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Abstract In this paper, an uncertainty propagation
analysis method is developed based on an extended sparse
grid technique and maximum entropy principle, aiming at
improving the solving accuracy of the high-order moments
and hence the fitting accuracy of the probability density
function (PDF) of the system response. The proposed
method incorporates the extended Gauss integration into
the uncertainty propagation analysis. Moreover, assisted
by the Rosenblatt transformation, the various types of
extended integration points are transformed into the
extended Gauss-Hermite integration points, which makes
the method suitable for any type of continuous distribution.
Subsequently, within the sparse grid numerical integration
framework, the statistical moments of the system response
are obtained based on the transformed points. Furthermore,
based on the maximum entropy principle, the obtained first
four-order statistical moments are used to fit the PDF of the
system response. Finally, three numerical examples are
investigated to demonstrate the effectiveness of the
proposed method, which includes two mathematical
problems with explicit expressions and an engineering
application with a black-box model.

Keywords uncertainty propagation analysis, extended
sparse grid, maximum entropy principle, extended Gauss
integration, Rosenblatt transformation, high-order moments
analysis

1 Introduction

In practical engineering problems, many inevitable
uncertainty factors exist due to the complexity of
structures, e.g., dispersion of materials, and errors in
manufacturing, installation, and measurement. The cou-
pling of multiple uncertainties often results in an insignifi-
cant deviation of the system response. The influence of the
parameter uncertainty on the system response is called
uncertainty propagation (UP) [1], which is essential in
designing structures or products [2–4]. The statistical
moments are important characteristics of a system
response’s probability distribution. Thus, solving the
statistical moments of the system response has become a
key issue in UP [5–10].
Some existing methods, namely, Monte Carlo simula-

tion (MCS) [11–13], Taylor expansion-based method
[14,15], reliability-based method [16–18], polynomial
chaos expansion (PCE) [19–21] and numerical integra-
tion-based method [1,22,23] have already contributed to
UP. The MCS method was first used in simulating a
neutron chain reaction. Its idea is relatively simple, with
simulation results inclined to theoretical solutions with the
increasing samples. Therefore, MCS results are usually
employed as a reference to verify the accuracy of other
methods, but it requires a large number of samples to
ensure acceptable accuracy, thereby causing an extremely
low computational efficiency. The Taylor expansion-based
method executes a Taylor expansion on the system
response function by input random variables. Based on
the Taylor expansion, the system response can be
approximately obtained and its probability distribution
conveniently calculated. However, when the response
function has a relatively large nonlinearity with respect to
the random variables, its accuracy may not be guaranteed.
Therefore, a standard reliability-based method must utilize
the first-order reliability method or the second-order
reliability method, through which the failure probability
under different response thresholds can be obtained and the
cumulative distribution function (CDF) of the system
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response solved. However, this standard reliability-based
method must also solve the most probable point for each
response threshold, which significantly increases the
computational cost. The PCE method adopts various
types of orthogonal polynomials to approximate the
system response according to the probability distributions
of the input variables and is applicable to problems with
relatively large variances of input random variables.
Furthermore, this method can be improved as the order
of the orthogonal polynomial increases but may have a low
computational efficiency at the same time. The numerical
integration-based method for the UP analysis is becoming
increasingly popular. This method aims to solve the
statistical moments of the system response by numerical
integration and then estimate the probability distribution of
the system response based on the calculated moments. The
univariate dimension reduction method (UDRM) [22] is
one of the important methods in this category, which
breaks down the original system response function into a
series of univariate subsystem response functions and then
obtains the moments of the original system response by
solving the moments of the subsystem response function.
UDRM has high computational efficiency for UP pro-
blems. However, its computational accuracy may not be
satisfactory when the response function comprises strong
interactions among the input random variables.
In recent years, another type of numerical integration

technique, that is, the sparse grid numerical integration
(SGNI), was introduced into the UP field [24–26], which
was originally proposed by Smolyak [27] and revised by
Novak and Ritter [28,29]. The main concept of this method
is to combine one-dimensional integration nodes into
multidimensional nodes according to a specific tensor
product rule and then solve the statistical moments with the
multidimensional nodes. Compared with the direct inte-
gration method [30], SGNI can prevent the occurrence of
major dimension problems in high-dimensional systems.
Furthermore, Ref. [25] has demonstrated that the SGNI
method can solve problems with strong interactions in the
system response, which gives the method a significant
application potential for UP analysis. Therefore, the SGNI
method has been applied in fields such as aerospace,
electronics, and others [31–33]. Nevertheless, for practical
cases, such as problems regarding high-dimensional
variables and strong nonlinearity or a black-box model,
the accuracy of the traditional SGNI (e.g., the SGNI with
traditional univariate integration points) for UP analysis
needs improvement, especially in solving high-order
moments such as skewness and kurtosis of the system
response. Although studies [34] on the Kalman filter have
provided univariate integration perspectives to improve the
solving accuracy, it is limited in arbitrary distributions of
input random variables, thereby affecting the practicability
of the method.
Based on the traditional SGNI framework, this study

aims to develop an efficient method for uncertainty

propagation analysis to improve the accuracy of the
high-order moments and fitting accuracy of the probability
density function (PDF) of the system response regarding
problems with arbitrary continuous distribution of input
variables. In this method, all integration nodes of the input
variables are transformed into the extended Gauss-Hermite
integration (EGHI) nodes. Furthermore, the sparse grid
technique with transformed nodes is extended to estimate
the statistical moments. The maximum entropy principle is
employed to calculate the PDF of the system response.
The rest of this paper is organized as follows: Section 2

provides a brief introduction to UP and SGNI; Section 3
presents a formulation of the proposed method; Section 4
analyzes the numerical examples; and Section 5 sum-
marizes the study.

2 Uncertainty propagation and sparse grid
method

For a UP problem, a response function or a performance
function must first be established as follows:

Y ¼ gðXÞ, (1)

where X ¼ ðX1,X2,:::,XnÞ denotes an n-dimensional vector
of random variables and Y is the system response. The
uncertainty propagation analysis obtains the PDF fY ðyÞ of
the system response through the joint PDF fX ðxÞ of the
input random variables. In general, the statistical moments
are important digital characteristics for UP analysis.
Therefore, the t-order origin moments �t and t-order
central moments ct are often used to represent the
distribution of the system response:

�t ¼ !
Ω

gtðXÞfX ðxÞdX ,   t ¼ 1,2,:::, (2)

ct ¼ !
Ω

�
gðXÞ –�1

�t
fX ðxÞdX ,   t ¼ 2,3,:::, (3)

where Ω is the integration space of the random variables.
In addition, the mean μ, standard deviation σ, skewness τ,
and kurtosis κ can be expressed as follows [35]:

� ¼ �1, � ¼ ffiffiffiffiffi
c2

p
, τ ¼ c3

�3 , κ ¼ c4
�4

: (4)

To obtain the preceding statistical moments of the
system response, the numerical integration-based method
can be used. When X ¼ � is a one-dimensional random
variable, the statistical moments can be solved by using the
Gaussian integration rule as follows [36]:

�t ¼ !
Ω

gtðXÞfX ðxÞdX ¼
Xn
j¼1

wjg
tð�jÞ,   t ¼ 1,2,:::, (5)
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ct ¼ !
Ω

ðgðXÞ –�1Þt fX ðxÞdX ¼
Xn
j¼1

wj

�
gð�jÞ –�1

�t
,

t ¼ 2,3,:::, (6)

where �j and wj represent the j-th element in the i-th order
nodes Ui

1 and the i-th order weightsW
i
1, respectively, and n

is the total number of nodesUi
1. The nodes and weights can

be obtained by using the quadrature rule. For example, the
Gauss-Hermite quadrature rule can be used if X follows
the normal distribution, whereas the Gauss-Legendre
quadrature rule can be considered if X follows the uniform
distribution.
When X is a multidimensional random vector, the

multidimensional nodes U k
n with the n-dimensional

variables and k-level accuracy should be defined first.
Furthermore, the SGNI provides the solution of the
multidimensional nodes Uk

n [25]:

U k
n ¼ [

kþ1£jij£kþn
Ui1

1 � Ui2
1 � :::� Uin

1 , (7)

where jij (jij ¼ i1 þ i2 þ ::::þ in) denotes the summation
of the multi-indices, ij ðj ¼ 1,2,:::,nÞ is the univariate index
in the quadrature rule, and� is the tensor symbol, which is
defined as follows: If R ¼ fa,bg, S ¼ f0,1,2g, then
R� S ¼ fða,0Þ,ða,1Þ,ða,2Þ,ðb,0Þ,ðb,1Þ,ðb,2Þg. Therefore,
the nodes based on Eq. (7) can be obtained by using the
SGNI. For each obtained node, the corresponding weight
is given as follows:

wl ¼ ð – 1Þkþn – jij n – 1

k þ n – jij

 !
wi1
1, j1

wi2
1, j2

:::win
1, jn

, (8)

where wi
1, j denotes the weight corresponding to the node

�i1, j, �
i
1, j is the j-th element of the nodes Ui

1, wl denotes the
weight corresponding to the l-th multidimensional node ξ l,
and ξ l ¼ ½�i11, j

1
,�i11, j

2
,:::,�in1, jn �T 2 U k

n. Thus, the statistical

moments can be expressed as follows:

�t ¼ !
Ω

gtðXÞfX ðxÞdX ¼
XN
l¼1

wlg
tðξ lÞ,   t ¼ 1,2,:::, (9)

ct ¼ !
Ω

�
gðXÞ –�1

�t
fX ðxÞdX

¼
XN
l¼1

wl

�
gðξ lÞ –�1

�t
,   t ¼ 2,3,:::, (10)

where N stands for the number of all multidimensional
nodes, which depends on the level k. When the level is
specified as k = 1 or 2, the relationship between the number
N and the dimension n can be deduced as follows:

N ¼ 2nþ 1,             ​​​​  k ¼ 1

N ¼ 2n2 þ 2nþ 1,       k ¼ 2
:

(
(11)

A total of 221 multidimensional nodes exist when the
dimension and level are set as n = 2 and k = 2, respectively.
However, if the direct integration method is used to solve
the system response statistical moments, then the number
of multidimensional nodes will be 310 ¼ 59049 despite
selecting only three nodes for each random variable.

3 The proposed method for UP analysis

Existing studies [25,37,38] have reported that the SGNI is
suitable for uncertainty analysis due to its good perfor-
mance, especially in estimating the low order moments of
the system response. However, most researchers are using
the SGNI with the traditional univariate integration points,
such as the Gauss-Hermite or Gauss-Legendre integration
nodes. Therefore, guaranteeing the accuracy of the
response function high-order moments is a challenging
task. Certainly, increasing the level k could improve the
accuracy but lead to a dramatic increase in computation
cost. In addition, although some extended Gauss-Hermite
univariate integration points can enhance the solving
accuracy, it may be unsuitable for some input random
variable distributions. Therefore, in this paper, the
extended Gauss integration and Rosenblatt transformation
are introduced into the UP analysis and the SGNI with the
transformed nodes extended to estimate the system
response higher-order moments. Thus, the proposed
method not only guarantees the accuracy of the low-
order moments but also ensures the solving accuracy of the
high-order moments, based on which a fine accuracy thus
can be ensured for fitting the final PDF of the response
function.

3.1 Extended Gauss integration

To obtain a higher precision of the numerical integration,
the extended Gauss integration is derived from the
traditional Gauss integration, which can be expressed as
follows [39]:

!
b

a

wðX ÞyðX ÞdX ¼
Xn
i¼1

AiyðXiÞ þ
Xm
j¼1

AjþnyðXjþnÞ, (12)

where yðX Þ is the integrand with integration interval ½a,b�,
wðX Þ is the weight function, and Xi and Ai denote the
integration nodes and weights, respectively.
Considering the various extension approaches, some

researchers have studied the extended integration nodes.
Kronrod [40] and Patterson [41] first proposed a new
method to handle the case with weight function wðX Þ ¼ 1
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and the interval ½a,b� ¼ ½ – 1,1�, which significantly
improved the solving accuracy and computational effi-
ciency. Additionally, Genz and Keister [42] presented the
fully symmetric interpolatory rules for EGHI, which
considered the weight function and interval specified as

wðV Þ ¼ 1ffiffiffiffiffi
2π

p e –
V 2

2 and ½a,b� ¼ ½ –1,1� in the standard

normal space V, respectively. In fact, several EGHI nodes
have already been explored by using different fully
symmetric interpolatory rules. To ensure computational
efficiency, the EGHI nodes can be selected in Table 1 in
this paper. The integration nodes in each level contain the
previous nodes in the EGHI, which effectively prevent
repetitive computation. Therefore, its computational effi-
ciency is comparable to that of the traditional Gauss-
Hermite integration but with higher algebraic precision.
Consequently, the solving accuracy for the following UP
problems can be improved theoretically.

3.2 Transformation of extended integration nodes

In practice, although the extended Gauss integration rule
has excellent computational precision, it is not suitable for
cases with input random variable arbitrary distributions.
For example, in the case of Weibull distribution or the
student’s t-distribution, obtaining the extended integration
nodes directly is challenging.
To solve these types of problems, corresponding

variable transformation methods have been developed,
such as the Rosenblatt transformation [43,44] and the work
of Huang and Du [45]. However, these variable transfor-
mations are based on the traditional Gauss integration.
Therefore, the computational precision cannot be increased
considerably.
Thus, the Rosenblatt transformation is employed into the

EGHI in this paper because it has the same weight function
as that of that traditional Gauss-Hermite integration.
Therefore, this transformation can be applicable to any

continuous distribution by using the extended integration
nodes. The proposed transformation between a standard
normal variable V and an original variable X can be
expressed as follows:

ΦðviÞ ¼ FXi
ðxiÞ, (13)

where Φð⋅Þ and FXi
ð⋅Þ denote the CDF of the variable V

and X , and vi and xi represent a realization of the random
variable V and the standard normal variable X , respectively.
Unlike the traditional transformation, vi ði ¼ 1,2,:::,nþ
mÞ denotes an EGHI node, which can be selected in
Table 1, and xi denotes a node corresponding to the
variable X . Therefore, Eq. (13) can be rewritten as

vi ¼ Φ – 1ðFXi
ðxiÞÞ ¼ TðxiÞ, (14)

where Φ – 1ð⋅Þ is the inverse function of the standard
normal variable CDF and Tð⋅Þ is the function related to the
variable X . Thus, the node xi can be solved by using the
following formula:

xi ¼ T – 1ðviÞ: (15)

Furthermore, the system response statistical moments in
Eqs. (2) and (3) can be replaced as follows:

�t ¼ !
Ω

gtðXÞfX ðxÞdX ¼ !
Ω

gt½T – 1ðVÞ�fV ðvÞdV ,

t ¼ 1,2,:::, (16)

ct ¼ !
Ω

�
gðXÞ –�1

�t
fX ðxÞdX

¼ !
Ω

fg½T – 1ðVÞ� –�1gtfV ðvÞdV ,   t ¼ 2,3,:::, (17)

where T – 1ðVÞ ¼ ½T – 1ðV1Þ,T – 1ðV2Þ,:::,T – 1ðVnÞ�. There-

Table 1 EGHI nodes and weights

Level Integration node Integration weight Algebraic precision

1 V 1
1 ¼ 0 A1

1 ¼ 1 1

2 V 2
1 ¼ f – 1:7321,0,1:7321g A2

1 ¼ f0:1667,0:6667,0:1667g 5

3
V 3
1 ¼

– 2:8613, – 0:7411, – 4:1850,

– 1:7321,0,  1:7321,

4:1850,0:7411,2:8613

8><
>:

9>=
>; A3

1 ¼
0:0080,0:2701,0:0001,

0:0949,0:2540,  0:0949,

0:0001,0:2701,0:0080

8><
>:

9>=
>;

15

4

V 4
1 ¼

– 3:2053, – 2:5961, – 5:1870, – 1:2304,

– 6:3634, – 2:8613, – 0:7411, – 4:1850,

– 1:7321,0,  1:7321,4:1850,0:7411,

2:8613,6:3634,1:2304,5:1870,

2:5961,3:2053

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

A4
1 ¼

0:0029,0:0181,0,0:0612

0,0:0063,0:2083,0:0001

0:0641,0:3035,0:0641,0:0001

0:2083,0:0063,0,0:0612,

0,0:0181,0:0029

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

29

M M M M

36 Front. Mech. Eng. 2019, 14(1): 33–46



fore, the moments in the UP problems can be calculated by
using Eqs. (16) and (17).

3.3 Extended sparse grid technique

In this section, SGNI with the transformed extended nodes
will be extended for the UP problems, denoting X i

1 and Ai
1

with i-th level as the univariate nodes and weights of
original variable X , respectively. The multidimensional
nodes X k

n with k-level accuracy and n-dimensional
variables can be solved as follows:

X k
n ¼ [

kþ1£jij£kþn
X i1
1 � X i2

1 � :::� X in
1 , (18)

where jij ¼ i1 þ i2 þ ::::þ in. Based on Eq. (15), Eq. (18)
can be rewritten as follows:

X k
n ¼ [

kþ1£jij£kþn
T – 1ðV i1

1 Þ � T – 1ðV i2
1 Þ � :::� T – 1ðV in

1 Þ,
(19)

where ij ðj ¼ 1,2,:::,nÞ is the integration level of univariate

nodes and V
ij
1 is the node in the EGHI. Therefore, the

multidimensional nodes corresponding to the arbitrary
distributions of the input random variables can be
obtained, assisted by the univariate nodes in EGHI.
To easily understand the multidimensional node forma-

tion, we take k ¼ 2 and n ¼ 2 as examples, which
corresponds to the standard normal distribution. The
generation of the multidimensional nodes X2

2 is shown in
Table 2. Furthermore, Fig. 1 illustrates the construction of
the nodes X2

2. Under the condition of the standard normal
distribution, if the accuracy level is k ¼ 1 and variable
dimension is n, then jij ¼ n or jij ¼ nþ 1 satisfies the
equation 2£jij£1þ n. The former case jij ¼ n corre-
sponds to a multidimensional node, namely, ð0,0,:::,0Þ. In
the latter case jij ¼ nþ 1, the number of multidimensional
nodes is 2n. For example, the multi-indices ði1,i2,:::,in – 1,

inÞ¼ ð1,1,:::,1,2Þ will generate two new nodes, namely,
ð0,0,:::,0, – 1:732Þ and ð0,0,:::,0,1:732Þ. Similarly, when
the accuracy level is k = 2, we can also deduce the total
number of generated nodes after removing the duplicated
nodes. Therefore, the relationship between the number Ne
and the dimension n can be defined as follows:

Ne ¼ 2nþ 1, k ¼ 1

Ne ¼ 2n2 þ 6nþ 1,              k ¼ 2
:

(
(20)

For a generated multidimensional node, the correspond-
ing weights can be obtained as follows [46]:

al ¼ ð – 1Þkþn – jij n – 1

k þ n – jij

 !
ai11,j1a

i2
1,j2

:::ain1,jn , (21)

where al denotes the weight corresponding to the l-th
multidimensional node ηl and ηl ¼ ½ηi11,j

1
,ηi11,j

2
,:::,ηin1,jn �T

2 X k
n, and ai1,j denotes the weight corresponding to the

one-dimensional node ηi1,j.

Table 2 Information on multidimensional nodes X2
2

jij i1 i2 X i1
1 � X i2

1 X2
2

3 1 2 fð0, – 1:732Þ,ð0,0Þ,ð0,1:732Þg

ð0, – 1:732Þ,ð0,0Þ,ð0,1:732Þ
ð – 1:732,0Þ,ð1:732,0Þ,ð0, – 2:861Þ,
ð0, – 0:741Þ,ð0, – 4:185Þ,ð0,2:861Þ,
ð0,0:741Þ,ð0,4:185Þ,
ð – 1:732, – 1:732Þ,ð – 1:732,1:732Þ,
ð1:732, – 1:732Þ,ð1:732,1:732Þ,
ð – 2:861,0Þ,ð – 0:741,0Þ,ð – 4:185,0Þ
ð2:861,0Þ,ð0:741,0Þ,ð4:185,0Þ

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

2 1 fð – 1:732,0Þ,ð0,0Þ,ð1:732,0Þg
4 1 3 ð0, – 2:861Þ,ð0, – 0:741Þ,ð0, – 4:185Þ,

ð0, – 1:732Þ,ð0,0Þ,ð0,1:732Þ,
ð0,2:861Þ,ð0,0:741Þ,ð0,4:185Þ

8><
>:

9>=
>;

2 2 ð – 1:732, – 1:732Þ,ð – 1:732,0Þ,ð0,0Þ,
ð0, – 1:732Þ,ð – 1:732,1:732Þ,ð0,1:732Þ,
ð1:732, – 1:732Þ,ð1:732,0Þ,ð1:732,1:732Þ

8><
>:

9>=
>;

3 1 ð – 2:861,0Þ,ð – 0:741,0Þ,ð – 4:185,0Þ,
ð – 1:732,0Þ,ð0,0Þ,ð1:732,0Þ,
ð2:861,0Þ,ð0:741,0Þ,ð4:185,0Þ

8><
>:

9>=
>;

Fig. 1 Construction of multidimensional nodes X2
2
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For the extended sparse grid technique, the same
multidimensional nodes will be combined multiple times.
Instead of evaluating the response function several times,
the same nodes are calculated only once and the respective
weights should be summed up beforehand. Further details
are available in the work of Heiss and Winschel [47].
Therefore, the statistical moments of the system response
in Eqs. (16) and (17) can be addressed by the following
formulas:

�t ¼ !
Ω

gt½T – 1ðVÞ�fV ðvÞdV ¼
XNe

l¼1

alg
tðηlÞ,     t ¼ 1,2,:::,

(22)

ct ¼ !
Ω

fg½T – 1ðVÞ� –�1gt fV ðvÞdV

¼
XNe

l¼1

alðgðηlÞ –�1Þt,    t ¼ 2,3,:::: (23)

Thereafter, the aforementioned moments can be trans-
formed into those in Eq. (4).

3.4 Maximum entropy principle

After the statistical moments are obtained, the maximum
entropy principle [7,48,49] can be used to fit the PDF fY ðyÞ
of the system response. Given the constraints of the central
moments, the formulation can be expressed as follows:

max   H ¼ –!
Ω

fY ðyÞlnfY ðyÞdY ,
   s:t: 

        

 !
Ω

fY ðyÞdY ¼ 1

 !
Ω

ðY –�ÞifY ðyÞdY ¼ ci, i ¼ 1,2,:::,r

,

8>>>>><
>>>>>:

(24)

where H denotes the entropy, � is the mean of the system
response Y, and ci stands for the i-th order central moment
of Y when i ¼ 1, c1 ¼ 1.
The optimization problem in Eq. (24) can be solved by

using the Lagrangian multiplier method with a function
formulated as

L ¼ –!
Ω

fY ðyÞlnfY ðyÞdY þ ðl0 þ 1Þ !
Ω

fY ðyÞdY – 1

0
@

1
A

þ
Xr
i¼1

li !
Ω

ðY –�ÞifY ðyÞdY – ci

0
@

1
A, (25)

where li ði ¼ 0,1,:::,rÞ is the Lagrangian multiplier to be
determined.
Let the derivations of L with respect to fY ðyÞdY be equal

to zero. Therefore, the maximum entropy PDF can be
obtained as follows:

fY ðyÞ ¼ exp –
Xr
i¼0

liðY –�Þi
 !

: (26)

By substituting Eq. (26) with the constraint conditions in
Eq. (24), the determined Lagrangian multiplier can be
obtained according to the gradient iteration. In general, the
first four-order central moments are the constraint condi-
tions. To obtain a higher fitting accuracy, a high order of
the central moments can be specified. Further details are
provided by Mohammad-Djafari [50].

3.5 Computational procedure

In summary, the flowchart of the proposed method is
provided in Fig. 2 and summarized in the following steps:
Step 1: The performance function g is established and

the distribution function of the input random variables X is
determined.

Step 2: Based on the extended Gauss-Hermite nodes in
Table 1, the transformed nodes are calculated according to
Eq. (15).
Step 3: The accuracy level k is specified and all multi-

indices i ¼ ði1,i2,:::,inÞ are calculated, and then the multi-
dimensional nodes X k

n is constructed through Eq. (19).

Fig. 2 Computational flowchart of the proposed method
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Step 4: The weight vl corresponding to each multi-
dimensional node is calculated through Eq. (21).
Step 5: The first four-order statistical moments of the

system response are calculated through Eqs. (22) and (23),
and the moments are transformed through Eq. (4).
Step 6: The PDF of the system response is fit with the

maximum entropy principle.

4 Numerical examples and discussions

Three examples are investigated in this section. The first
example considers a mathematical problem with all normal
input random variable distributions, and the second
example extends the distribution to the five types with 10
dimensional variables. Some cases for the first two
numerical examples are discussed, which aims to show a
higher accuracy and an acceptable efficiency of the
proposed method. The third example is an engineering
application that concerns a signal transmission problem in
the power amplifier link. The UP problems for each
example are analyzed using the MCS, UDRM, SGNI, and
proposed methods. Furthermore, the MCS solution is used
as a reference to verify the accuracy of the other three
methods.

4.1 Numerical Example 1

The first example considers a performance function with
n-dimensional independent input random variables:

Y ¼ gðXÞ ¼
Xn
i¼1

Xi þ 20X1
2X 2

2

þ
Xn – 2
i¼1

X 2
iþ1X

2
iþ2 –

Xn
i¼1

sinXiexpðXi – 2Þ – 10,

(27)

where Xi ði ¼ 1,2,:::,nÞ denotes the input random variable,
which follows the normal distribution Nð1,0:1Þ. Three
cases will be considered in this example. The first case
discusses the accuracy of the aforementioned methods with
the same accuracy level k in the SGNI and the proposed
methods. The second case mainly analyzes the method
efficiency when the SGNI and the proposed method
achieve nearly the same accuracy. The third case considers
the UP problems with different dimensions n.

4.1.1 Case 1: Accuracy comparison

In this case, the input random variable dimension is defined
as n ¼ 6. Moreover, the aforementioned methods are
adopted to estimate the first four-order moments of the
system response. The analysis results are listed in Table 3.
First, the errors of the first two-order moments are
relatively small regardless of which method is adopted,
but the accuracy with the proposed method is slightly
better than that with either UDRM or SGNI. The maximum
error of the low-order moments is only 1.83%, which
occurs in the standard deviation � calculation by UDRM.
Second, in terms of the higher-order moments, the
accuracy for each method is different. The proposed
method can ensure much better accuracy compared to that
of UDRM and SGNI. For example, the errors in predicting
the skewness τ by the UDRM, SGNI, and proposed
methods are 66.45%, 5.53%, and 0.24%, respectively. The
respective errors in predicting the kurtosis κ are 14.92%,
19.16%, and 0.99%, respectively. Furthermore, the
moments obtained are used to fit the PDF of the system
response with the maximum entropy principle. As depicted
in Fig. 3(a), the system response PDFs by using the UDRM
and SGNI are relatively inaccurate, whereas the proposed
method can fit the PDF of MCS effectively, which can
further demonstrate the accuracy of the proposed method.
In addition, for the computational efficiency, the number

of function calls of the MCS is 1000000, which is more
than those of the other three methods. Compared with
SGNI and the proposed method, the computational
efficiency of the UDRM is relatively high, whereas the
accuracy of the high-order moments obtained by using the
UDRM is unsatisfactory, which results in a relatively poor
fitting accuracy of the system response PDF. The SGNI
needs 85 (k = 2) function calls, which is less than that of the
proposed method (109). Despite a slightly lower computa-
tional efficiency, the proposed method can ensure better
high-order moment accuracy. Overall, the proposed
method provides a comprehensive result between the
solving accuracy and computational efficiency in solving
the UP problems, which is significant for the uncertainty
analysis.

4.1.2 Case 2: Efficiency comparison

As mentioned in Case 1, the proposed method can have
higher accuracy than that of SGNI under the same level k.

Table 3 Results of the first four-order moments of Case 1 in Example 1

Moments MCS UDRM (error) SGNI (error) Proposed method (error)

� 18.6192 18.6108 (0.05%) 18.6132 (0.03%) 18.6132 (0.030%)

� 6.1305 6.0184 (1.83%) 6.1295 (0.02%) 6.1303 (0.002%)

τ 0.5976 0.2005 (66.45%) 0.5645 (5.53%) 0.5961 (0.240%)

κ 3.5904 3.0546 (14.92%) 2.9026 (19.16%) 3.5548 (0.990%)
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In this case, the efficiencies of the SGNI and proposed
methods are discussed under a nearly similar accuracy. For
comparison, the moment estimate solving accuracy is
improved by increasing the accuracy level k until the
results of the SGNI and proposed methods are substantially
close to that of the MCS. The UDRM is not used for
comparison because it cannot obtain a high-order moment
accurate solution for this problem.
The results are presented in Table 4. In this case, for the

various levels k, the accuracy of all statistical moments by
using the MCS, SGNI, and proposed method is nearly the
same. However, MCS requires 1000000 function calls to
achieve an exact solution. The SGNI can obtain good
accuracy with 4541 function evaluations. At this point, it
corresponds to the level of k ¼ 5, whereas the proposed
method with the level of k ¼ 3 only needs 689 function
calls to obtain the same accuracy, which is nearly 6.5 times
less than the number of the SGNI. The proposed method
can have the same accuracy but with a higher efficiency
because the univariate nodes has a higher algebraic
precision. For example, the Level 3 algebraic precision
in Table 1 achieves a value of 15, whereas the Level 3
traditional integration only achieves a relatively smaller
algebraic precision, that is, 7 (2� 3þ 1). Therefore, the
proposed method is more efficient than the SGNI when
they possess the same accuracy, which is important in
solving vague practical problems. Moreover, the system
response PDF is fitted based on the calculated moments in
Fig. 3(b). The PDF, by using the SGNI and proposed
methods, can be fitted well with that of the MCS due to
their similar accuracy.

4.1.3 Case 3: Dimension comparison

To analyze the accuracy tendency of each order moment
with the increasing dimension, the different n values are
selected in this case. The minimum dimension is set as
n ¼ 6 because the proposed method can handle the
problem with high dimensional variables. Furthermore,
the maximum size is set as n ¼ 30 due to its suitable
efficiency.
The moments obtained from the UDRM, SGNI, and

proposed methods are compared with the results from that
of the MCS, which shows that the relative errors varied
with the dimensions n plotted in Fig. 4. The relative errors
for each order moments fluctuate slightly as the dimension
n increases. Similar to Case 1, the aforementioned methods
can guarantee the accuracy of the first two-order moments,
with maximal relative errors of only 0.17% and 2.09%,
respectively, which all occur in the UDRM calculation.
However, neither the UDRM nor the SGNI will obtain
satisfactory accuracy for the UP problems due to larger
relative errors in predicting the high-order moments. For
example, the maximal error of skewness by using UDRM
is 67.66%, whereas the maximal error of kurtosis by using
SGNI reaches 22.3%. By contrast, the high-order moment
errors obtained by using the proposed method are only
4.84% and 4.93%, respectively, which are less than those
of the UDRM and SGNI methods. As a result, the
proposed method can guarantee the accuracy not only of
the low-order moments but also of the high-order
moments, which can ensure the fitting accuracy of the
system response PDF. Furthermore, the obtained moments,

Fig. 3 PDF of system response in Example 1. (a) PDF of Case 1; (b) PDF of Case 2; (c) PDF of Case 3

Table 4 Results of the first four-order moments of Case 2 in Example 1

Moments MCS SGNI (error) Proposed method (error)

� 18.6192 18.6132 (0.030%) 18.6132 (0.030%)

� 6.1305 6.1304 (0.001%) 6.1304 (0.001%)

τ 0.5976 0.5978 (0.040%) 0.5978 (0.040%)

κ 3.5904 3.5964 (0.170%) 3.5962 (0.160%)
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Fig. 4 The relative error of the first-order moments varies with the dimension n. The relative error of (a) the mean, (b) the standard
deviation, (c) the skewness, and (d) the kurtosis varies with the dimension n
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which correspond to dimension n ¼ 27, are adopted to fit
the system response PDF, as shown in Fig. 3(c). The
proposed method provides a more accurate system
response PDF than either that of the UDRM or the
SGNI, which is similar to Case 1.

4.2 Numerical Example 2

This example is adopted to analyze the UP problems with
several different distributions of input random variables
with the response function created as follows:

Y ¼ gðXÞ ¼
X10
i¼1

Xi þ X1X2

þ expð –X3Þ
X4

þ sinX5cosX6 þ X7X8

þ 20X 2
9 X

2
10 – 30: (28)

The random variable Xi distribution is given in Table 5.
Two cases will be tested for the problem: One with the
same level k and the other with the same accuracy, which
are both considered in the SGNI and the proposed method.

4.2.1 Case 1: Accuracy comparison

Different from Case 1 in the first example, this case mainly
discusses the problem with five different input distribu-
tions. Therefore, the transformation is involved in the UP
analysis. However, without additional loss of accuracy

caused by the non-normal distribution of the input random
variable, the trends are almost similar to those in Example
1, as shown in Table 6. Each method can accurately
estimate the system response low-order moments. For
example, the standard deviation errors by using the
UDRM, SGNI, and proposed methods are only 3.86%,
0.69% and 0.04%, respectively. However, with respect to a
higher-order moment, such as skewness τ, the results of
these three methods are 64.04%, 27.75%, and 1.65%,
respectively. Therefore, the proposed method is more
accurate than the other methods. This phenomenon also
occurred in the kurtosis κ calculation. The PDFs are then
solved based on the obtained moments, as shown in
Fig. 5(a). Thus, the moment estimation errors result in
probability calculation errors. In general, the smaller the
estimated statistical moment errors, the higher the PDF
fitting accuracy. Therefore, the PDF by using the proposed
method is close to that of the MCS.
In Table 6, the MCS has relatively low efficiency

compared with the other methods. The numbers of the
function calls of the MCS, UDRM, SGNI, and proposed
methods are 1000000, 51, 221 (k = 2), and 261 (k = 2),
respectively. Similar to Example 1, although the UDRM
and SGNI have a relatively good computational efficiency,
the accuracy of the high-order moments by using the two
methods is unsatisfactory. On the contrary, the proposed
method with a few function calls can ensure better
accuracy than that of UDRM and SGNI.

4.2.2 Case 2: Efficiency comparison

Similar to Example 1, the objective of this case is to
compare the efficiency of the SGNI and proposed methods
when they can obtain good accuracy of the moment
estimates. As shown in Table 7, the errors for each moment
by using the SGNI are 0.01%, 0.004%, 2.24%, and 0.04%,
respectively, whereas the errors by using the proposed
method are 0.01%, 0.002%, 1.73%, and 0.06%, respec-
tively. Therefore, improving the level k, SGNI, and
proposed method can result in a relatively accurate
solution with k ¼ 7 and k ¼ 3. However, the function
calls of the two methods are different. For example, the
SGNI requires up to 581385 function calls, but the
proposed method with 2401 samples can also achieve the
same accuracy. The proposed method function calls with
the same k ¼ 3 in the first example are less than that in this
case. The trend is normal due to a higher dimension in this
example. The PDF results are shown in Fig. 5(b). All the

Table 5 Distributions of input random variable in Example 2

Variables Distribution Parameter 1 Parameter 2

X1 Normal 1 0.12

X2 Normal 5 0.50

X3 Weibull 1 5.00

X4 Uniform 2 6.00

X5 Lognormal 2 0.20

X6 Beta 2 5.00

X7 Normal 1 0.12

X8 Normal 1 0.12

X9 Normal 1 0.12

X10 Normal 1 0.12

Note: Parameter i (i = 1, 2) denotes the i-th parameter of input random variable

Table 6 Results of the first four-order moments of Case 1 in Example 2

Moments MCS UDRM (error) SGNI (error) Proposed method (error)

� 19.5144 20.5589 (5.35%) 19.5616 (0.24%) 19.5133 (0.01%)

� 7.6417 7.3465 (3.86%) 7.5890 (0.69%) 7.6449 (0.04%)

τ 0.6202 0.2231 (64.04%) 0.4481 (27.75%) 0.6305 (1.65%)

κ 3.7232 3.0687(17.58%) 3.2924 (11.57%) 3.7960 (1.96%)
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PDF by using the proposed method are accurate compared
with that of the MCS due to the minimal moment
calculation error.

4.3 An engineering application

The transmit/receive (T/R) modules have attracted sig-
nificant attention in recent years because of its importance
in the practical target detection [51,52]. The power
amplifier link is an important part of the T/R modules,
which mainly consists of two parts: Microstrip and printed
board. In general, the printed board is divided into the FR4
printed board and microwave printed board. This example
mainly considers a signal transmission problem in the
power amplifier link. Furthermore, the finite element
model is established as shown in Fig. 6.
Let the input electromagnetic signal in the amplifier link

be Iin ¼ Aðcos2πf þ φinÞ and the output be Iout ¼
neAðcos2πf þ φoutÞ, where A denotes the amplitude of
the input signal, ne is the amplification factor, f represents
the operating frequency, and φin and φout stand for the input
and output phases, respectively. In practical application,
we are more concerned about the uncertainty of the phase
difference Δφ (Δφ ¼ φout – φin). Therefore, the perfor-
mance function can be expressed as follows:

Δφ ¼ gðX1,X2,:::,XnÞ, (29)

where Xi ði ¼ 1,2,:::,nÞ is the input variable. Fourteen

variables will be considered in this example. The variables
X1, X2, and X3 denote the dielectric constant, thickness, and
width of the microstrip in the FR4 printed board,
respectively. The variables X4, X5, and X6 denote the
dielectric constant, thickness, and width of the microstrip
in the microwave printed board, respectively. The variables
from X7 to X14 denote the position sizes, which are shown
in Fig. 6. The aforementioned variables are assumed to
follow the different distributions due to existing uncer-
tainty factors. The specific information is provided in
Table 8.

The first four-order moments of the phase difference are
obtained by using the aforementioned methods, as shown
in Table 9. The errors in solving the low-order moments are
completely accepted. For example, all methods provide a
good estimate of the mean �, but the proposed method

Fig. 5 PDF of system response in Example 2. (a) PDF of Case 1; (b) PDF of Case 2

Table 7 Results of the first four-order moments of Case 2 in Example 2

Moments MCS SGNI (error) Proposed method (error)

� 19.5144 19.5161 (0.010%) 19.5129 (0.010%)

� 7.6417 7.6420 (0.004%) 7.6418 (0.002%)

τ 0.6202 0.6063 (2.240%) 0.6095 (1.730%)

κ 3.7232 3.7219 (0.040%) 3.7256 (0.060%)

Fig. 6 Finite element model of power amplifier link
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provides improved accuracy of the standard deviation �.
With respect to the higher-order moments, the errors in
predicting the skewness τ by using the UDRM, SGNI, and
proposed methods are 74.71%, 10.97%, and 1.17%,
respectively, whereas the errors in predicting the kurtosis
κ are 24.17%, 26.27%, and 4.06%, respectively. Therefore,
the proposed method provides a reasonably good estimate
of the high-order moments. Figure 7 shows the phase
difference PDF based on the obtained moments. The PDF
from the proposed method is highly similar to that of the
MCS, which can verify the accuracy of the proposed
method.
On the one hand, through the study of the engineering

application, the proposed method has higher accuracy in
solving the UP problems. On the other hand, for the
computational efficiency, the total number of function calls
of the proposed method is 477 (k = 2), which is acceptable
for a practical engineering problem. The UDRM and SGNI
have relatively good computational efficiency but neither
methods can ensure the accuracy of the high-order
moments, which will influence the practicability of the
methods. Thus, the method proposed in this paper has a
good comprehensive effect in practical engineering
problems due to high accuracy and accepted efficiency.

5 Conclusions

This paper proposes an approach for uncertainty propaga-
tion analysis based on an extended sparse grid technique
and the maximum entropy method, which satisfies both
good accuracy and acceptable computational efficiency.
Different from the traditional Rosenblatt transformation,
the method proposed in this paper is extended to the
extended Gauss integration. Therefore, all arbitrary vari-
able integration nodes can be transformed into the EGHI
nodes. Furthermore, the SGNI with the transformed nodes
is employed to predict the first four-order moments. The
system response PDF is obtained based on maximum
entropy. Without loss of accuracy in the proposed
transformation, our method provides relatively accurate
estimates of the statistical moments, thereby ensuring a
good fitting accuracy of the system response PDF. The
results of the numerical examples also indicate that the
proposed method is more accurate than the UDRM and
SGNI methods. In terms of the first two-order moments,
the accuracy of the proposed method is slightly better than
that of UDRM and SGNI, but all methods are capable of
ensuring the accuracy of the low-order moments. How-
ever, with respect to the high-order moments, only the
proposed method has a good effect. In addition, the system
response PDF has higher accuracy. When the performance
function contains stronger interactions among the input
random variables, the effectiveness of the proposed

Table 8 Distributions of input random variables in Example 3

Variables Distribution Parameter 1/mm Parameter 2

X1 Normal 4.80 0.033

X2 Normal 0.70 0.001

X3 Normal 0.90 0.017

X4 Normal 3.50 0.017

X5 Normal 1.00 0.001

X6 Normal 2.20 0.033

X7 Normal 12.90 0.017

X8 Normal 45.70 0.017

X9 Normal 96.15 0.017

X10 Normal 73.70 0.017

X11 Uniform 114.00 115.0 mm

X12 Uniform 129.10 129.5 mm

X13 Normal 133.40 0.017

X14 Normal 147.10 0.017

Note: Parameter i (i = 1, 2) denotes the i-th parameter of input random variable

Table 9 The first four-order moments of phase difference in Example 3

Moments MCS UDRM (error) SGNI (error) Proposed method (error)

� – 45.0458 – 45.3185 (0.60%) – 45.0591 (0.03%) – 45.0591 (0.03%)

� 2.6849 2.5567 (4.77%) 2.6809 (0.15%) 2.6856 (0.03%)

τ 0.8739 0.2210 (74.71%) 0.7780 (10.97%) 0.8637 (1.17%)

κ 4.6578 3.5320 (24.17%) 3.4343 (26.27%) 4.4685 (4.06%)

Fig. 7 PDF of phase difference in Example 3
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method improves. In addition, for the computational cost,
the proposed method has relatively high efficiency
compared with the MCS. All numerical examples are
analyzed with the dependent variables, and the correlations
among the input random variables can be considered in the
future. Moreover, the proposed method extends to other
interesting topics such as structural reliability analysis and
optimization design.
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