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Abstract Functional periodic structures have attracted
significant interest due to their natural capabilities in
regulating surface energy, surface effective refractive
index, and diffraction. Several technologies are used for
the fabrication of these functional structures. The laser
interference technique in particular has received attention
because of its simplicity, low cost, and high-efficiency
fabrication of large-area, micro/nanometer-scale, and
periodically patterned structures in air conditions. Here,
we reviewed the work on laser interference fabrication of
large-area functional periodic structures for antireflection,
self-cleaning, and superhydrophobicity based on our past
and current research. For the common cases, four-beam
interference and multi-exposure of two-beam interference
were emphasized for their setup, structure diversity, and
various applications for antireflection, self-cleaning, and
superhydrophobicity. The relations between multi-beam
interference and multi-exposure of two-beam interference
were compared theoretically and experimentally. Nanos-
tructures as a template for growing nanocrystals were also
shown to present future possible applications in surface
chemical control. Perspectives on future directions and
applications for laser interference were presented.

Keywords laser interference, four-beam interference,
multi-exposure of two-beam interference, additive fabrica-
tion

1 Introduction

Periodic structures have recently attracted significant
interest due to their natural capabilities in regulating

surface energy, surface effective refractive index, diffrac-
tion, superhydrophobicity, antireflection, and structural
colors for various applications [1–5]. Various technologies,
such as photolithography [6,7], self-assembly [8], electro-
spinning [9], and nanoimprinting [6], have been developed
for the fabrication of these functional micro/nanostructure
arrays. However, the requirements for highly trained
operators, expensive cleanrooms, and high-resolution
masks have affected the widespread applications of such
technologies in the research area, thereby necessitating the
development of a simple, low-cost, and high-efficiency
method. Laser interference [5,10–13] is a powerful
technique for the fabrication of large-area, micro/nano-
meter-scale, and periodically patterned structures. Laser
interference demonstrates micro/nanostructures in air
conditions by using a self-redistributed light intensity
directly recorded in light-sensitive materials rather than
using expensive masks [12]. Flexible structures, such as
1D gratings [14], 2D pillars/holes [15], and 3D crystal-like
structures [16], have been produced.
The setup of laser interference is relatively simple, with

2/3/4-beam interferences being the common cases [5,17–
19]. Split beams from a coherent laser interfering on the
sample are used to form a redistributed fringe-like
intensity. The intensity period for the recorded structures
is determined by laser wavelength l, refractive index n,
and the angle between the two beams, θ. The laser
wavelength is usually determined by photoresist linear
absorption. Most laser sources are reported at 355 [15],
325 [11,20], 266 [5], 257 [21], and 193 nm at deep
ultraviolet wavelengths [22], which limit the resolution of
the structures with a minimum period of l/2n. Thus far, the
minimum period of 90 nm has been realized by the
immersion method with a 45 nm half-pitch and two views
of self-aligned frequency-doubled patterns at 22 nm half-
pitch, followed by two potassium hydroxide (KOH) etch
pattern-transfer steps [22]. Ultra-short pulsed lasers, such
as nanosecond and femtosecond lasers [23], have also been
used for laser interference. Considering the coherent length
limitation, nanosecond laser sources are typically used in
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the fabrication of high-depth/width-ratio structures. The
flexible tuning of beam angle widens the period from
microscale to nanoscale and promotes its widespread
applications in surface science [5]. With the detailed multi-
beam interference and multi-exposure of two-beam inter-
ference, structures such as microlenses [10], photonic
quasi-lattices [24], and micro/nanopillars (micro/nano-
holes) [18,25], and several micro/nanostructures based
on these templates [11,16] are easily demonstrated.
Research on laser interference is relatively pioneering

and promising. Our research group has been extensively
involved in this research area. In this study, we present our
past and current work on laser interference for the
fabrication of large-area functional periodic structure
surfaces and provide our perspective on the future of this
area. This study includes structural and functional diversity
by four-beam interference, multi-exposure of two-beam
interference, and the relationship between the multi-
exposure of two-beam and multi-beam interferences.

2 Fabrication of functional structures by
four-beam interference

Four-beam interference is one of the interference techni-
ques used for the fabrication of large-area functional
structures due to its outstanding capability in one-step
realization of 2D/3D structures [15,16,18,25–28]. As
shown in Fig. 1(a) [29], four beams numbered K1 to K4

were found on the sample in which they would split and
reflect to interfere with a periodic light intensity of Fig.
1(b). Through a photo-crosslinking process, the corre-
sponding structures form under light distribution with
period Λ =

ffiffiffi
2

p
l/2sinθ. Usually, the angles between each

beam and substrate, which were labeled as θ1 to θ4, were
set to limit the structure period, and the angles between the
beams determined their distributions in different direc-
tions. To adjust the angles, various setups that combined
beam splitters and reflectors were used to obtain four
beams as K1 to K4. Although the periods in theory were at
least

ffiffiffi
2

p
l/2, the maximum angles of reflectors set for K1 to

K4 were usually around 70°, which limited the period to
the lowest point around 0.8l. Meanwhile, the angles of
minimum reflectors were usually 1°–2°, which resulted in
a maximum period of 20l–30l. To fulfill the equal
retardance for each beam, laser beam was split at least
three times. Although the light path becomes much more
complex, it provided more flexible structures by finer
control over the power and exposure time of each beam. In
comparison, a pyramid prism with four sides and fixed
angles is a simple method to realize four-beam interference
by applying one incident light beam vertically to the flat
bottom [30]. The laser fluences and exposure time for each
beam determined the structure surface morphologies.
Sample rotation is another way to increase the complexity
but is not common in four-beam interference.

2.1 Structure diversity by four-beam interference

Four-beam interference has become a powerful tool in the
fabrication of various 2D structures by changing the angle
and exposure fluence for each beam [15,18,26]. For
example, when the intensity of beams K2 and K4 is lower
than that of K1 and K3, the structures become stretched in
the parallel direction under anisotropic light distributions
shown in (i) and (iii) of Fig. 2(a) [31,32]. In extreme cases,
four-beam interference becomes two-beam interference in
(ii) and (iv) of Fig. 2(a) by blocking the beams of K2 and K4.
As shown in (i) of Fig. 2(b), elliptical structures with a

height less than 1 mm, shown in (iii) of Fig. 2(b), were
obtained by the artifice in Fig. 2(a). The structures bent
toward each other with the increase in height. If the height
was between 1 and 1.9 mm, the pillars bent along the short-
axis direction and formed regular “S” shape arrays. If the
height increased to 2.6 mm, then the opposite pillars
attracted each other to form a chain-like array, as shown in
(iv) of Fig. 2(b). The shape could also be changed by
changing the laser fluence. The increased space between
the pillars with the laser fluence resulted in a titled angle
from 80° to 45°, which is a similar change to the height.
Scanning electron microscope (SEM; JEOL 6700F)
images of the pillar arrays for 1.8 and 1.4 mJ/cm2 are
shown in (ii) and (iii) of Fig. 2(c). The important factor for
laser fluence is the width of formed structures, which was
directly observed from discrete to chain-like in (iv) of Fig.
2(b). The distributions of pillars also affected the structure
morphology and its tilt angle. The shapes could also be
changed by tuning the space and angles between the
structures and laser fluence (Fig. 2(c)).
These structures were used due to the supporting force

Fig. 1 (a) Set-up of four-beam interference, and (b) its light
intensity distribution [29]
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of the materials. A supporting force Fs–ER
4d/h3 exists,

which is defined as the critical force that causes pillar
bending [32]. The ratio, K = Fatt/Fs–(2πγ/Ed)cos(α/δ)h

4/R3

[32], for the bending properties of pillar arrays is
significantly affected by height (h) and width (R). The
pillar stood straight and did not bend at K< 1. When K
became large, the pillars began to bend, and 2-pillar-cell
arrays were obtained, as shown in (ii) and (iii) of Fig. 2(d).
Experimentally, 4-pillar cell arrays were assembled at K =
3.16, as shown in (iv) of Fig. 2(d). Six-cell, nine-cell, and
twelve-cell arrays were simultaneously achieved by
increasing the height to 5.3, 6.9, and 8.6 mm, respectively.

2.2 Superhydrophobic structures by four-beam interference

The general pinned and roll-down states in superhydro-
phobicity are usually determined by structure interval.
Stretchable or bent structures are preferred for state
transition. As shown in Fig. 3(a), in situ switching from
the pinned to the roll-down state was evident due to the
curvature of the surface viewed in macro [18,19]. Structure
arrays were fabricated by four-beam interference with a
contact angle of 150°�2°. The contact angle slightly
increased to 156° with a radius of curvature of 3.38 mm or
0.3 mm–1. The relationship between the radius and contact

angle is shown in (vi) of Fig. 3(a). Interestingly, the rolling
angles for the flat and bent surfaces were different, which
resulted in a transition from the pinned state to the roll-
down state, as shown in (i) and (ii) of Fig. 3(a). A detailed
comparison between flat and curved pillar arrays is
presented in Fig. 3(b). The water droplet on a flat pillar
array did not roll down at the pinned state when the surface
was tilted at 90° or 180°. However, the water droplet rolled
down quickly on a tilted curved surface (curvature ca. 0.5
mm–1) and did not stay on a surface with large curvature
(curvature ca. 0.7 mm–1), especially when the surface was
nearly horizontal.
Gecko-foot-like structures were fabricated by four-beam

interference with the assistance of photolithography to
introduce structures in the order of tens of microns, as
shown in Fig. 3(c) [19]. The larger period and smaller
period structures were superhydrophilic and superoleophi-
lic in the air environment. However, the structures became
superoleophobic in water with contact angles of 150° and
164°. The contact angle was increased to 175° by
combining the two types of structures. At this angle, the
oil could not remain, especially when the sample surface
was nearly horizontal. With this sample, the separation of
oil from water was easily demonstrated by immersing the
mixture into water to sweep the oil.

Fig. 2 Structure diversity by improved four-beam interference [31,32]. (a) Micropearl arrays; (b) anisotropic regular “S” and “chain-
like” microstructures prepared by controlling the width of the pillars; (c) a series of complex elliptical pillars realized by controlling the
width; (d) regular controllable microstructures realized by capillary force assembly of pillar arrays with different heights
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3 Fabrication of functional structures by
multi-exposure of two-beam interference

Four-beam interference is a powerful tool in the fabrication
of various structures. Interference by many beams has
become significant due to the interesting patterns and
various applications on 3D photonic structures [33,34].
However, the setup becomes complicated with the increase
in the number of beams, which resulted in many alignment
errors. To avoid these issues, multi-exposure of two-beam
interference was proposed due to its flexibility and simple
setup, as shown in Fig. 4 [5,12,13,35–37]. In Fig. 4, the
relationship between multiple exposure two-beam inter-
ference and multi-beam interference is first introduced
[12]. Biomimetic hierarchical 3D textures were obtained
by angle-multiplexed optical printing, which have a
comparable aspect ratio, with a period spanning from 4
µm to 300 nm (more than one order of magnitude), and the
height spanning from 0.9 µm to 40 nm [5]. The structure
surface area was expanded by moving the motor during the
fabrication process, which provided a rapid method for
large-area surface texturing [5,38].

3.1 Relationship between multi-beam interference and
multi-exposure of two-beam interference

On the basis of the interference theory, the light intensity

for each beam is shown in Eq. (1) [12,37],

U
↕ ↓

j P
↕ ↓

,t
� �

¼ A
↕ ↓

j P
↕ ↓

� �
e
– i ωj t – φj P

↕ ↓

� �h i

¼ A
↕ ↓

j P
↕ ↓

� �
e

iφj P
↕ ↓

� �
e – iωj t,  j ¼ 1,2,3:::, (1)

where U
↕ ↓

represents the vector wave, A
↕ ↓

is the amplitude, ω
is the frequency, φ is the initial phase, and j represents the
order of the split beam. The redistributed light intensity for
Nth beam is shown in Eqs. (2) and (3) [12],
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Fig. 3 (a) Reversible switching of three superhydrophobic states by curvature change and reversible tests for the switching between the
pinned and roll-down states; (b) the corresponding state changing in experiment [18]; (c) tilted scanning electron microscopy images of
20 mm period, 2.5 mm period pillar arrays, and hierarchical gecko foot-like microstructures; (d) the contact angle in air and water, and their
self-cleaning anti-oil capability on extreme superoleophobic surfaces [19]
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If n exposures of N-beam interference are found, then
the light intensity is expressed as Eq. (4) [12],

InN ¼
Xn
j¼1

IN ðPjÞ, (4)

where n exposures are usually attained by rotating the
sample by θj 180

o/n, as shown in Eqs. (5) and (6) [12],

�j ¼
180°ðj – 1Þðn – 1Þ

n
, (5)

Pj ¼ P1½cos�j, sin�j�: (6)

For example, the light intensity of four-beam inter-
ference by setting N = 4 and n = 1 is shown in Fig. 1(b).
Similarly, N = 2 represents the two-beam interference. The
intensity of multi-beam interference and multi-exposure of
two-beam interference are shown in Fig. 5 [12]. A
systematic comparison of the images shown in Fig. 5
shows the following relationship between multi-beam
interference and multi-exposure of two-beam interference
[12]: 1) Patterns made by multi-beam interference and
multi-exposure of two-beam interference are of n-fold
symmetry; (2) the intensity distribution is the same for two
interferences, but the maximum intensity of multi-
exposure of two-beam interference is much less than that
of multi-beam interference; 3) a singular point appears in
the center of multi-beam interference pattern but none in
multi-exposure of two-beam interference. Energies are
collected at the center if many beams are used in MBI, and
a relatively well-proportioned intensity distribution in a
large area is formed by METBI; 4) a 2n-exposure MBI can
be replaced by an n-exposure METBI if large-area well-
proportioned structures of n-fold symmetry are required.
The multi-exposure of two-beam interference flow is

shown as follows: Potential 1D gratings were formed by
the first exposure of two-beam interference. The second

exposure was conducted by rotating the sample by θj, as
defined in Eq. (5). Then, the third exposure and other
exposures were processed by the same method. In the
completion of all exposures, structures of n-fold symmetry
were obtained after developing, as shown in (iii) of Figs.
5(a)–5(f). Furthermore, several techniques for multi-
exposure of two-beam interference and multi-beam inter-
ference were found by combining the laser fluence for each
beam and exposure time [37]. However, exchanging the
two technologies was possible, thereby decreasing the
difficulty of the fabrication process.

3.2 Biomimetic hierarchical 3D textures by angle-multi-
plexed multi-exposure of two-beam interference

Natural superhydrophobic and antireflective structures con-
stantly have multi-scales, including micro-features and nano-
features [39]. However, manufacturedmulti-scaled structures
using common technology are difficult to achieve. Complex
steps with masks are the usual means by which these
structures are achieved. These methods require high cost and
have low efficiency. In this subsection, the production of
biomimetic hierarchical 3D textures was demonstrated by
angle-multiplexed multi-exposure of two-beam interference.
Only the multi-exposure of two-beam interference was
conducted for structures with the same level. However, the
angles of exposure were tuned as the calculated period for
structures with different levels, followed by the same flow of
multi-exposure of two-beam interference. In this method,
biomimetic hierarchical 3D textures that have comparable
aspect ratios with a period spanning from 4 µm to 300 nm
(more than one order of magnitude) and height spanning
from 0.9 µm to 40 nm were obtained, as shown in Fig. 6(a).
The multi-scale biomimetic hierarchical 3D structures
possessed superhydrophobicity, angle-dependent diffraction,
and structural color capacities, as shown in Figs. 6(b) and
6(c) [5].

Fig. 4 Schematic for fabrication of hierarchical 3D textures by angle varied multiple exposure of 2-beam interference process. L1L1′ is
the exposure for the larger period, and L2L2′ is the exposure for the smaller period [5]
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4 Laser interference fabrication of micro/
nanostructures for light manipulation and
nanoscale grown nanocrystals

4.1 Structures for optical manipulation

High transmittance or low reflection is required in high-

power laser systems, solar cells, and organic light emitting
diodes (OLED) [40–42]. An antireflective coating by
destructive interference is the usual option. However, this
method has several problems, such as shedding by
mechanical scratching, deformation from thermal expan-
sion, and low-temperature shrinkage. These problems are
critical, especially when the antireflective coatings are used

Fig. 5 Shown in the upper row (i) of (a)–(f) are theoretical patterns made by 6-, 8-, 10-, 12-, 24-, and 36-beam interference; (ii) and (iii)
of (a)–(f) are theoretical and experimental atomic force microscope images made by 3, 4, 5, 6, 12, 18 exposures of two-beam interference
[12]

Fig. 6 (a) SEMmicrographs of surfaces fabricated by multiple exposure of angle varied 2BI; (b) superhydrophobicity of hierarchical 3D
textures; (c) optical properties of hierarchical 3D structure surfaces [5]. pol: Polarization
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for OLED, which are required to be flexible and stretchable
in the future [43]. Inspired by the antireflective structure of
moth eyes, structural antireflection through manufactured
subwavelength structures was proposed by tuning the
refractive index from step to gradual (shown in (iii) of Fig.
7(a)) [44–46]. Subwavelength periodic nanopillars were
fabricated at bottom-emitting OLED windows by soft
imprinting of periodic structures, which were fabricated by
four-beam interference (shown in (i) and (ii) of Fig. 7(a))
[47–49]. The reversal structures had the same morphology
as the original structures, with a period of approximately
440 nm and a height of approximately 500 nm, which were
sufficient to increase the transmittance from less than 91%
to around 95% over a spectral range from 400 to 800 nm,
as shown in (iii) of Fig. 7(b). The enhancement was
particularly evident when OLED operated in dirty
environments due to the self-cleaning effect, which
resulted in no dust particles remaining on OLED windows.
This process significantly increased the transmittance from
50% (flat surface) to 95% (antireflective surface). This
simple, cost-effective, and reproducible method provides
large-area fabrication of antireflective and self-cleaning
structures and may be applied in various applications for
illumination and display [50–54].
Furthermore, light manipulation has attracted significant

attention in recent years [55–59]. Laser interference

technology is one of the promising techniques for the
fabrication of 1D, 2D, isotropic, and anisotropic micro/
nanostructures for high-efficiency OLED [14,56,57,60].
Structures were usually built on the bottom and continued
to the top, in which light was extracted. Light was
efficiently coupled by plasmonic polaritons, especially
when combined with metal structures [57]. In addition,
structures with different periods were conducted for
waveband manipulation in white light OLED [61,62].

4.2 Nano-limited effect for nanocrystal growth

An application that combines superhydrophobicity and
antireflection by using of hybrid micro-nanostructures is
for high-resolution surface enhanced Raman spectrum
(SERS) detection [4]. In addition, laser interference is
widely used for template fabrication due to its nanofabri-
cation capacities [20,34,63]. The minimum structure
period is approximately half of the laser wavelength on
the basis of the equation for laser interference period,
which provides a way to realize the patterns of nanofea-
tures. As shown in Fig. 8, silver nanocrystals were grown
through an electrochemical reaction with the aid of
nanocells separated by SU8 photoresist. A nano-limited
effect was observed, in which the nanocrystal was grown
uniformly in each cell with the increase in etching time.

Fig. 7 Antireflective and self-cleaning for white organic light-emitting devices by flexible antireflective films. (a) Structure morphology
(i) and (ii) and antireflection mechanism (iii); (b) self-cleaning superhydrophobic capability of nanopillar arrays [47]
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Small nanogaps between periodic gratings makes the
crystal growth slower and more uniform than those without
limitation in experiments. A controllable and uniform
shape and size could be realized, which was beneficial for
surface enhanced Raman scattering detection and surface
plasmon polariton excitation [64].
Generally, templates with a controllable period, line

width, and dot size are widely used in laser interference
technology due to their easily adjusted angles, light
intensity, exposure time, and sample rotation [6,65,66].
Laser interference is a simple and widely used method for
the fabrication of large-area and non-defect structures,
which paves the way for the wide application of these
periodic structures [66–69].

5 Conclusions

Laser interference is an efficient technology for the
fabrication of periodic micro/nanostructures. Multiple
beam interference and multiple exposure of two-beam
interference are widely used. The former is dominant due
to its flexibility in various structure fabrications. Tuning
the laser fluence, angles, the exposure number between
each beam, micropearl arrays, and anisotropic regular “S”
and “chain-like” microstructures obtains a series of
complex elliptical pillars and regular controllable micro-
structures by capillary force assembly of pillar arrays with
different heights. Multiple two-beam interference pos-

sesses simplicity and diversity, thus obtaining 1D, 2D, and
hybrid 3D structures. The two structures fabricated by
multiple beam interference and multiple exposure of two-
beam interference have functional applications for antire-
flection, self-cleaning, and superhydrophobicity. Consider-
ing the complex experiment setup of multiple beam
interference and its succenturiate in theory, multiple
exposure of two-beam interference shows a broad potential
for structure fabrication.
Laser inference technology has aimed to obtain many

fine structures for nanoscience and surface science due to
the period limitation of light interference. However,
actually speaking, most of the structures by laser
interference are between nano-region (< 100 nm) to
micro-region and even micro-region. In the future,
immersion technology by interference in a high refractive
index solution with deep ultraviolet light source are
possible solutions to realize structure in nano-region. In
addition, uniform morphology, especially for a large-area
textured surface, has remained a challenge and is a research
topic in the combination of nonlinear laser-matter interac-
tions with ultrashort pulses.
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Fig. 8 (a) Schematic of nanocells limited controllable nanocrystal grown on Si for SERS; (b) the periodic silver nanocrystals grown on
Si [64]
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