD and CAE. The IGA
method was also introduced to TO due to its superiority
over currently used FEM in terms of accuracy and
efficiency. The feature of the proposed method is the
combination of IGA and LSM in eigenfrequency optimi-
zation where the same basis functions (NURBS) are used
for geometry representation, dynamic analysis, and para-
meterization of the implicit LSF. High accuracy and
smoothness of LSF were achieved by using smooth
NURBS basis functions to approximate LSF. In the case

of maximizing the fundamental eigenfrequency, a regulari-
zation method for the repetition or exchange of eigen-
frequencies was employed to guarantee the simple
behavior of structural eigenfrequency.
Two benchmark numerical examples of TO for dynamic

problems were applied to verify the validity of the
proposed approach. The results obtained from the
comparison of FEA- and IGA-based level set TO methods
demonstrated that the proposed IGA-based optimization
method has better computational efficiency and converges
faster than the traditional FEA-based optimization method.
The results also showed that solving dynamic TO problems
by using IGA together with the level set method is
possible. Although we only presented examples of 2D
structures, no theoretical difficulties will be encountered if
the proposed is extended to the optimization of 3D
structures.
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