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Abstract Enabled by advancements in multi-material
additive manufacturing, lightweight lattice structures
consisting of networks of periodic unit cells have gained
popularity due to their extraordinary performance and wide
array of functions. This work proposes a density-based
robust topology optimization method for meso- or macro-
scale multi-material lattice structures under any combina-
tion of material and load uncertainties. The method utilizes
a new generalized material interpolation scheme for an
arbitrary number of materials, and employs univariate
dimension reduction and Gauss-type quadrature to quan-
tify and propagate uncertainty. By formulating the
objective function as a weighted sum of the mean and
standard deviation of compliance, the tradeoff between
optimality and robustness can be studied and controlled.
Examples of a cantilever beam lattice structure under
various material and load uncertainty cases exhibit the
efficiency and flexibility of the approach. The accuracy of
univariate dimension reduction is validated by comparing
the results to the Monte Carlo approach.

Keywords robust topology optimization, lattice struc-
tures, multi-material, material uncertainty, load uncertainty,
univariate dimension reduction

1 Introduction

Lattice structures are periodic or aperiodic cellular
structures with strut-based unit cells. Because they consist
of many structural members and are naturally porous, they
hold desirable properties, e.g., low weight and material
cost, while exhibiting extraordinary mechanical, thermal or
acoustic properties. In recent years, additive manufacturing
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(AM) has allowed easier manufacture of geometrically
complex lattices, and as a result the structures have gained
traction as both micro-architectured metamaterials and
mesostructures. At the microscale, for example, lattice
metamaterials have been designed for negative Poisson’s
ratio [1-3], acoustic manipulation [4,5] and energy
absorption [6]. Mesoscale lattice structures have also
been embedded into global structures to achieve multi-
functional heat exchangers [7,8], and parts with high
energy absorption [9-12] and low weight [13,14]. In
particular, lattice structures are exceptionally popular in the
biomedical field due to their porosity, which allows
biocompability with organic tissue, high performance-to-
weight ratio, and ease of customization [15-17]. By
exploiting the advancements in multi-material AM, greater
performance improvements [12], like graded stiffness [2]
and a larger range of stiffness [18], are possible.

This work focuses on periodic, mesoscale, multi-
material lattice structures, which can replace a portion or
the entirety of a solid global part, and is also applicable to
macroscale lattices. Due to the large number of lattice
struts, or members, as well as the additional materials, the
design space expands significantly. Thus, to design these
structures, computational methods, e.g., topology optimi-
zation, which automatically lays out the materials, are
highly desirable. While multi-material topology optimiza-
tion has become more prevalent, most methods are not
applicable to meso- and macroscale lattice structures. The
color level-set [19] and multiphase phase-field [20]
methods require solving the Hamilton-Jacobi and Cahn-
Hilliard partial differential equations, respectively, on a
continuous domain. Therefore, they cannot design lattice
structures in which each strut is a discrete element.
Techniques for discrete elements like the multi-material
genetic algorithm [21] and pseudo-sensitivity [22]
approaches exist, but are prohibitive for large problems.
Zhang et al. [23] used the ground structure method to
iteratively remove members, applying a new variable
update method to effectively optimize multi-material
trusses under multiple constraints.
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Similar to Ref. [23], this work takes the strut member as
an element and can either remove or assign materials to
each. Departing from the above methods, however, a
density-based approach is employed by calculating the
elastic modulus based on the well-known 3-phase standard
solid isotropic material with penalization (SIMP) scheme
by Bendsee and Sigmund [24]. It is also inspired by the
modified version of SIMP that replaces the void elastic
modulus with a small number to avoid singularity during
finite element analysis (FEA) [25]. The formulation in this
paper takes SIMP a step further by allowing multiple
materials.

A few others have extended Sigmund’s 3-phase
interpolation schemes to M solid phases and can be
broadly categorized into: 1) Schemes that add design
variables for each new material, similar to standard and
modified SIMP, and 2) schemes that limit the number of
design variables in order to reduce cost. Stegmann and
Lund [26] employed a model of the first category, initially
allowing more design variables but later reducing the
number using “patch” variables. They, however, followed
the less stable standard SIMP formulation. Gaynor et al.
[27] also proposed a first category scheme that, despite
considering pratical PolyJet manufacturing constraints,
unrealistically requires the difference between the elastic
modulus of each material to be equal. From the second
category, Yin and Ananthasuresh [28] used a peak function
to transform one design variable into the modulus of
multiple materials. Although it does not increase the design
variables, the function contains horizontal slopes that may
cause instability, and includes several curve parameters
that must be meticulously selected by the user. Another
method is Zuo and Saitou’s ordered scheme [29], which
avoids instability in its power functions but has a
complicated formulation and fluctuations in the optimiza-
tion history.

It should be noted that although using less design
variables does reduce the time needed to evaluate the
modulus and to update the variables, the vast majority of
topology optimization, especially in large problems, is
spent in FEA, which depends on the number of elements in
the domain. As this number generally remains the same
throughout optimization regardless of how many materials
exist, it is not necessary to force a more complicated
scheme in exchange for less design variables. Hence, this
work proposes a multi-material interpolation scheme of the
first category that is generalized for arbitrary numbers of
materials, easy to implement and based on modified SIMP
for more stability.

Furthermore, the uncertainty in the materials and loads
are considered in this work. In AM, uncertainty is inherent
in the material (e.g., variability in the powder of laser
powder bed fusion) and the build process (which can lead
to inconsistent geometry). In lattice structures, the strut
dimensions and mechanical properties can vary greatly
depending on the processing conditions [30,31]. Park et al.

[32] quantified the variability in the strut geometry by
calculating the probabilistic distribution of effective
diameters, then deriving the effective elastic modulus. In
this paper, a similar approach is taken, except here the
elastic moduli of the materials are used directly as the
uncertain parameters. By doing so, both the uncertainty in
the material and the built geometry can be simultaneously
considered by prescribing appropriate probability distribu-
tions. Load uncertainty that can arise during application is
also added for more robust designs. Both material and load
influence the part performance, which is used as the
objective function in topology optimization; considering
their variability can result in different and more robust
designs.

Topology optimization methods that consider geometric
[33-35] and material [36,37] uncertainties exist for single
material continuous problems. There is relatively more
research for random loads, such as Refs. [38—40]. None-
theless, the majority of these methods use level-set
topology optimization, projection filters to model uncer-
tainty, or Monte Carlo to quantify uncertainty—all of
which are difficult or impossible with multi-material lattice
structures consisting of a large number of strut elements. In
response, this work proposes utilizing a weighted sum of
the mean and standard deviation of the performance
criteria, e.g., compliance, as the objective function, where
the statistical moments are calculated using univariate
dimension reduction (UDR) [41] and Gauss-type quad-
rature sampling.

The new generalized multi-material interpolation
scheme is proposed in Section 2. In Section 3, the
deterministic formulation of the topology optimization
using the scheme is introduced, followed by the robust
formulation and details of uncertainty quantification in
Section 4. Numerical examples of a mesoscale lattice
structure with a global cantilever beam shape under
different uncertainty cases is shown and discussed in
Section 5. Finally, the conclusions are presented in
Section 6.

2 Multi-material interpolation scheme

The proposed multi-material interpolation scheme follows
the SIMP method, where the continuous design variables
are the artificial densities of the elements. The material
property of each element is expressed as a material
interpolation function that penalizes intermediate values of
the densities through an exponent, p. For example, the
Young’s modulus of each element e in a design containing
one solid material can be described by the standard SIMP
model as [24]

E, = E(p.) = pLE, ()

where p, € (0,1] is the artificial density variable of element
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e such that it is greater than some small number p;, to
avoid singularity when solving the finite element problem,
and £ is the overall Young’s modulus of the solid material.
Using the so-called modified SIMP scheme, singularity
in the stiffness matrix can be circumvented by assigning a
small positive number to the void phase as follows [25]:

E, = Ee(pe) = pg(El _EO) + Eo, 2)

where E| is the elastic modulus of the solid material, £, is a
small value that represents the void phase, and p is the
penalty coefficient to discourage intermediate densities
within [0,1]. This improved formulation not only allows E,
to be independent of p but also facilitates filtering schemes
such as the minimum length scale filter.

Gibiansky and Sigmund [42] showed the following
3-phase (two distinct solid materials and one void phase)
scheme for composites that includes a second penalization
parameter, g:

E(loe-lape-Z) = P[;][(l _pz'2>El + pZ~2E2]7 (3)

where E, is the modulus of the second solid material, and
the design variables are p,.;,p,.» € [0,1]. This model was
tested by Stegmann and Lund in Ref. [26], where the two
penalty parameters had to be carefully chosen in order to
converge to a global optimum. Moreover, Eq. (3) follows
the standard SIMP model instead of the more stable
modified version in Eq. (2).

In response, this work amalgamates Eq. (3) and the
modified SIMP scheme for three phases, without the
inclusion of another penalty parameter, as follows:

Ee(pe-lape-Z) = M;-l[pﬁiEZ + (l_pil)El] + (1—P§.1)E0

= o lha(Ex—Ey) + ph (Ey — Ep) + Eq.
4)

From the second line, it is clear that the first set of
variables, p,.;, determines the optimal topology (solid or
void) of the overall structure, while the second set, p,.,
selects the material at each solid element. This idea is
demonstrated for a 3-phase scenario in Table 1.

This work further proposes extending Eq. (4) to a
general material interpolation scheme that can handle any
number of materials:

(Ej*Ejfl)H P{;-k

k=1

+ Eo,
(&)
Table 1 Expansion of the proposed interpolation scheme for three

phases (M = 2)
Density variables

M
Ee(pe-l’pe-Za"'ape-M) = Z
Jj=1

Young’s modulus

Pe1 =0, pey =0 Eqy
Pe1 =1, per =0 E,
Pet1 =1, per =1 E,

where M is the number of distinct, non-void materials.
When M =1 and M = 2, this scheme simplifies to the
established expressions Egs. (2) and (4).

Using the proposed Eq. (5), M design variables per
element are required, but the number of elements in the
FEA simulation does not change when more materials are
introduced. Since the majority of the computational
expense in topology optimization is typically attributed
to FEA, the cost of additional design variables due to
multiple materials is relatively small. Based on the
stable modified SIMP scheme, the proposed formulation
is easily integrated into problems with any number of
materials.

3 Deterministic topology optimization

The density-based deterministic optimization problem to
minimize compliance is

Jo=c(p) =u"K(p)u
subject to K(p)u =f,

minimize
p

Iu = Z(Pe- 1Pe-2-+-Pe-mVe) — I <0,

e=1
0<p,; <1, e=12,.P, i = 12,..M,
(6)

where p is the vector containing all design variables p,.;, ¢
is the compliance of the structure, v, is the volume of
element e, u is the displacement vector, f is the external
load vector, and P is the total number of elements. The
stiffness in each element, E,, is calculated using the
proposed interpolation scheme (Eq. (5)), and the global

P
stiffness matrix is K(p) = ZEeKe, with the unit local
e=1
stiffness matrix K,. The volume ratios of the solid
materials in each element are constrained by equations
J13)5,-Jyy and the upper bounds of those ratios,

J1T 250 pr-

Since the topology optimization problem is solved with
gradient-based methods, the derivative of the compliance
¢(p) with respect to the density variables, p,.;, is derived
using the adjoint variable method [24] as
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X ﬁ _p’j.k} u.Ku,, )

where u, is the element displacement vector of element e.

4 Robust topology optimization

To capture uncertainty mathematically, the random vari-
ables w,,€ M and ORS O are introduced, where " and
@ are the random sample spaces [43] corresponding to
uncertainties in the material properties and loads, respec-
tively. Here M is the number of uncertain solid phases as
defined previously, while F' is the number of uncertain
external loads.

The robust topology optimization is then formulated as
follows:

minimize Jy = p(c(p,,,0)) + fo(c(p.w,, o))
p
subject to  K(p,m,,)u = f(w;),
P —
J1 = Z(pelve)*‘]l <0,

e=1

P
J2 = Z(pe-lpe-ZVe) _*72 SO,

e=1

Iy = Z(pe~1pe-2"~pe-Mve) 7‘7M<Oa

e=1
0<p, <1, e=12,..P, i=12,..M,
®)

where c(p,w,,,0,) is the compliance under uncertainty,
characterized by its mean and standard deviation, y(c) and
o(c). A weighted sum of these two statistical moments
using a weight constant, f, results in a multi-objective
optimization problem, which allows f to be increased in
order to put more emphasis on minimizing the variation in
compliance of the final design.

4.1 Uncertainty quantification and propagation
4.1.1 Multi-material interpolation scheme under uncertainty

When material uncertainty exists, an extended version of

the proposed multi-material scheme (Eq. (5)) can be used
to calculate the Young’s modulus of each element, E,:

Ee(:o@l’pe-Zr“ape-M)

=1

+Ey, (9)

(B 1(op )T

k=1

where each modulus E;(w;) is a realization of its
corresponding random variable, ®;€®,,. In the case
when there is no material uncertainty (i.e., there is only
load uncertainty, or the problem is deterministic), the
above simply reverts to Eq. (5) due to the lack of w,,.

4.1.2 Calculation of statistical moments

The material and load uncertainties are propagated using
UDR, which, when combined with Gauss-type quadrature,
efficiently reduces the moments of multivariate probability
distributions into a weighted sum of univariate functions
[41]. For the method to be accurate, all random variables
should be chosen such that there are no strong interactions
between them [44,45]. Furthermore, it is assumed that all
of the random variables are mutually independent, and for
notational simplicity, they are not separated into w,, and
;. Instead, they are lumped into w=[m,,,0;] € ®, where
Z is the total number of random variables. For example, if
both material and load uncertainties are considered,
Z=M+F.

The statistical moments 1(c) and o2 (c) can be expressed
as

plelp)) = [y cpolfp(@do,  (10)

P (clp) = [, o) - p(clpo) Pho(@)do, (1)

where f,, (@) is the joint probability density function of the
random variables.

With UDR, the compliance can be approximated by
reducing it to a sum of univariate functions. In each
function, all random variables are held equal to their mean
except for one, w;, such that

cpw) = Y clplo).
=1
~(Z-Delpu(o)...

= Zc(p’ﬂ|u w/

wj, ’/J’(wZ))

7“(602))

—(Z=1)eclpp). (12)

Note that the univariate functions c(p.pul,—,,) are
independent since the random variables are independent,
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and therefore Eqgs. (10) and (11) can be approximated as
follows [46]:

pclp.w)) = ) ulclpply—o,))—(Z=1)clp.p), (13)

R

o’ (c(p.w)) = Z o (c(p bl y=o))- (14)

Then, utilizing one-dimensional Gauss-type quadrature
to calculate the univariate moments in Eqgs. (13) and (14),
the final expressions are derived as

Z N
g Z lz Wj~kc(p’.u|uj:lj.k) - (Zf l)C(p,/l),

(15)

o’ (c(p.))

zZ N N 2
S5 [aowzww] |
J=1 k=1 n=1

(16)

where N is the number of quadrature nodes, /;.; is the
kth node of the random variable w;, and w;; is the
corresponding weight.

Using these methods, the statistical moments of
compliance can be estimated with Z-N+1 deterministic
finite element simulations, a value that is, as discussed
earlier, not dependent on the number of elements in the
design domain. In comparison to tensor product quad-
rature, which is an alternative univariate moment estima-
tion method requiring N FEA evaluations, UDR is much
more efficient [33].

It

4.2 Sensitivity analysis

For gradient-based optimization of the robust problem, the
derivative of the weighted objective function with respect
to each artificial density variable, p,.;, is

0y _ oplc(p.o)) | ,00(c(p.w))

ape'i - ape~i +ﬁ ape~i

oulcpo) |
oo 20(clpw)

where e = 1,2,...,P,and i = 1,2,...,.M.

As in the previous section, when applying UDR to
estimate the sensitivities of the mean and variance, the
random variables are fixed at their mean except for wj,
which is sampled using Gauss-type quadrature. Thus,

00” (c(p.w))
ape‘i

» (17)

7(271)66@,@, (18)

o~ 2i i Wi [c(p,,um.g/._k) —p (C(P#bﬂ,ﬂ)]

% ac(p»”',u/-=l/-.k
ape~i n=1 apei

N
) _ZWM@C@’”'#[:IM)]' (19)

Similar to Eq. (7) but with the addition of random
variables, the derivative of compliance under uncertainty is

ac(p,w) A K (p.w) w)
apew‘ 8/02 i

M
= —pd ; {(Eq(wq)

q

7Eq71 (wqfl ))

Julk 0)
where w,€m,,. This derivative can be calculated after
solving K (p,®,,)u = f (o), which is deterministic due to
UDR since o, and @y are either held at the mean or equal
to the quadrature node according to Egs. (18) and (19).

5 Numerical examples

The robust multi-material formulation was demonstrated
with a 4-phase 3D cantilever beam under different
combinations of material and load uncertainty, where
each strut of the lattice structure is one FEA element with
three design variables. In all examples, the initial structure
(Fig. 1(a)) has dimensions 200 mmx 100 mmx20 mm and
a total of 19502 elements. It is created by repeating the
cubic unit cell in Fig. 1(b), which is 10 mmx10 mmx10
mm and consists of 20 elements with 2 mm diameters, and
removing overlapping struts. The uniformity of the unit
cell is not guaranteed in the optimized result, however, as
individual strut elements can be removed if p,.; =0.

The FEA at each iteration is performed in Altair
HyperWorks OptiStruct, which has the capability to
generate and simulate lattice structures, including differ-
ently oriented struts, as part of their lattice optimization
module. Each lattice strut is modeled as a 1D CBEAM
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@

W r=15N

(b)

Fig. 1 (a) Boundary conditions; (b) initial lattice unit cells

element, and has PBEAML properties with TYPE=ROD.
The material properties and their volume ratio upper limits
are listed in Table 2, and the boundary conditions are
shown in Fig. 1(a).

The optimization problems are solved via the method of
moving asymptotes (MMA) [47], which is efficient despite
the large number of design variables and volume
constraints. The design variables p,.; are initially set
equal to their corresponding volume ratio limits, e.g.,
pe.1=J . To simplify the calculations, the volume of each
element, v,, was assumed to equal one. In these examples,
the generalized multi-material interpolation scheme
(Eq. (9)) does not require high penalization, with p=2
sufficing to drive away most intermediate (gray) densities.
However, it is necessary to significantly increase the MMA
parameter asydecr from the default value to 0.97 in order to
decrease oscillations in the optimization history. The
asyincr parameter is lowered to 1.03 for faster convergence
with a slight sacrifice to the compliance, the initial
movelimit is 1.2, and the rest of the parameters are kept
at the default values recommended by Svanberg [48]. The
optimization is stopped when the relative difference
between the objective function values between two
iterations is less than 10 °.

For UDR, all examples use N=8 Gauss quadrature
points. Increasing the number of points beyond this does
not noticeably improve the accuracies of the estimated
statistical moments in comparison to Monte Carlo with
10000 samples; instead it escalates the computational cost
unncessarily. In addition, the weight £ in the robust
objective function J, (Eq. (8)) is varied to generate Pareto
optimal fronts of each example, showing the effects of the
applied uncertainties. When =0, the objective function

Table 2 Material properties of the 4-phase examples

reverts to the deterministic one (Eq. (6)) and the optimal
topology in this case is essentially the deterministic one.
As f1is increased, more emphasis is put on minimizing the
standard deviation of compliance, i.e., the uncertainty.
Three cases of uncertainty are examined in the following
sections: uncertainty in the 1) materials only, 2) load only,
and 3) both materials and load.

5.1 Materials uncertainty

In the first case, the Young’s moduli of the four material
phases are taken as normally distributed random variables.
Thus, each modulus is prescribed a mean and standard
deviation. The means of the soft, medium and hard
materials are listed in Table 2; the standard deviations are
set to 100 MPa each, which is equivalent to 20%, 10%, and
5% of the mean values, respectively. The load is
deterministic with a magnitude of 1.5 N (Fig. 1(a)).

Despite applying a high weight on the standard
deviation of compliance, =10, the history of the
objective function decreases stably and monotonically
overall to 10.2% of the original value in 38 iterations
(Fig. 2). In Fig. 3, the tradeoff between the the mean and
standard deviation of compliance can be observed. When
is decreased, the mean decreases while the standard
deviation increases, i.e., more optimal but less robust
solutions are found. This relationship can also be seen in
Fig. 4, where the robust solution has more of the medium
(blue) and hard (yellow) materials, which were assigned
lower relative standard deviations (10% and 5% of their
means, respectively) than the soft material (20% of its
mean).

To validate the statistical moments that were estimated

Material Color Mean Young’s modulus/MPa Poisson’s ratio Volume ratio constraint
Void - 1.0e-8 0.3 -

Soft Green 500 0.3 10%

Medium Blue 1000 0.3 10%

Hard Yellow 2000 0.3 10%
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Fig. 2 Optimization history of the objective function under
material uncertainty when =10
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Fig. 3 Pareto curve under material uncertainty with different
objective function weights S
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using UDR, the final topologies were evaluated with 10000
Monte Carlo samples and compared in Table 3. The study
shows that the UDR approximations are accurate within
3% of the Monte Carlo results.

5.2 Load uncertainty

For the example under load uncertainty, two normally
distributed random variables are considered: The magni-
tude and the angle of the external load applied (Fig. 5). The
mean of the load maginitude is 1.5 N and the standard
deviation is 0.225 N, or 15% of the mean, while the mean
and standard deviation of the angle are 0° and 10°,
respectively. As before, the objective history for f=10 is
fairly smooth and stable, and the final value is 5.67% of the
initial compliance after 37 iterations (Fig. 6).

Unlike the case with only material uncertainty, the
robust designs are dramatically different, with long
horizontal bars of the hard (yellow) material added in
order to brace the cantilever against loads with angles that
are not 0° (Figs. 8 and 9). Consequently, the mean and
standard deviation of compliance for the robust solutions
are significantly lower than the deterministic one (Fig. 7(a)
and Table 4). Still, the Pareto optimal front considering
only robust solutions shows a similar tradeoff as before
(Fig. 7(b)), and once again the topology with higher g
consists of stronger materials (Fig. 9). When load
uncertainty is considered, however, the standard deviation
estimated using UDR is not as accurate as Monte Carlo
sampling, with differences higher than 10% (Table 4).

5.3 Materials and load uncertainties

The final case demonstrates the proposed method’s ability

(b)

Fig. 4 Optimal solutions under material uncertainty when (a) =0 (deterministic) and (b) f= 10 (robust)

Table3 Mean and standard deviation of the compliance (N - mm) results under material uncertainty using UDR with 8 quadrature nodes and Monte

Carlo with 10000 samples

Solution type Statistical moment UDR/quadrature Monte Carlo Difference

Deterministic (8=0) Mean 0.43036 0.43027 0.02%
Std. Dev. 0.02063 0.02087 1.15%

Robust (= 10) Mean 0.46244 0.46262 0.04%
Std. Dev. 0.02018 0.02072 2.61%

Std. Dev.: Standard deviation
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e

F~N(.5N,0.225N)
6 ~ N(0°, 10°)

Fig. 5 Boundary conditions with the random external load,
which varies in both magnitude (f) and angle (6)
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Fig. 7 Pareto curve for different objective function weights under load uncertainty (a) including = 0 (deterministic), and (b) showing

robust solutions only (=1 to f=10)

Table 4 Compliance (N mm) results under load uncertainty using UDR with 8 quadrature nodes and Monte Carlo with 10000 samples

Solution type Statistical moment UDR/quadrature Monte Carlo Difference
Deterministic (8= 0) Mean 1.02900 1.04167 1.22%
Std. Dev. 0.82306 0.92341 10.87%
Robust (8= 1) Mean 0.74000 0.74949 1.27%
Std. Dev. 0.42108 0.49094 14.23%
Robust (8= 10) Mean 0.76359 0.77067 0.92%
Std. Dev. 0.38892 0.44047 11.70%

Std. Dev.: Standard deviation

to capture multiple sources of uncertainty by simulta-
neously considering material and load uncertainties. This
example combines the two previous ones: The same
normal distributions for the three solid materials as in
Section 5.1, and the same for the load magnitude and angle
as in Section 5.2, are applied.

Again, the optimization when B=10 converges well,
achieving an objective value that is 5.71% of the initial in

34 iterations (Fig. 10). The Pareto frontier (Fig. 11) and
topologies (Figs. 12 and 13) are akin to those when only
load uncertainty is considered in that the mean and
standard deviation of compliance for the robust solutions
also decrease due to the formation of the hard material
(yellow) bars. With the additional uncertainty in the
materials, however, the compliance increases marginally
and the accuracy of UDR deteriorates slightly (Table 5).
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Fig. 9 Optimal solutions under load uncertainty when (a) =1
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6 Conclusions

This work proposes a new generalized material interpola-
tion scheme for an arbitrary number of materials, as well as
the employment of UDR and Gauss-type quadrature to
quantify and propagate any combination of uncertainty in
the materials and loads. The multi-material robust topology
optimization method is demonstrated with mesoscale
lattice structures, although the methods can be easily
transferred to macroscale lattices, such as trusses, as well
as continuum structures.

The numerical examples of 4-phase cantilever beam
lattice structures reveal that the method is efficient for
large, multi-material problems with multiple sources of
uncertainty. The optimization converges stably in under 40
iterations despite nearly 20000 elements and up to five
random parameters. Using UDR and Gauss-type quad-
rature significantly cuts down the computational expense
of calculating the statistical moments of the objective
function, requiring only eight FEA evaluations per
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Table 5 Compliance (N-mm) results under material and load uncertainties using UDR with 8 quadrature nodes and Monte Carlo with 10000

samples

Solution type Statistical moment UDR/quadrature Monte Carlo Difference

Deterministic (5= 0) Mean 1.03223 1.03533 0.30%
Std. Dev. 0.82331 0.92008 10.52%

Robust (B=1) Mean 0.74380 0.76006 2.14%
Std. Dev. 0.42198 0.49447 14.66%

Robust (8=10) Mean 0.77624 0.78349 0.93%
Std. Dev. 0.39135 0.45541 14.07%

Std. Dev.: Standard deviation

iteration rather than, for example, 10000 using Monte
Carlo simulation. Although there is some loss of accuracy
with UDR, the difference compared to the Monte Carlo
approach is between 0.02% and 2.14% for the mean of
compliance, and 1.13%—14.66% for the standard devia-
tion, which is acceptable in exchange for the computational
savings. Furthermore, by setting the objective function as a
weighted sum of mean and standard deviation, multiple
designs along the Pareto frontier can be generated and
compared to observe and regulate the effect of uncertainty
on the problem.

With the rise of highly functional, multi-material lattice
structures built by AM, this paper offers a solution to
efficiently and robustly design these complex structures.
Possible extensions of this work include but are not limited
to: Applying objectives more complicated than compli-
ance; assigning targeted properties to achieve functionally

graded structures; incorporating the mesoscale design
within a multiscale framework that also optimizes the
global geometry; and optimizing multi-material conformal
lattice-skin structures.
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