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Abstract Terahertz (THz) waves, whose frequencies
range between microwave and infrared, are part of the
electromagnetic spectrum. A gap exists in THz literature
because investigating THz waves is difficult due to the
weak characteristics of the waves and the lack of suitable
THz sources and detectors. Recently, THz nondestructive
testing (NDT) technology has become an interesting topic.
This review outlines several typical THz devices and
systems and engineering applications of THz NDT
techniques in composite materials, thermal barrier coat-
ings, car paint films, marine protective coatings, and
pharmaceutical tablet coatings. THz imaging has higher
resolution but lower penetration than ultrasound imaging.
This review presents the significance and advantages
provided by the emerging THz NDT technique.

Keywords terahertz pulsed imaging (TPI), nondestruc-
tive testing (NDT), composite material, thermal barrier
coating

1 Introduction

Terahertz (THz) nondestructive testing (NDT) technology
provides capabilities for noncontact inspection, high
precision, and good penetration for non-conducting
materials, such as ceramics and plastics. This technology
is a powerful tool for biomedical, communication, and
national defense applications. THz NDT applications have
been delayed for many years because of the inefficiency of
THz emission and detection devices. This condition is the
so-called “THz gap” in this period. However, this gap has
been addressed by the fast development of semiconductors
and ultrafast electronics, and THz NDT has been widely
applied in many fields over the last two decades. THz

emitters and detectors are the main components of THz
systems. Two THz sources are generally used: Continuous-
wave (CW) and pulsed THz radiations. For example, CW
THz waves can be generated by photomixing in low-
temperature-grown gallium arsenide (GaAs) [1,2], quan-
tum cascade lasers [3], and free-electron lasers [4], and
whist pulsed THz waves can be produced by generating an
ultrafast photocurrent in semiconductors illuminated by a
femtosecond (fs) laser pulse, which result in electric field
carrier acceleration [5]. For THz detectors, low-tempera-
ture-grown GaAs is normally used as a photoconductive
antenna (PCA) [6]. Electro-optic sampling of THz
radiation [7] is also a common technique for time-domain
THz detection.
The source spectrum of a CW THz system is relatively

narrow; therefore, limited information can be obtained
(e.g., sometimes, only the intensity information is
recorded) [8]. Unlike a CW system, a broadband emission
of up to several THz can be achieved by a pulsed system, in
which the time-domain THz wave (including intensity and
phase information) can be recorded. THz pulsed imaging
(TPI) can be used to nondestructively determine the
properties of materials over the millimeter and sub-
millimeter spectral ranges (0.1–10 THz), including
pharmaceutical tablet coatings [9–12], marine protective
coatings [13], automotive paints [14], polymer coatings
[15], art paintings [16], public security [17,18], and
medical applications [19,20]. Furthermore, recent THz
developments have extended the applications of the
nondestructive evaluation of composite materials [21–23]
and thermal barrier coatings (TBCs) [24–26].
In this review, typical THz devices and THz spectro-

scopy and imaging systems are described. Furthermore,
THz NDT applications in composite materials, industrial
paints (e.g., car paints), TBCs, marine protective coatings,
and pharmaceutical tablet coatings are presented. The
trends of THz NDT techniques are also discussed.

2 Terahertz devices and systems

THz systems have revolutionized over the past two
decades [27]. In this period, THz pulsed spectroscopy
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(TPS) and TPI systems have been developed and
commercialized. Figure 1 demonstrates the experimental
setup of a typical transmission TPS system [28]. THz is
generated and detected using an ultrafast fs laser (e.g., Ti:
Sapphire laser). A beam splitter is used to separate the laser
light into probe and pump beams. THz pulses are generated
by a typically biased PCA or THz emitter. THz pulses
emitted from the PCA under the illustration of the fs laser
are focused on the sample by using Mirror 1 (off-axis
elliptic mirror). The transmitted THz pulses are subse-
quently focused using a second off-axis elliptic mirror
(Mirror 2) on an unbiased PCA for detection.

As shown in Fig. 1, the unbiased PCA is the important
component of the TPS system. The structure of a typical
PCA [29,30] is shown in Fig. 2. Typical gold bowtie-
shaped antennas are fabricated on a low-temperature-
grown GaAs semiconductor substrate. The antenna is
biased with a direct-current voltage and illuminated with fs
laser pulses. Photo-excited carriers at the photoconductive
gap are excited and accelerated under the biased electric
field. Subsequently, an ultrashort current pulse that
produces THz radiation is generated. The transient current
decays with a time constant, which is determined by the
carrier lifetime in the semiconductor substrate. Normally,
silicon (Si) lens is used to collect THz radiation [30], as
shown in Fig. 1.
Although this THz emitter is widely used in THz

spectroscopy and imaging systems, it has limited THz
emission power, thereby limiting the important applica-
tions of THz NDT technology. Real-life applications
require a novel THz antenna with less pump power than

an fs laser pulse but can generate THz pulses with high-
power output [30]. High THz wave power generally allows
thick materials to be inspected due to improved signal-to-
noise ratio. High-power THz devices can be manufactured
using local field enhancement, which is induced by
resonant plasmons, and static electric field enhancement.
Currently, high-power THz radiation [31,32] is still a
popular topic in high-power THz NDT applications.
TPI is capable of the three dimensional (3D) nondes-

tructive inspection of materials. The core technology is
essentially the same as that of TPS (Fig. 1) and TPI
systems (Fig. 3). ATPI system has a six-axis robot system
for X-Y movement and rotation of the material sample
during the entire measurement. This arrangement ensures
that the surface of the sample is always perpendicular to the
THz beam and at the THz focus position [33].
As shown in Fig. 4 [11], the coating thickness of a

coated structure can be achieved directly from the time
delay between the interface and surface reflections. The
coating thickness is calculated as the time delay divided by
the refractive index (RI) of the coating material. Several
other THz parameters (e.g., peak intensity and interface)
can also be extracted simultaneously from the same THz
time-domain waveform.
THz waveforms, which are recorded as a function of

optical time delay, are collected at many points in the area
of interest to map the surface of a sample during TPI
measurement. Imaging an entire sample through point-by-
point TPI measurement is time consuming. Therefore,
high-speed THz imaging has become a research area of
interest for real-time imaging applications. A spinning
disk-based THz compressive sensing (CS) configuration
was reported for high-speed image acquisition [34–36].
Furthermore, a single rotating random-binary-pattern mask
was used to spatially modulate a collimated THz beam.
After penetrating the sample, the THz waves could be
measured using a single detector. Subsequently, THz
images were reconstructed using the CS algorithm. The
spinning disk could be rotated using an electric motor;
thus, the compressed THz imaging system could work
automatically and continuously. This system has signifi-
cant potential for real-time THz imaging applications.

Fig. 1 Experimental setup of typical transmission THz pulsed
spectroscopy (TPS) system [28]

Fig. 2 Typical biased THz emitter [30]
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3 Terahertz nondestructive testing

3.1 Composite materials

Composite materials are important in various application
fields, such as aerospace, wind energy, and civil engineer-
ing, because they have high mechanical strength and low
weight [37]. However, defects, such as voids, inclusions,
delamination, and cracks, are often produced in the

manufacturing process of composite materials. In addition,
defects are generated during the life cycle of composite
material structures. To ensure the structural integrity of
these structures, defects should be detected and localized.
THz technology with high resolution and good penetration
has recently become a promising NDT technique for defect
detection in composite materials. THz pulsed waveforms
are measured through TPI, as shown in Fig. 5(a) [38]. Fast
Fourier transform can be used to obtain the time-domain
THz wave, frequency amplitude (Fig. 5(b)), and the
corresponding phase information, from which the internal
information of the composite material can be achieved.
TPI is sensitive to fiber orientation detection. Figures

6(a) and 6(b) [39] show regular and irregular fiber
orientations captured by C-scans. As an example of a
defect occurring during the production phase of a
composite laminate, an inclusion is presented in Figs. 6
(c) and 6(d) [39]. The detectability of this inhomogeneity
depends on the difference between the RIs of the examined
object and the inclusion material. The measurement results
of delamination and the dangerous defect occurring during
the application phase are shown in Figs. 6(e) and 6(f) [39].
This example demonstrates the NDT capability of TPI on
composite materials with different defects.
Unlike ultrasound imaging, TPI is noncontact in nature

and does not require the liquid to couple the ultrasonic
wave from the transducer to examine composite materials.
Figure 7 shows sample images of a fiber composite imaged
by TPI and ultrasound imaging [40]. The fiber composite
measures 165 mm � 20 mm (neck = 13 mm) � 4 mm and
has buried voids of approximately 100 μm [40]. In Fig. 7,
the buried void can be clearly detected by THz imaging.
By contrast, ultrasonic imaging cannot clearly provide the
damage information. The imaging resolution of THz is

Fig. 3 Terahertz pulsed imaging (TPI) system [33]

Fig. 4 Typical THz waveform measured from single-layer-
coated structure [11]
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higher than that of ultrasound imaging in terms of clear
buried void detection on fiber composites. Normally, the
resolution of ultrasonic imaging is approximately 100 μm
but still depends on ultrasonic frequency, and the
resolution of TPI is approximately 20–30 μm. Meanwhile,
the penetration depth of THz waves is less than that of
ultrasonic waves, which can propagate through metal and
non-metal materials; THz waves can be used only for non-
conducting materials.

3.2 Thermal barrier coatings

A TBC is an advanced material system that is applied on
high-temperature metallic surfaces, such as gas turbines
and aero engines. Normally, a TBC system includes a
ceramic topcoat and a metallic bondcoat [27] on metal
substrates (e.g., NiCrAlY or NiCoCrAlY alloy), as shown
in Fig. 8. The RIs of air, topcoat, and bondcoat are n0, n1,
and n2, respectively, and follow this relationship:

Fig. 5 Measured THz pulsed waveforms. (a) Time-domain waveform [38]; (b) frequency amplitude spectra

Fig. 6 THz NDT measurements of glass fiber composite material [39]. (a) Irregular fiber orientation (C-scan); (b) regular fiber
orientation (C-scan); (c) C-scan of inclusion; (d) B-scan of inclusion; (e) C-scan of delamination; (f) B-scan of delamination

Fig. 7 Fiber composite imaged by (a) THz and (b) ultrasound [40]
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n0< n1< n2. During field service of a TBC system, several
damages or defects are initialized and propagated, such as
delamination, coat thinning, and gradual formation of a
thermally grown oxide (TGO) thin film. Several reflections
appear on the topcoat surface (S) and interfaces (such as
R1 and R2) when a THz wave pulse is incident on TBC.
The reflection coefficients of S, R1, and R2 can be
calculated as (n0 – n1)/(n0+ n1), (n1 – n2)/(n1+ n2), and
(n1 – n0)/(n1+ n0), respectively. The reflection coefficients
of S, R1, and R2 are negative, negative, and positive,
respectively, because n0< n1< n2. These findings explain
why the waveforms from the paths of S and R1 in Fig. 8 are
valleys, and the result from R2 is a peak wave. The
corresponding time-domain THz waveform, from which
the coating thickness of the topcoat can be achieved, is
shown in Fig. 8 [41].
The topcoat thickness measured by THz agrees with the

measurement results by microscope observation, and the
difference is within the range of measurement error
[42,43]. This finding demonstrates the high potential
application of THz waves in NDT or structural health
monitoring of TBC systems. By contrast, the typical
thickness of a TGO layer is normally approximately a few
micrometers (e.g., 10 mm) before TBC peeling. This
condition indicates that TGO thickness is generally smaller
than the pulse width of the THz waveform; hence, a TGO
layer cannot be sufficiently detected by THz waves.
Therefore, the use of high-resolution THz techniques for
TGO layer detection remains an issue.
Chen et al. [44] conducted the pioneering work in TGO

measurement by THz. They employed time-domain THz
reflectometry for the health monitoring of a TGO layer.

Figure 9 demonstrates that the THz pulse delay time
increases with a 348 h thermal exposure. The TGO layer is
also measured by scanning electron microscope (SEM),
which reveals increases in TGO thickness from 0 to 5 mm
with a 348 h thermal exposure and to 9 mm with a 1300 h
thermal exposure. The changes in TGO thickness with the
increase in thermal exposure time can be distinguished by
the increased pulse delays of the THz pulses reflected from
the TBC system (multilayered structure). This finding can
be used for TBC health monitoring [44].

3.3 Car paints and marine coatings

Car paints have several important functions, such as giving
distinct colors to cars and providing protection from
corrosion, ultraviolet radiation, and scratches. Therefore,
painting is an important step during automotive manufac-
turing. Several traditional methods are used to characterize
the thickness of paint layers, such as ultrasound testing
(UT), X-ray microcomputed tomography (CT), and eddy
current (EC). The UT and EC methods are contact
measurement techniques; that is, the measurement sensors
or probes need to be in contact with the painted car surface.
Meanwhile, the safety of using X-ray should be considered
in using the CT technique in real engineering applications.
THz time-domain spectroscopy has been reported as a
noncontact NDT technique for thin car paint layers. Yasui
et al. [45] and Izutanni et al. [46] demonstrated the use of a
THz paint meter for the noncontact measurement of the
thickness of thin film paint. Furthermore, Yasuda et al. [47]
proposed a fitting method to enhance the sensitivity of
minimum thickness measurement. Su et al. [48,49]
demonstrated excellent THz NDT performance in evaluat-
ing the thickness of car paint films. Figure 10 shows the
B-scan map and time-domain reflection waveform of a
single pixel [48]. The reflection peaks at all interfaces
between different thin film paints can be identified
effectively.

Fig. 8 Thickness measurement of TBC topcoat using THz waves
[41]. (a) Schematic diagram of the terahertz propagation path;
(b) waveform of the terahertz wave measured

Fig. 9 Comparison of averaged TGO thickness (SEM method)
and delay time (THz method) [44]
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The thickness of the multilayered car paint sample,
which consists of four layers, is measured by TPI and
traditional methods, namely, UT, EC, and CT. Comparison
results show that THz has good consistency with the other
methods; therefore, THz time-domain systems are ideal for
thickness measurements and analysis of layered structures
[48]. In these NDT applications, time-domain THz wave-
forms are used to image the inner structures of multi-
layered paint films similarly as ultrasound imaging
techniques do. In comparison with the traditional techni-
ques UT, CT, and EC, the TPI technique is more
advantageous because it is noncontact in nature. In
addition, TPI is able to spatially obtain the thickness
uniformity distribution information from the 2D THz
images.
Protective coating is usually applied on the surfaces of

marine or offshore structures for corrosion protection. The
usage of THz waves for marine coating detection has
attracted significant attention. Cook et al. [50,51] discussed
the applicability of THz NDT for marine protective
coatings and conducted a laboratory experiment to
measure the dry film thickness of organic coatings.
Recently, Tu et al. [52] demonstrated the TPI NDT of
marine protective coatings using the finite-difference time-
domain method combined with the stationary wavelet
transform (SWT) approach. As shown in Fig. 11 [52],

defects underneath marine protective coatings can be
detected by TPI technology. The results demonstrate that
TPI technology can be an excellent means of the health
monitoring of protective coatings.

3.4 Pharmaceutical coatings

Pharmaceutical tablet coating is the preferred means for the
release control of active pharmaceutical ingredients (API).
For example, sustained-release coating is used to achieve
an optimized release profile and a desirable API absorption
rate [10]. According to the pioneering work on nondes-
tructive analysis of tablet coatings by Fitzgerald et al. [53],
TPI is a powerful tool for the nondestructive, noncontact
determination of the tablet coating thickness of single-film-
and multifilm-coated tablets. Figure 12 shows images of
the 3D coating thickness of a coated biconvex tablet and
their uniformity [55]. The tablet is coated with a sustained-
release film coating on the tablet core. The tablet core
comprises lactose monohydrate with vinylpyrrolidone-
vinyl acetate copolymer, and the ingredients of the tablet
coating are Kollidon VA-64®, polyvinyl acetate, and
polyvinyl alcohol-polyethylene glycol graft copolymer
[55]. The color bars in Fig. 12 show the coating thickness
(varying from 70 to 180 μm) of two sides and the center
band of the coated biconvex tablet and indicate that the

Fig. 10 TPI reflected waveform of multilayered car paint on
carbon fiber substrate [48]. (a) B-scan map measured along the y-
direction. (b) time-domain reflection waveform of a single pixel

Fig. 11 Comparisons of SWT detail coefficients for intact and
defected marine protective coatings [52]. A defect with radius of
12 mm and thickness of 0.18 mm was embedded inside (a) the
three antifouling paint layers and (b) the anticorrosive paint layers
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thickness of the two sides of the tablet is larger than that of
the tablet center band.
The capability of THz radiation to penetrate a sample

and provide information about its inner structure makes
TPI an excellent tool for identifying inner defects and
buried structures [55–57]. May et al. [58] applied TPI in
the pharmaceutical industry for the in-line real-time
measurement of the coating thickness of randomly moving
tablets coated with a production-scale pan coater. The
direct TPI-based coating thickness analysis method has a
significant impact on understanding the coating process.

4 Conclusions

THz NDT has attracted significant attention in recent
years. Many countries are devoted to promoting THz NDT
technology. Certain studies have demonstrated the sig-
nificance of THz NDT technology in various applications.

The THz NDT technique has superiority in inspecting the
hidden defects of materials through noncontact means
because THz radiation is transparent in most non-
conducting materials. For example, the THz NDT of
composite materials, TBCs, car paints, marine protective
coatings, and pharmaceutical tablet coatings are discussed
in this review. THz NDT is a powerful technique that
allows nondestructive high-resolution cross-sectional ima-
ging. In comparison with traditional NDTmethods, such as
UT, EC, and CT, THz NDT provides a wider range of
advantages, including noncontact nature and high sensi-
tivity and resolution.
However, the cost of TPI systems is relatively high and

therefore limits their engineering applications. The current
spatial resolution of THz systems is approximately 20–30
mm, which cannot meet the requirement of the structural
health monitoring of the small TGO thickness of TBC
systems. Furthermore, high-power THz radiation remains a
major issue for THz NDT applications, which occasionally

Fig. 12 3D coating thickness images on two sides and center band of coated biconvex tablet [55]. (a) Top side; (b) center band (front);
(c) center band (back); (d) bottom side
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require high-penetration inspections with high signal-to-
noise ratio.
Therefore, THz systems should be made fast and

affordable to extend THz NDT applications in industries,
which requires new approaches to obtaining many details
of THz system architectures. In addition, the spectral range
of current instruments should be extended to potentially
provide high spatial resolution for the effective NDT of
materials, especially for small initial defects or thin films
(e.g., TGO). Meanwhile, advanced signal processing
methods for feature extraction with weak defect informa-
tion is an option for THz NDT. The penetration depth of
THz waves should also be investigated. High-power THz
radiation, which achieves thick materials for inspection, is
desirable in engineering applications.
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