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Abstract Regularization of the level-set (LS) field is a
critical part of LS-based topology optimization (TO)
approaches. Traditionally this is achieved by advancing
the LS field through the solution of a Hamilton-Jacobi
equation combined with a reinitialization scheme. This
approach, however, may limit the maximum step size and
introduces discontinuities in the design process. Alterna-
tively, energy functionals and intermediate LS wvalue
penalizations have been proposed. This paper introduces
a novel LS regularization approach based on a signed
distance field (SDF) which is applicable to explicit LS-
based TO. The SDF is obtained using the heat method
(HM) and is reconstructed for every design in the
optimization process. The governing equations of the
HM, as well as the ones describing the physical response of
the system of interest, are discretized by the extended finite
element method (XFEM). Numerical examples for pro-
blems modeled by linear elasticity, nonlinear hyperelasti-
city and the incompressible Navier-Stokes equations in
two and three dimensions are presented to show the
applicability of the proposed scheme to a broad range of
design optimization problems.
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1 Introduction

Topology optimization (TO), with its large design free-
dom, has emerged as a powerful design tool for a variety of
applications including structural mechanics, fluid flow and
heat transfer [1-3]. The two most commonly used TO
approaches are density-based methods and level-set (LS)-
based implicit boundary methods. Since the introduction of
the level-set method (LSM) [4], the method has gained
great popularity in the areas of image processing, computer
graphics, computational geometry and computational
physics [5—7]. LSMs describe geometry changes by
evolving an implicit boundary, conventionally defined as
the zero-level iso-contour of a level-set function (LSF),
#(X). When applied to TO, LSMs enable a clear and
unambiguous definition of the material interface [2,8]. van
Dijk et al. [8] classified LSMs into two broad categories
based on the LSF update procedure: i) Implicit methods
where some form of the Hamilton-Jacobi (HJ) equation is
used to evolve the LSF based on a velocity field defined by
shape sensitivities that are in turn governed by the physics
[9-12], and ii) explicit methods where a parametrized LSF
is updated using mathematical programming techniques
[8,13-17].

By construction, shape sensitivities only exist in the
vicinity of the domain boundary, i.e., zero iso-contour of
the LSF, and depend on the spatial LSF gradient.
Furthermore, locally too flat or too steep LSF gradients
affect the stability and the rate of convergence of LSMs,
while a uniform and uniquely defined LSF improves those
features. To this end, several regularization schemes for
LSMs have been proposed [8]. Perimeter regularization is
used to obtain a well-posed optimization problem [18]
whereas Tikhonov regularization is used to control the
smoothness of the LSF gradient [19,20]. These methods,
however, do not guarantee a unique LSF and may lead to a
flat LSF [8]. For both, explicit LS descriptions and implicit
LSMs using the HJ equation, there exists a strong need for
better regularization schemes to improve convergence of
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the optimization process and avoid convergence to local
minima [8].

An LSF with a uniform gradient along the interface, e.g.,
[Vo(X)| =1, is desired for both explicit and implicit
approaches [5,8]. A uniform, unit norm gradient is a
unique property of the signed distance function (SDF), and
hence the SDF is commonly used to reinitialize the LSF.
However, as it evolves, the LSF quickly loses its SDF
characteristics [21]. To alleviate this issue, several SDF
regularization techniques have been proposed [22-29]. For
the implicit LSMs, typically an auxiliary HJ equation [25]
is solved, or a fast marching method [26] is used to
reinitialize the LSF intermittently during the optimization
process. For a more detailed discussion of HJ methods, the
interested reader is referred to Refs. [5,30]. Even though
LSF reinitialization is widely used, it slightly moves the
zero LS iso-contour during the reinitialization process
[5,31] and therefore affects the convergence of the design
optimization process. Moreover, if the HJ equations are
solved by an explicit time integration scheme, the design
step size is limited by the Courant-Friedrichs-Lewy
stability criterion.

To overcome the LSF reinitialization issues discussed
above, an energy functional that penalizes the deviation
from a unit norm LSF gradient is most commonly added to
the objective function [13,22-24,32]. However, these
measures do not allow for sufficient control of the LSF
gradient away from the interface and may lead to
oscillations [27,28]. Double-well energy functionals were
introduced in Refs. [27-29] to enforce a unit norm gradient
near the interface and a zero LSF gradient away from the
interface, thus leading to an LSF that has an SDF
characteristic near the interface and is constant away
from it. The fundamental limitation of these local LS
regularization approaches is that they operate directly on
the local design LS wvalue, or its gradient, and lack
information about the minimum distance of a point to the
interface. Thus, they cannot distinguish between points
that have the same LS value but differ in their distance to
the interface. This inability may cause undesirable material
inclusions away from the original interface as illustrated in
Fig. 1. Enforcing a unit norm gradient of the LSF at points
with LS values close to zero but away from the interface at
iteration n (Fig. 1(a)) may create new intersections at
iteration n+ 1 (Fig. 1(b)), without these intersections
being necessarily beneficial for improving the performance
of the design.

Using the local design LS value, either a zero gradient is
achieved away from the interface or a unit norm gradient is
enforced in the vicinity of it (see Fig. 1(a) for a simplified
one-dimensional LSF and the corresponding interface).
Due to the local enforcement of the different targets, the
local measure lacks the ability to distinguish between areas
where the LSF is within the LS bound ¢g, (e,
— Ppnd SO < pnq) at which an interface exists and areas
at which no interface is present. The local regularization
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Fig. 1 Effect of a local LS regularization scheme on a simplified
one-dimensional design problem for two distinct design iterations:
(@) nand (b) n+ 1

scheme enforces |V¢| = 1 anywhere, where — ¢p g <¢p <
¢pnq and thus has the tendency to create spurious material
inclusions (Fig. 1(b)). Limiting the enforcement of the unit
norm gradient to only intersected elements does not
reliably alleviate this issue. Based on the authors’
experience, adding energy functionals to the objective
while formulating a well-posed optimization problem is
challenging and requires problem dependent fine-tuning of
parameters defining the regularization.

To overcome the shortcomings of the previously
discussed regularization schemes, this paper introduces a
novel LS regularization approach for explicit LS-based
TO. This approach penalizes the difference between the
design LSF ¢(X) and a target LSF. The target LSF is
constructed at every design iteration from the SDF, which
is obtained using an extension of the heat method (HM)
[33,34]. The SDF is computed at every design iteration for
the current interface geometry and treated as a prescribed
target field for the design LSF. The governing equations of
the physics models and the HM are discretized in space by
the extended finite element method (XFEM). The
advantage of this novel approach is that a smooth and
unique target field is used as reference for a locally
enforced LS regularization. Using a differentiable penalty
formulation to match the design LSF with the computed
target LSF alleviates the need for reinitialization and
therefore does not introduce discontinuities in the
optimization process. The implementation of the HM is
straightforward and can easily be coupled with explicit
LSMs. The effectiveness of the proposed scheme is
demonstrated via LS-based TO numerical examples in
two (2D) and three (3D) spatial dimensions. Linear
elasticity, nonlinear hyperelasticity and fluid flow exam-
ples are studied to demonstrate the general applicability of
the novel LS regularization scheme.

The remainder of the paper is organized as follows:
Section 2 gives a brief summary of the explicit LS-based
TO framework; Section 3 introduces the HM; Section 4
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discusses the XFEM discretization; Section 5 provides
details of the explicit LS regularization scheme; numerical
examples are presented in Section 6; and Section 7
concludes and summarizes the paper.

2 Explicit level-set topology optimization

The LSM implicitly describes the geometry of a body and
its evolution using a scalar LSF ¢(X). The material layout
within a design domain Qp composed of two distinct
phases is given by

#(X) <0, VX € Q,

¢(X) > Oa VX S le (1)
$(X) =0, VX € Iy,

where Q; and Qy; are the material domains of Phases I and
II, respectively, such that Qp = Q; U Q. The interface
between them is denoted by I'; ;; which corresponds to the
zero LS iso-contour ¢(X) = 0. In explicit LS-based TO,
the nodal values of the discretized LS field ¢;(X) are
defined as an explicit function of the design variables.
Here, the design variable field is discretized using linear
finite element (FE) shape functions, and each node j is
assigned one design variable s;. The LSF function is
defined by filtering the discretized design variable field as

follows:
]Vn

> WS

d)i :J:N“ s WU = maX(O, rf‘7|X[7Xj|)9 (2)

—_

Wi
J=1

where &, is the number of nodes within a filter radius 7¢
and |X;—X;| is the Euclidean distance between Nodes i
and ;. This linear filtering scheme Eq. (2) initially proposed
by Ref. [35] for LSMs increases the area of influence of
every design variable and therefore enhances convergence
of the optimization problem. The LSF is then used to
discretize distinct physical sub-domains using the XFEM
(see Section 4). The optimization problems considered in
this work are formulated as
j d p(s)

. . Zl S, u
mslnz(s,u) =w 2, 0) +W3p(s0)’
l—‘LII
1
st g1(s) = ———=——y <0, ®)
&) =gora,

s € T = {RM|s; <s<sy},

u € RV,

where s denotes the vector of design variables and u is the
vector of state variables. The objective function consists of
a weighted contribution z; that characterizes the physical
performance (e.g., strain energy, total fluid pressure drop)
and two weighted penalty contributions, such that
wi +wy + w3 = 1. All objective function contributions
are normalized by their values of the initial design, denoted
by the superscript 0. The first penalty contribution
minimizes the perimeter to avoid the emergence of
irregular geometric features, and the second penalty is
the newly introduced LS regularization that is discussed in
detail in Section 5. When no LS regularization is used,
wy = 0. All optimization problems considered in this work
are subject to a volume constraint y;; on {; which prevents
trivial solutions. The lower and upper bounds of the design
variables are denoted by s; and sy, respectively. The
number of design variables is denoted by N, and the
number of state variables is N,. The state variables u are
governed by a set of discretized partial differential
equations. These equations are satisfied for each design
in the optimization process.

3 The heat method

The basis of the proposed regularization scheme for
explicit LSMs is the construction of the SDF at every
design iteration. Most commonly used approaches to
obtain the SDF are fast marching methods [36] and fast
sweeping approaches [37]. These methods however
require non-trivial implementations within an FE-based
software platform and present issues with parallelization
[33]. In the current work, the SDF is obtained using an
extension of the HM. First, a transient heat conduction
equation is solved on the entire design domain, with a heat
source at the material interface (Fig. 2(a)). The strong form
of the governing equation of the temperature field 8(X) is

0 = AG, “)

where A is the Laplace operator, and the temperature time
derivative is denoted by 6. The initial and Dirichlet
boundary conditions at the XFEM interface are 6°(X) = 0
and 0(T' ;) = 1, respectively. Adiabatic boundary condi-
tions are applied to the temperature field at the domain
boundary.

The distance field ¢p(X) is obtained by solving a
Poisson’s equation with a volumetric flux that depends on
the normalized gradient of the temperature field 0(X). The
governing equation of the distance field ¢p(X) is

Vo
W)’ ©)

with the Dirichlet boundary condition ¢p (I ;) = 0 at the
material interface and homogeneous Neumann boundary

A¢D_V'<—
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Fig. 2 Construction of the SDF using the HM. (a) A heat distribution is obtained from heat sources at the material interface; (b) the
normalized temperature gradient is utilized to compute a distance field; from that, (c) the SDF is obtained

conditions at the domain boundary. The solution of
Eq. (5) is illustrated in Fig. 2(b). The SDF ¢gp(X) is
then computed by multiplying the distance field with the
sign of the original design LSF ¢(X) (Fig. 2(c)).
Mathematically, this is stated as

¢sp = sign(e)dp. (6)

Note that due to enforcing ¢p =0 at the interface,
constructing the SDF from the distance field via Eq. (6)
does not introduce spurious fluctuations.

From a design optimization point of view, it is important
to distinguish between the design LSF ¢(X) which is an
explicit function of the design variables s (Eq. (2)) and the
reconstructed SDF ¢sp(X). The design LSF ¢(X)
determines the decomposition of the design domain into
distinct phases and the material interface, which is the
starting point of the HM and the SDF computation.

The weak form of the residual equation of the
temperature field 0(X) is

Ry = | 6004V + | 6VOVAdV =0, (7)
Q Q

where the admissible test functions are denoted by 6. The
time derivative at the current time step m+ 1 is
approximated using an implicit Euler backward scheme as

- m+1 9m+1 —-0"

VI ®
where 6" is the temperature field at the previous time step
m and At is the time step size. To obtain an accurate
distance field, Crane et al. [33] recommended a time step
size in the order of At = h> where / is the element edge
length. To increase computational efficiency of the HM,
only a single time step is used for solving the temperature
field 6(X) of Eq. (7). The time step size At is set
sufficiently large to obtain a non-zero temperature gradient
in the entire design domain and a meaningful SDF. This
greatly reduces the computational overhead compared to a
fully transient problem while only slightly effecting the
accuracy of the obtained SDF away from the interface. For
selecting a sufficiently large, single time step size, the
following guideline can be used:

L 2
2 -
At <ln0L>’ ©)

where L is defined as L = L,,,v/d and 6, represents a
small temperature value at the far end of the design
domain, e.g., §; = 1x10~*. The maximum side length of
the design domain bounding box is denoted by L, and d
is the spatial dimensionality, e.g., d =2 in 2D. When
employing the HM within a TO process, computational
efficiency is more important than a high accuracy of the
SDF. As discussed in Section 6.3.1, numerical studies have
shown that solving Eq. (7) only for a single time step does
not impede the functionality of the LS regularization but
significantly simplifies the application of the HM for TO.
It is not necessary to compute the distance field ¢p(X)
and the signed distance field ¢gp(X) in two sequential
steps. The residual equation for the signed distance field
¢sp(X) is obtained by integration by parts of Eq. (5) and
stated as
Royy = [ 0V050(Vosp-G)dr =0, (10)
where the coupling term G is computed as the normalized

temperature gradient times the negative of the sign of the
design LS field:

Vo

G = —Slgn((b)m

(In

It should be noted that Eq. (10) does not contain any
boundary contribution, as V¢gp = G is assumed over the
outer domain boundary.

4 The extended finite element method

The XFEM [38] is used for discretization of the physics
and the HM governing equations on a non-conforming
background mesh. Being an immersed boundary method, it
alleviates the need for re-meshing, which can be challen-
ging and computationally costly during an optimization
process.

Enrichment of the classical FE approximation spaces
with additional shape functions is used for interpolation
into disconnected sub-domains [39]. Multiple levels of
enrichment are used to avoid spurious coupling or load
transfer between disconnected material sub-domains. In
this work, a generalized Heaviside enrichment strategy
[40] is employed where the degrees of freedom within each
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unique sub-domain are approximated by standard FE
shape functions. The HM state variables u = {6, ¢gp} at
Node i are therefore approximated as

u(X) = i ( ZNk

m=1

mq lm

ZNk )t ">, (12)
where the Heaviside function H is a function of the LS
value and is defined as

1 if ¢(X) >0

0 if ¢(X) <0 ()

H($(X)) = {

The maximum number of enrichment levels is denoted
by M, Nt is the number of nodes per element and N (X) is
the elemental shape function. The Kronecker delta (5fnq
selects the active enrichment Level ¢ for Node & such that
the partition of unity principle is satisfied. More details
regarding Heaviside enriched XFEM can be found in Refs.
[41,42].

Face-oriented ghost penalization, as proposed by Refs.
[43,44], is used to stabilize the XFEM discretization.
Numerical instabilities arise in the XFEM when the
material interface I'i;; moves too close to a FE node,
leading to a vanishing zone of influence of certain degrees
of freedom. Face-oriented ghost stabilization cures this ill-
conditioning independent of the intersection configuration.
For stabilization of the solution fields, face-oriented ghost
penalization is applied in the vicinity of the interface. It is
formulated as

Rg=hyg fF

FGFCLII

[6VuN I[VuN ]d4 =0, (14)

where y; is the ghost penalization parameter and F
contains all element faces in the immediate vicinity of the
material interface for which at least one of the two adjacent
elements is intersected [45]. The jump operator is defined
as [e] = o Qc1—0|gc2. The ghost penalty is evaluated along

all faces between two adjacent elements, Q. and Q. The
outward facing normal vector between €. and Q. is
denoted by N.. This form of stabilized XFEM is also
referred to as CutFEM in Ref. [46].

Boundary conditions and interface conditions are
applied weakly in this work using the unsymmetrical
version of Nitsche’s method [47]. Weakly enforced
boundary and interface conditions are essential in LS-
based XFEM TO where the material phase of a domain
boundary at which Dirichlet boundary conditions are
applied may change. The weakly enforced conditions are
applied using

- fr [ou?] Vu?NdA4 + frvaupzv [u”]d4

o LouTurT a4

=0, (15)
where the phase index is denoted by p = {LII} and N
denotes the normal vector on the domain or interface
boundary. The first term in Eq. (15) is the standard
consistency, the second term is the adjoint consistency, and
the last term is a penalty term on the jump of the state
variables. The Nitsche penalty parameter is denoted by yy.
The same XFEM approach, stabilization and application
of Dirichlet boundary conditions via Nitsche’s method as
outlined in this section is also used for discretization of all
physics governing equations discussed in Section 6.

5 Explicit level-set regularization

The SDF obtained by the HM is used for regularization of
the design LSF during the optimization process. Instead of
reinitializing the design LSF ¢(X) with the SDF ¢gp(X),
the following penalty formulation is proposed to achieve a
continuous LS regularization:

f (¢—¢)*dV f V-V’ dV
f DhnadV [ar

where ¢ppq denotes an upper (lower) bound for the target
LSF. The penalty measures the difference between the
design LSF ¢(X) and a target LSF ¢(X), as well as the
difference in the spatial gradients. The target LSF g)(X ) is
constructed from the SDF ¢gp(X). As the design LSF
¢(X) converges to the target LSF ¢ (X), both contributions
in Eq. (16) vanish. Penalizing the difference in the spatial
gradients of the design and target LSFs, in addition to the
difference in their values, increases the accuracy and
avoids spatial oscillations. Both contributions are inte-
grated over the entire design domain Qp = €Q; U ;. In the
authors’ experience, equal weighting of the two contribu-
tions in Eq. (16) provides a good balance between
matching the target LS value and avoiding oscillations.
To avoid length scale dependence, the penalty terms are
normalized.

In this work, upper and lower bounds are imposed on the
design LSF. To obtain a bounded design LSF away from
the material interface, the following piecewise linear LSF
is proposed as a target:

p= (16)

if ¢gp(X) = Ppnas
if ¢gp(X) < —dpna»

else.

DBnd

(23 (X) = - ¢Bnd
bsp(X)

(17



158

The truncated target LSF ¢ (X) matches the SDF in the
vicinity of the interface. Away from the interface, the lower
bound — ¢p,q is matched in Q; and the upper bound ¢p,q is
matched in Q. To avoid the non-differentiability of the
piecewise linear target LSF ¢ (X), a smooth target LSF

¢ (X) is used to approximate Eq. (17). This is achieved by
the following sigmoid function:

2
—2¢sp
1 +e PBna

¢ = 1| #Bna- (18)

A comparison between the piecewise linear target LSF
and the smooth target LSF is illustrated in Fig. 3 for a one-
dimensional interface configuration.

The target LSF (}5(X ) depends implicitly on the
geometry of the interface, defined by the zero iso-contour
of the design LSF ¢(X) that depends explicitly on the
optimization variables. The implicit dependence of ¢(X)
is described by the governing equations of the HM. In
general, these implicit and explicit dependencies need to be
considered for computing consistent design sensitivities of
the LS regularization penalty Eq. (16). However, if the
weight ws for the LS regularization term in the formulation
of the objective function Eq. (3) is large and the implicit
dependency of the target LSF ¢(X) on the optimization
variables is accounted for, the evolution of the design may
be dominated by the LS regularization and the optimiza-
tion process may converge to a design with poor physical
performance. To overcome this issue, the LS regularization
weight should be chosen small, e.g., w; <0.1; a motivation
for this recommendation will be presented in Section
6.2.1.1.

In addition, the authors found it advantageous to
consider the target LSF ¢(X) as a prescribed field which
is reconstructed at every design iteration of the optimiza-
tion process. Using this interpretation of ¢ (X), the penalty
term Eq. (16) depends only explicitly on the optimization
variables and the implicit sensitivities are ignored. As it
will be shown in Section 6.2.1.2, this approach reduces the
influence of the LS regularization term on the evolution of
the design LSF in the vicinity of the zero iso-contour, i.e.,

¢Bnd T
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the interface geometry. In addition, ignoring the implicit
sensitivity contributions enhances the convergence of the
optimization process to a design with optimized physical
performance. Furthermore, the computational cost is
noticeably reduced by omitting the computation of the
adjoint solution of the HM. The LS regularization mainly
controls the slope of the LSF along the interface and
ensures that the LSF converges to either upper or lower
bounds, +¢p,q, away from the interface. The reader may
note that the LS regularization penalty Eq. (16) provides
non-zero sensitivities in the entire design domain. This is
usually not the case in LS-based TO using the XFEM,
where shape sensitivities only exist in the vicinity of the
interface [8].

Instead of introducing the LS regularization by the
penalty term Eq. (16) into the formulation of the
optimization problem, one could also add a constraint in
the form of p<¢& with €<1. As the authors obtained
satisfactory results with the penalty formulation for a wide
range of penalty weights (see Section 6), the constraint
formulation has not been considered in this work.

6 Numerical examples

Numerical examples considering different physical phe-
nomena in 2D and 3D are presented in this section to study
the characteristics of the proposed regularization approach.
The examples include structural design problems modeled
by linear and nonlinear elasticity and a flow problem
described by the incompressible Navier-Stokes equations
at steady-state.

Common to all examples is that the governing equations,
including the ones of the HM, are discretized by the
XFEM. An iterative Newton-Raphson scheme is used to
solve the nonlinear problems that are considered as
converged when a relative nonlinear residual norm drop
greater than 10° is achieved. A single load increment is
used in all numerical examples. The linearized sub-systems
are solved using the Multifrontal Massively Parallel Solver
(MUMPS) [48]. Bilinear four node quadrilateral elements
are used in 2D, and trilinear eight node hexahedral

s
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Fig. 3 Piecewise and smooth approximation of the design LSF
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elements are used in 3D. The same discretization is used
for the design LSF. The parameter optimization problem
Eq. (3) is solved using a gradient-based nonlinear
programming scheme, namely the Globally Convergent
Method of Moving Asymptotes (GCMMA) [49], with no
inner iterations.

The optimization problem is considered converged if the
constraint is satisfied and the relative change in objective
between two consecutive design iterations is less than
1x1073. The design sensitivities are obtained using the
adjoint method. For more details on design sensitivities
using XFEM, the interested reader is referred to Ref. [50].
Selective structural springs [51] are applied for all
structural problems to suppress rigid body motion of
isolated material domains that may emerge in solid-void
LS-based TO. The initial seeding of the design domain
with holes is performed using primitives in the form of
squares in 2D and cubes in 3D.

The parameters used for the following numerical
examples are listed in Table 1. Self-consistent units are
used for all numerical examples and therefore not stated
explicitly. The bounds for the design and target LSF are set
as a function of the element edge length 4. Note that the
bound ¢p,q for the target LSF ¢(X) is within the range of
values of the discretized design LSF ¢(X). As discussed in
Section 3, the temperature field in the HM is advanced in
time by a single time step, unless otherwise stated. A
staggered solution approach is used to separately solve the
two partial differential equations of the HM in a one-way
coupled fashion. This improves computational efficiency
as each sub-problem is linear and of smaller size.

Table 1 Parameters used for all numerical examples with / denoting
the element size

Parameter Value
Weak boundary condition penalty Eq. (15) yn = 100/h
Ghost penalty Eq. (13) y6 = 0.001
Perimeter penalty weight Eq. (3) wy = 0.01
Lower bound of s s = —3h
Upper bound of s sy = +3h
Target bound of LSF Ppng = 20
Filter radius used in 2D re = 1.6h
Filter radius used in 3D re =2.4h

6.1 Examples for linear elasticity

The physical response in the first set of examples is
described by linear elasticity. The weak form of the
governing equation is

R = f 5eo'dV—f ouTd4 =0, (19)
o r;

with u =% on I,, where the displacement vector is
denoted by u. The surface traction applied on I'; is T. The

1
infinitesimal strain tensor is defined by & = E(VMT + Vu),

and the Cauchy stress is ¢ = Dég. The fourth-order material
tensor is denoted by D, and for isotropic, linear elastic
homogeneous materials considered in this work it is
defined in terms of the Lamé constants A and p as follows:

Dy = 4001 + (950 + 9u0jr), (20)

where 50- 1s the Kronecker delta. The Lamé constants can
be expressed in terms of the Young’s modulus £ and the
Poisson’s ratio v as

Ev _ E
I+v)1-20) " 720010y
The problem parameters used for linear elastic problems
are listed in Table 2. For more details about the linear

elastic XFEM formulation used in this section, the reader is
referred to Ref. [52].

A= Q1)

Table 2 Parameters used for the linear elastic design problems

Parameter Value
Young’s modulus E=2x10°
Poisson’s ratio v=0
LS regularization weight wy = 0.01
Element edge length h=1

6.1.1 Hanging bar in 2D
As a first design example, a 2D linear elastic plane stress
“hanging bar” design optimization problem is solved. This
example problem is a modified version of the two-bar truss
solid-void problem that was studied in Ref. [2] with the
density method. The initial design of size 80 x 40 with
boundary conditions is shown in Fig. 4(a). Only one half of
the design is analyzed and optimized, with weakly
enforced symmetry boundary conditions along the vertical
center line. The top edge of the domain is clamped while a
traction load of Ty, = —30 is applied in X, direction at the
center of the bottom edge over a length of 12. The region at
the center of the bottom edge, at which the load is applied,
is excluded from the design domain. The optimization
problem Eq. (3) is to minimize the strain energy with a
perimeter penalty and an LS regularization penalty subject
to a volume constraint of y, = 0.16. A relative GCMMA
optimization step size of 0.1 and a time step size of At = 4
is used in the HM.

The final design is shown in Fig. 4(b) and consists of
only a single vertical bar, to transfer the applied traction
load at the bottom to the support at the top of the domain.
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Fig. 4 (a) Initial design of the 2D hanging bar problem; (b) final design with boundary conditions and dimensions

Figure 5 shows a comparison of the evolution of objective
and constraint with and without LS regularization. Early on
in the design process, oscillations are observed without LS
regularization, while with LS regularization a smooth
design evolution is obtained. Moreover, the design
problem converges significantly faster when LS regular-
ization is applied: About 300 design iterations versus about
500 design iterations. Since the LS regularization con-
tribution vanishes at the optimum, the regularized design
problem converges to the same objective and constraint
values as without regularization.

Figure 6(a) shows snapshots of the design LSF at
discrete steps during the optimization process, comparing
the evolution of the design LSFs with and without LS
regularization. The LSFs are plotted over X; at the top
of the design domain, i.e., X, =40. When no LS
regularization is used, irregularities of the design LSF are
observed as the design is changed and a quick degradation
of the slope of the LSF at the interface is seen. With
regularization, a non-oscillatory LSF is obtained in the
entire design domain. Even though the design problem
without regularization also eventually converges, the LSF
is noisy and at some locations close to zero. Due to
numerical noise, LS values close to zero often create
unintended isolated material islands in the vicinity of the
interface. These may cause ill-conditioning of the analysis
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and potential divergence of the design problem. Thus,
when using the proposed LS regularization, a much larger
optimization step size can be used, owing to the enhanced
stability of the optimization problem.

Figure 6 on the right shows the design LSFs at design
iteration 200 without regularization applied (Fig. 6(b)) and
with LS regularization (Fig. 6(c)). Even though the same
zero iso-contour is obtained, the non-regularized LSF is
noisy, and the initial design can still be observed even at
convergence. In contrast, LS regularization achieves a
design LSF with LS values at the target boundary values
¢png and a unit norm gradient in the vicinity of the
interface. Due to the exclusion of the bottom center from
the design domain, slight irregularities in the final iso-
contour and in the regularized LSF are seen in this region.

6.1.2 Hanging bar in 3D

A 3D configuration of the 2D problem discussed in Section
6.1.1 is considered here. The initial design with loads and
boundary conditions is shown in Fig. 7(a). Due to the
symmetry of the design problem, only one quarter of the
domain is modeled and optimized. Again, the area at the
bottom of the domain at which the traction load is applied
(circular area of radius 8.5) is excluded from the design

061

(b)

— Without regularization
—— With regularization

02}

Volume constraint

0.0 “r*V,L .

400 600 800 1000
Design iteration

2 .
0 200

Fig. 5 Evolution of (a) objective and (b) constraint with and without regularization for the 2D hanging bar
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(a) Comparison of the design LSFs with and without regularization at different snapshots during the optimization process (see

Fig. 4), final design LSF (b) without regularization and (c) with regularization

domain. The dimensions of the design domain are
80x40x80. A volume constraint of y, =0.035 is
enforced, and a relative GCMMA step size of 0.2 is
used. A time step size of Az = 6 is used in the HM.

As in the 2D problem, the optimization process
converges to a single vertical bar (Fig. 7(b)). Figure 8
shows the design LSFs of the final design obtained without
and with LS regularization. The 2D plane shown here is
taken along the diagonal of the design domain as indicated
in red in Fig. 7(b).

It can clearly be seen that when LS regularization is used
the LS values are at the target bounds away from the
interface, while a smoothed LSF with a unit norm gradient
is obtained near the solid-void interface. Without regular-
ization, the LSF of the initial design is clearly preserved at
convergence, and large spatial oscillations exist throughout
the entire design domain. As before, slight oscillations in

the design LSF are observed in the vicinity of the loaded
edge since this domain is excluded from the design
domain. Overall, increased stability and higher conver-
gence rates are observed for this initial set of design
problems when the LS regularization is applied.

6.2 Examples for nonlinear hyperelasticity

To demonstrate the applicability of the proposed LS
regularization scheme to design problems with increased
complexity, examples are considered next where the
structural response is described by a finite strain
hyperelastic model. The weak form of the governing
equation is stated as

R= f SFPAV — f ouTdA =0, (22)
ol Ty

(@) %

X (b)

Fig. 7 (a) Initial design of the 3D hanging bar problem and (b) final design with boundary conditions and dimensions. The diagonal area
highlighted in red represents the plane in which the design LSFs with and without regularization are being compared in Fig. 8
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2.1

-2.0

Fig. 8 Comparison of the final design LSFs (a) without LS
regularization and (b) with regularization

where F = 0x/0X is the deformation gradient tensor, and
x = u + X describes the relationship between reference
X and current x coordinates. The first Piola-Kirchhoff
stress is denoted by P. A hyperelastic Saint Venant-
Kirchhoff constitutive model for homogeneous, isotropic
compressible materials is used, which is formulated as

S = 24E + Mr(E)I, (23)

where § is the second Piola-Kirchhoff stress tensor and E
is the Green-Lagrange strain tensor. The second order
identity tensor is denoted by I. The Lamé constants defined

in Eq. (21) are used.
The Green-Lagrange strain tensor is defined as:

1

E= E(Cfl), 24)
where the right Cauchy-Green deformation tensor C is
computed as C = F'F. Finally, the first Piola-Kirchhoff

(a)

stress is obtained from

P=FS. (25)

For more details on the formulation and verification of
the nonlinear XFEM formulation used in this work, the
interested reader is referred to Ref. [53]. The parameters
listed in Table 3 are used for all hyperelastic design
optimization problems, unless stated otherwise.

Table 3 Parameters used for the hyperelastic design problems

Parameter Value
Young’s modulus E=2x10
Poisson’s ratio v=04
LS regularization weight wsy = 0.01
Element edge length h=1

6.2.1 Beam in 2D

First, we consider the design of a beam-type structure in
2D. The initial design with loads and boundary conditions
is shown in Fig. 9(a). The design domain is of size
240 x40. A traction load of Ty, = — 10 is applied at the top
center of the domain over a length of 3 while the structure
is simply supported on either ends on the bottom of the
domain. Due to the symmetry of the design problem, only
half of the domain is modeled and optimized. Symmetry
boundary conditions are applied weakly. The structural
response is described by the hyperelastic model outlined
above and discretized by the XFEM. Following the work
of Ref. [54], a plane strain model is used in 2D. The
objective of the optimization problem is to minimize the
strain energy with a 1% penalty weight on the perimeter
and a 1% penalty weight on the LS regularization. The
optimization problem is subject to a volume constraint of

Ty,

<

240

(b)

e

Without regularization é /\

With regularization

RSB

=

Fig. 9 (a) Initial design of the 2D beam problem with boundary conditions and dimensions; (b) comparison of the zero LS iso-contours

of the final designs without and with LS regularization
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yy = 0.6, and an optimization step size of 0.025 is used. A
single time step of size At = 35 is used in the HM.

Figure 9(b) shows a comparison of the zero LS iso-
contour of the final beam designs obtained without and
with LS regularization. The typical truss-like structure is
obtained for both methods with only slight differences in
the final geometries. These differences can be attributed to
different evolutions of the LSFs during the optimization
process. The proposed LS regularization scheme leads to
an increased convergence behavior due to a uniform LS
gradient in the vicinity of the interface. This is also
reflected in a slightly (0.1%) lower strain energy of the
regularized design versus the non-regularized design.

The design LSFs, ¢(X), at the final optimization
iteration are shown in Figs. 10(a) and 10(b) without LS
regularization and with regularization, respectively. Both
LSFs are warped for illustration purposes. An oscillatory
LSF is obtained without regularization, while with LS
regularization the optimization process converges to a
smoothly truncated design LSF. The regularized LSF
shows a unit norm gradient in the vicinity of the material
interface while having a zero gradient away from the
interface. Figure 10(c) shows the SDF obtained by the HM
for the final design of the 2D beam. It can be seen that
overall the SDF is well resolved. Only in areas with small
geometric features, with a size of /4, the XFEM discretiza-
tion insufficiently resolves the SDF. Consequently, the LS
regularization suffers in these areas from a degraded
target LSF due to the limited resolution of spatial
discretization.

@) Without regularization

(b)  With regularizatio

(©

6.2.1.1 Influence of the LS regularization penalty weight
The influence of different weights w; for the LS
regularization penalty is studied in Fig. 11. Figure 11(a)
shows the evolution of strain energy and Fig. 11(b) shows
the LS regularization penalty for regularization weights of
wy = {0.01,0.05,0.1,0.5}. With an increased LS regular-
ization penalty weight, the minimization of the LS
regularization term is favored early in the design process,
while the minimization of strain energy is given less
importance. The reader may note small jumps in the
evolution of strain energy and the LS regularization
penalty, for example, at iteration 350 and iteration 400.
The jumps are caused by thin structural members
disconnecting. The design iteration at which this
happens depends on the weight of the LS regularization
term.

For a weighting parameter in the range of
1% < w3 < 10%, both the strain energy and the regulariza-
tion penalty assume similar values after about 200 design
iterations. If the LS regularization weight is too large (e.g.,
50%), the optimization problem changes noticeably and
the physical performance of the optimized design is
affected. The LS regularization term then dominates the
overall objective and the physics contribution is of lesser
importance (Fig. 11 (a)). In the authors’ experience with
the current problem and other design problems, an LS
regularization weight up to 10% provides a good balance
between sufficient regularization while not impairing the
performance of the optimized design.

Psp

-16.9

Fig. 10 Comparison of the warped final design LSFs (a) without LS regularization, (b) with regularization, and (c) SDF of the 2D beam
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Fig. 11 Evolution of (a) strain energy and (b) regularization penalty for different penalization weights

6.2.1.2 Influence of implicit design sensitivities on LS
regularization

As discussed in Section 5, the proposed regularization
scheme considers the target LSF ¢ (X) as a prescribed field
and ignores the implicit contributions of the penalty term
Eq. (16) to the design sensitivities. Only the explicit
dependency of the design LSF on the optimization
variables is accounted for in the sensitivity analysis. To
illustrate the benefits of this approach, the influence of
including the implicit design sensitivities is investigated.
The implicit contributions are computed by the adjoint
approach.

Figure 12 shows the optimized beam design obtained
with an LS regularization weight of w3 =0.1 and including
implicit sensitivities of the target LSF. Due to a fairly large
weight of the regularization on the objective, the implicit
design sensitivities influence significantly the evolution of
the zero LS iso-contour. The design evolution is
predominantly influenced by the regularization scheme
and insufficiently driven by the physics performance. This
leads to spurious void inclusions, premature convergence,
and poor physical performance of the optimized structure
(Fig. 12). For a sufficiently low regularization penalty
(e.g., w3=0.01) these issues are not observed, and the

design convergence is indistinguishable from the one
where the implicit design sensitivities are omitted. Thus, to
prevent an undesired influence of the regularization on the
design evolution and to gain computational efficiency, it is
recommended to ignore design sensitivities of the target
LSF on the design variables and to use a low penalty
weight for the regularization term.

6.2.2 Beam in 3D

The hyperelastic beam example is studied next in 3D to
demonstrate the applicability of the proposed LS regular-
ization scheme to 3D problems where the geometry
undergoes significant changes during the optimization
process. Figure 13(a) shows the initial design with
boundary conditions for a design domain of size
240x40x40. An element edge length of #=2 is used for
this example, along with a time step size of A¢ = 51 in the
HM. Analogous to the 2D configurations, a traction load of
Ty,= —2 is applied within a circular region of radius 2 at
the center of the top face of the domain. The structure is
simply supported at all four corners at the bottom face of
the design domain. The loading and the support domains
are excluded from the design domain, respectively.

TIT
T

TIITTITTe

Fig. 12 Spurious void inclusions within the structure as a result of including implicit design sensitivities of the target LSF with a

regularization penalty weight of 10%
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(b)

Fig. 13 (a) Initial design of the 3D beam problem with boundary conditions and dimensions; (b) final design. The central area
highlighted in red represents the plane in which the design LSFs are being compared in Fig. 14

Two-fold symmetry is exploited for the mechanical and the
design problem. A relative optimization step size of 0.0125
is used and a volume constraint of y,,=0.3 is enforced
through a continuation approach.

Figure 13(b) depicts the final design obtained after 400
optimization iterations, using the proposed LS regulariza-
tion. As before, a smooth evolution of objective and
constraint is achieved when employing the LS regulariza-
tion scheme.

Figure 14 shows the design LSFs at convergence
obtained without the LS regularization and with LS
regularization, extracted in the center of the design domain
(indicated by the red plane in Fig. 13(b)). As before, a clear
difference can be observed with respect to the smoothness
of the LSF and the uniformity of the spatial gradient along
the zero LS iso-contour. While the non-regularized LSF is
shallow, the regularized LSF quickly approaches the LS
bounds away from the interface.

Figure 14 shows thin vertical members in the optimal

-

|

design, which represent shear webs in between the top and
bottom flanges of the beam. Because their thickness is in
the order of the mesh size s, the XFEM discretization
provides insufficient resolution of both the stress and strain
fields, as well as the SDF. Due to the inability of the
discretization to capture the SDF in areas of small features,
the target LSF is not well developed and, therefore, the LS
regularization suffers. The result of this can be seen in
Fig. 14(b) where the lower LS bound of — ¢g,q= —2 is not
reached by the design LSF within the thin vertical
members of the structure. While this effect has already
been observed in the 2D beam example (Section 6.2.1) this
issue is more pronounced here. This is not an inherent
drawback of the proposed LS regularization scheme, but
rather stems for the underlying XFEM discretization and
its limitations to resolve features with a size in the order of
h. Minimum feature size control (e.g., Ref. [55]) or local
mesh refinement would be required to properly regularize
the design LSF.

)
I
I

———

Fig. 14 Comparison of the design LSFs at the mid-plane of the beam (a) without and (b) with LS regularization
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6.3 Example for incompressible Navier-Stokes flow

The goal of the final example is to demonstrate the
applicability of the proposed LS regularization scheme to a
flow problem, modeled by the incompressible Navier-
Stokes equations at steady state. Furthermore, the influence
of the accuracy with which the HM is time integrated is
studied.

The non-stabilized weak form of the volumetric
contribution (R) of the governing equation is stated as

R= fQI [0vp(VVv) + &(ov)a(v,p)|dV

+ fg opVvdlV =0, (26)
1

where v is the velocity vector, p is the pressure, and p is the

density. The admissible test functions for velocity and

pressure are denoted by oJv and Jp, respectively. The

infinitesimal strain rate tensor &(v) is defined as
1

ev) = E(VvT + V). 27)

The Cauchy stress tensor for Newtonian fluids is
denoted by o(v,p) and is defined as

a(v.p) = —pl +2up&(v),

where pip is the dynamic viscosity. The governing Eq. (26)
is augmented by sub-grid stabilization to suppress spurious
velocity and pressure oscillations, as well as by ghost
penalization. For more details on the XFEM discretization
and the corresponding stabilization techniques, the reader
is referred to Ref. [45]. The fluid domain boundary is
decomposed into the fluid-void interface I'; jj, and Dirichlet
and Neumann external boundaries, I', and I'7, respectively.
No-slip conditions are applied weakly at the fluid-void

(28)

(@) X,

Zero
pressure

interface; the other boundary conditions are problem
dependent and are specified below.

An extension of the fluid nozzle problem studied by
Refs. [56-58], to 3D is studied here. The design domain
with boundary conditions and the initial design are shown
in Fig. 15(a). The computational domain is a 5x5 x5 cube
with a 0.75x5x5 non-design domain downstream from
the inlet face. A parabolic velocity profile with a maximum
inlet velocity of 30 in X; direction is applied to the inlet
face, and zero pressure is enforced weakly at the circular
outlet of radius 1.25. Both, the inlet domain and the
circular outlet face are excluded from the design domain.
Only one quarter of the design domain is modeled. Slip
conditions are imposed on the X;—X, and X;—X;
symmetry planes.

Assuming a constant density of p=1 and a dynamic
viscosity of pup=1, the flow conditions correspond to a
Reynolds number of Re = 66 with the reference velocity
being the average inlet velocity and the reference length
being the edge length of the design domain, i.e., Lz =5. A
ghost stabilization parameter of 0.005 is used for
stabilization of the pressure and a ghost penalization
parameter of 0.05 is used for stabilization of velocities; for
details see Ref. [45].

The objective of this nozzle design problem is the
minimization of the total pressure drop between inlet and
outlet along with a 1% perimeter penalty and a 5% LS
regularization penalty. The optimization problem is subject
to a y=0.3 volume constraint on the fluid phase. A
relative GCMMA step size 0of 0.01 and a single time step of
At=0.1 is used for the HM. The main problem parameters
are listed in Table 4.

The final design obtained after 90 design iterations is
shown in Fig. 15(b). These results agree with the ones
presented in the literature. As before, a smooth evolution
of objective and constraint is obtained when LS

Fig. 15 (a) Initial design of the 3D fluid nozzle with boundary conditions and dimensions; (b) final nozzle design. The diagonal
highlighted in red represents the plane in which the design LSFs are being compared
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Table 4 Parameters used for the fluid design problem

Parameter Value
Reynolds number Re = 66
Fluid density p=1
LS regularization weight ws = 0.05
Element edge length h=0.25

regularization is used. The design LSFs at convergence
without and with the LS regularization are compared in
Fig. 16. Again, a rather oscillatory LSF with flat gradients
near the interface is obtained when no LS regularization is
employed. With LS regularization, the design LSF
assumes the target bounds away from the interface while
having a unit norm gradient in the vicinity of the fluid-void
interface. The final designs obtained without and with the
HM do not differ significantly. However, improved
numerical stability and robustness during the optimization
process was observed due to the regularization of the LSF.

To provide insight into the dependence of the optimiza-
tion results on the accuracy with which the temperature
field in the HM is time integrated (Eq. (7)), the number of
time steps in the Euler backward scheme Eq. (8) is varied.
The total time is kept constant at #,,,, =1. Comparisons of
objective and LS regularization penalty evolution for
different number of time steps of the HM Eq. (7) are shown
in Fig. 17. No significant differences are observed when
solving the HM with multiple time steps and reduced time
step sizes. This confirms the observations by Ref. [33], and
shows that a single time step is sufficient for LS
regularization using the HM.

7 Conclusions

A regularization scheme for explicit LS XFEM design

<
T T T

RE (a)

optimization in 2D and 3D was presented. The regulariza-
tion scheme augments the objective function by a penalty
term that measures the difference between the design LSF
and a target LSF, both in regard to the field value and its
spatial derivatives. The target LSF has a unit norm gradient
in the vicinity of the interface and assumes either an upper
or lower bound away from the interface, depending on the
material phase. The target LSF is constructed from the SDF
that is computed by an XFEM discretization of the HM at
every design iteration for the current interface geometry.
Numerical experiments on 2D and 3D problems in solid
and fluid mechanics showed that the proposed regulariza-
tion scheme is largely insensitive to the penalty weight for
the regularization term. As long as the weights are less than
10%, the LS regularization does not influence noticeably
the final design. A small influence on the design evolution
has been observed for larger penalty weights. Furthermore,
it was observed that it is beneficial to ignore the
dependence of the target LSF on the interface geometry
for computing the design sensitivities.

Omitting the sensitivities of the target LSF on the design
variables leads to an improved convergence to a design
with improved physical performance and reduces the
computational cost. The numerical results further suggest
that the temperature field of the HM can be computed by a
single time step without significantly affecting the
accuracy of the SDF. The time step size is a function of
the domain length. Good results were obtained with a time
step size determined by Eq. (9).

Comparing the results obtained with and without the
proposed regularization scheme suggests that the proposed
scheme significantly improves the convergence of the
optimization process and mitigates issues in the XFEM
analysis due to the emergence of small inclusions of one
phase within a domain occupied by another phase. The
scheme mitigates irregular interface evolution and pro-
motes a uniform LS gradient at the zero LS iso-contour. It

(b)

Fig. 16 Comparison of the design LSFs across the diagonal of the fluid nozzle final design (a) without and (b) with LS regularization
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Fig. 17 Evolution of (a) normalized objective and (b) LS regularization penalty for different number of time steps

eliminates the need for reinitialization. Furthermore, the
proposed method mitigates robustness issues observed
with regularization schemes that solely operate on the
value or the spatial gradients of the design LSF. The
capabilities of the proposed method were demonstrated
through numerical examples in 2D and 3D, including
problems in linear and nonlinear elasticity and fluid
mechanics.

The numerical studies presented in this paper have
revealed a few shortcomings of the proposed method that
need to be addressed in future work. These include
overcoming the limited resolution of a fixed XFEM
background mesh with linear interpolation. When features
of dimensions in the order of the element edge length of the
background mesh emerge in the optimization process, the
resolution of a linear interpolation is insufficient to
accurately compute the target LSF. Therefore, the
performance of the regularization is reduced. This could
be addressed by adding feature size control to the design
problem, locally refining the background mesh or by using
higher order spatial discretizations. In addition, an increase
in computational cost was observed due to the need for
solving two additional partial differential equations in the
HM. Depending on the complexity of the physics model,
this additional cost may become significant when com-
pared to runs without the LS regularization scheme.
However, the additional cost is partially offset by an
increased convergence rate and by the ability to use larger
optimization step sizes. Future work needs to address ways
to improve the computational efficiency of the scheme. For
example, the temperature and SDF fields in the HM could
be solved only approximately, using a few iterations of an
iterative linear solver. Finally, due to the regularization of
the LSF, the nucleation of new holes is impaired. In order
to mitigate the dependency of the final design on the initial
seeding, systematic approaches for the creation of new
holes during the optimization process need to be explored
in combination with the proposed LS regularization. This
includes but is not limited to using additional LSFs [59] or

topological derivatives.
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