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Abstract This paper presents our latest work on
comprehensive modeling of process-structure-property
relationships for additive manufacturing (AM) materials,
including using data-mining techniques to close the cycle
of design-predict-optimize. To illustrate the process-
structure relationship, the multi-scale multi-physics pro-
cess modeling starts from the micro-scale to establish a
mechanistic heat source model, to the meso-scale models
of individual powder particle evolution, and finally to the
macro-scale model to simulate the fabrication process of a
complex product. To link structure and properties, a high-
efficiency mechanistic model, self-consistent clustering
analyses, is developed to capture a variety of material
response. The model incorporates factors such as voids,
phase composition, inclusions, and grain structures, which
are the differentiating features of AM metals. Furthermore,
we propose data-mining as an effective solution for novel
rapid design and optimization, which is motivated by the
numerous influencing factors in the AM process. We
believe this paper will provide a roadmap to advance AM
fundamental understanding and guide the monitoring and
advanced diagnostics of AM processing.

Keywords additive manufacturing, thermal fluid flow,
data mining, material modeling

1 Introduction

Metallic powder-based additive manufacturing (AM)
technologies, including selective laser melting (SLM),

electron beam selective melting (EBSM) and laser
engineered net shaping (LENS), have been drawing in-
creasing attention over the past decade. The basic
principles are to selectively add material point by point
or layer by layer to produce the desired product directly
from the geometry defined by computer-aided-design
(CAD) data [1], as illustrated in Fig. 1 [2,3] for two of
the myriad AM methods. Since no specific tools or molds
are needed, AM, also known as free-form fabrication or
more commonly three-dimensional (3D) metal printing,
offers an excellent solution for reducing production time
and cost in a variety of applications, such as personalized
bio-implants [4], prototyping, and small batch production.
The topological freedom granted by AM has also been
shown to decrease energy and CO2 costs, e.g., in aircraft
applications, by reducing buy-to-fly ratio and operating
weight [5]. Thus, AM technologies can reduce the cost and
time associated with the traditional design-manufacture-
test chain. Moreover, AM is playing an increasingly
significant role in the repair of damaged components,
especially in the aerospace industry.
Although significant progress has been made, and many

appealing potential applications have been demonstrated,
there are many barriers to the wide industrial adoption of
metallic AM technologies. The uncertain quality of the
final product is perhaps the most serious of these barriers.
The underlying reasons are: A lack of understanding of the
physical mechanisms governing the build process, and
numerous influencing factors in the process [6]. The actual
process consists of many different physical phenomena
over a range of temporal and spatial scales. While it is
difficult to experimentally observe the phenomena con-
currently, computational modeling of AM processes can
help achieve a thorough understanding in a time- and
expense-efficient manner.
Many models have been developed to shed light on the

underlying mechanisms of manufacturing processes and
properties of additively manufactured components.
Manufacturing process models can be divided into two
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major categories: Macro-scale continuum models and
meso-scale powder evolution models. Large-scale con-
tinuum models enforce a number of simplifying assump-
tions such that the model can resolve process evolution at
the product-scale. Such assumptions include treating
powder clusters as an effective continuum and neglecting
hydrodynamics. The simplest modeling approaches
usually only implement a thermal analysis model in
order to predict the temperature field, temperature history
and thermal gradients for an additively manufactured
material. Significant findings have been obtained from
these simplistic models. A review of these macro-scale
modeling works was given by Schoinochoritis et al. [7].
These macro-scale continuum models, however, are not
able to resolve the flow dynamics of the molten pool within
the heat affected zone or the cyclic microstructural
evolution during solidification.
Meso-scale models are able to spatially and temporally

resolve the evolution of individual powder particles. As a
result, more detailed information, such as melt pool
evolution and grain growth kinetics, can be obtained to
further our understanding of the fundamental physical
mechanisms. Initial work in meso-scale modeling of the
SLM and EBSM processes have been focused on under-
standing the molten pool flow dynamics of the process [8–
10]. Modeling these dynamics requires the solution of
hydrodynamic models which include Navier-Stokes equa-
tions coupled to an interface capturing technique to resolve
the free surface between the metal and gas/vacuum, such as

volume of fluid [11]. Recent advances in meso-scale
modeling of the AM process have begun to couple these
hydrodynamic models to a microstructure evolution model
[12,13] extended this approach to 3D and gave valuable
insight into the effect of powder layer thickness and
atmospheric conditions on solidification microstructure.
Although these meso-scopic modeling efforts are restricted
to very simple build strategies and geometry, they offer
valuable insight into the fundamental driving physics of
the AM process. These insights can then be used to derive
a more physically-informed macro-scale model of addi-
tively manufactured products.
While several models [14,15] have been proposed to

predict the mechanical properties of AM parts, the overall
efforts to predict the material response, plastic response in
particular, have been challenged by highly variable and
anisotropic properties. Adding to these difficulties, proper-
ties also vary significantly with a few build factors.
However, attempts to calibrate and validate even specially
modified versions developed to take into account the types
of variations expected in AM materials have proven
relatively ineffectual in terms of predictive capabilities ––
Too many conditions are outside the calibration domain to
have confidence in the prediction.
The ultimate goal for modeling AM is to quantitatively

predict the working performance of the final products
deployed in functional or load-bearing capacity from the
input process parameters, e.g., the properties and the
service life under a certain loading conditions. Further-

Fig. 1 Basic principles of (a) LENS and (b) EBSM. In the LENS process, a continuous stream of powder is delivered to the focal point of a
laser, at the melt pool; in EBSM a bed of powder is spread before being selectively melted. Figures reused with permissions from Refs. [2,3]
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more, we can control the properties and design the
products in both structures and properties. In other
words, the predictive models allow for optimal design of
structure and properties combinations to make the most
efficient use of the raw materials. For instance, in order to
produce an individualized bio-implant, a design may
include varied surface roughness, microstructures and even
voids at different locations to optimize cell adhesion
abilities, stiffness and effective densities, since the replaced
tissues such as bones withstand different loads at different
locations and thus require different properties.
In order to achieve this goal, we proposed a data-driven

multi-scale multi-physics modeling framework (Fig. 2) to
link process-structure-property-performance, which not
only integrates the process and mechanical models but
integrally employs data-mining techniques to close the
cycle of design-predict-optimize.

2 Multi-scale multi-physics modeling of AM
process

We developed a multi-scale modeling framework to
understand and optimize the manufacturing process at
various scales [3], which is outlined in Fig. 3. Our
approach focuses on a bottom-up approach to understand
the driving mechanisms of the AM process and predict the
quality of AM-fabricated materials given a set of
processing parameters, followed by a top-down approach
to design new material structures and select process

parameters. This requires the implementation and coupling
of multi-physics models at multiple scales. Initial work in
developing this framework includes the development of a
new heat source model derived from the micro-scale
electron-material interaction simulations (for EBSM), a
meso-scale model simulating the evolution of individual
molten pool tracks at the powder scale, and a homo-
geneous macro-scale model to predict the evolution of
additively manufactured products.

2.1 Micro-scale modeling for heat source model

The physical mechanism of an electron beam heating
materials is in essence that high-speed free electrons
colliding with material atoms and transferring their
translational energy to the atoms’ vibration energy
(thermal energy at macro-scale). We employed the Monte
Carlo method to simulate electron-atom collisions [16], as
illustrated in Fig. 4. By tracking the penetration trajectories
and energy transfer, we can derive a physically-informed
heat source model for an electron beam [3,16,17].

2.2 Meso-scale modeling

We developed a comprehensive modeling framework to
model the EBSM process at the meso-scale, from
spreading powder layers to selectively melting powder
along the designated scan path [18]. It consists of a powder
spreading model using the discrete element method (DEM)
and a hydrodynamic model using the finite volume method

Fig. 2 A data-driven multi-scale multi-physics modeling framework
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(FVM), as shown in Fig. 5. The powder spreading model
simulates the frictional colliding process between the rake
and powder particles; the hydrodynamic model resolves
the melting and subsequent molten pool flow process at the
powder scale. The powder spreading model generates an
initial spatial distribution of powder particles on the
substrate. Upon completion of a scan path in one layer in
the FVM model, the resulting solidified geometry is
transferred back to the powder spreading model to spread
another layer. These two procedures are repeated to model
a typical multi-layer manufacturing process. A variety of
factors can be incorporated to study the influence of
experimental set-ups on the manufacturing process, linking
equipment and process.
More importantly, our model is able to simulate the

manufacturing processes of multiple tracks and multiple
layers incorporating the scan path to better guide the
optimization of the real processes, while single track
simulations cannot. These multiple-layer multiple-track
simulation results (Fig. 6) can further advance our
understanding of how current and previously melted tracks
and layers interact with each other to build complex
products and how inter-track and inter-layer defects are
formed. These seldom have been reported.

2.3 Modeling of grain growth

Assessing the properties and performance of additively

manufactured materials requires a prediction of the
evolving microstructure throughout the process. The
evolution of microstructure morphology and textures is
in turn influenced by the thermal history of the process. As
a result, a major research thrust has been devoted to
coupling thermal models such as those presented in
Sections 2.2 and 2.4 to a microstructure evolution model.
Compared with traditional solidification models, micro-

structure modeling for AM processes must account for the
effects after solidification, since multiple beam scans cause
repeated reheating and cooling cycles and then lead to
grain coarsening. Thus, we propose to couple the cellular
automata coupled finite element (CAFE) and kinetic
Monte Carlo (KMC) methods to model the grain
nucleation/growth and subsequent coarsening. While the
CAFE method is able to give a good description of the
nucleation of grains during solidification, the KMC model
can be used to further evolve the predicted grain structure
simulations during the reheating regime. Figure 7
demonstrates this methodology for a sample temperature
history in an LENS process.

2.4 Macro-scale modeling

Macro-scale models for additive manufacturing are
targeted at predicting the build process over several
hours for a fully functional product spanning several
centimeters in contrast to the millisecond/millimeter time

Fig. 3 Framework of multi-scale modeling to link process and structures. Figures reused with permission from Ref. [3]
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scale of the previously aforementioned meso-scale models.
The results of such models provide a prediction of
temperature field and residual stress to evaluate the
performance of the final product [19–21].
Recent work at Northwestern University has been

focused on combining tools used by metallurgist/materials
and mechanical engineering to develop an interdisciplinary
approach to modeling the AM fabrication process. A
CALPHAD-based finite element heat transfer model has
been developed to connect thermodynamically consistent
properties prediction to AM process modeling [22]. This
has the potential to open up new opportunities for design of
new materials. Simulations are being performed to predict
physical response of new materials under AM processing
conditions. An application to a Questek custom-made steel
Ferrium PH48S is shown in Fig. 8, where material
properties are not readily available in an engineering
handbook. The material properties are predicted using a
CALPHAD-based software based on the constituents.
These predictions can be fed into the thermal simulator to
predict temperature histories and cooling rates at any point
within the product.

3 Mechanical modeling for AM products
using self-consistent clustering analysis

The use of the finite element method (FEM) to perform a
direct numerical simulation (DNS) incurs computational
costs to the point where it becomes inapplicable to material
design and concurrent simulations [22]. In order to achieve
efficiency and accuracy at the same time, our group [24,25]
developed a reduced order modeling technique named self-
consistent clustering analysis (SCA) for nonlinear materi-
als with complex microstructural morphologies. This
reduced order modeling method is based on a computa-
tional homogenization approach using data-clustering,
where the microstructure is not accounted for directly at
the macroscale, but through a coupled macro-micro
formulation. The database created by sampling from
prior DNS and experimental data in the offline stage is
compressed by establishing clustering groups with similar
mechanistic features such as the local strain concentration
tensor. Since the clustering is based upon DNS and
experimental data, the method can capture local

Fig. 4 Micro-scale model of electron-atom interactions. (a) Schematic of the model, simulation results of an electron beam (60 kV)
irradiating a Ti-6Al-4V substrate: (b) Penetration trajectories, (c) back-scattered electron energy intensity, and (d) absorbed energy
distribution in the substrate. Figures reused with permission from Ref. [3]
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mechanical features and works for arbitrary microstruc-
tural morphologies, including voids and other defects,
sharing the same versatility as representative volume
element (RVE) analysis. For each type of microstructure
characterized from the imaging process or process-
structure modeling, including imperfections such as
pores and inclusions, SCA can be used to create an entry

in the microstructural material database, filled by all the
necessary offline clustering data. A concurrent multi-scale
modeling framework can be adopted to predict the overall
responses at the macro-scale for AM materials, where the
responses at each macro material point will be directly
computed on the fly from an associated microscale high-
fidelity model in the material database.

Fig. 5 Meso-scale modeling of EBSM processes from powder spreading to selective melting. Figures reused with permission from Ref. [3]

Fig. 6 (a) The schematic and (b) simulated fused zone of the 2-layer-2-track case. The cross section along the scan direction before and
after manufacturing are (c) and (d) for y = 0.4 mm, and (e) and (f) for y = 0.6 mm, respectively
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We present two case studies for additively manufactured
components: First, a synthetically generated polycrystal
microstructure, with randomly oriented, columnar grains;

and second, a microstructure generated from an experi-
mentally obtained image of void clusters within an AM
material. In each case, the scale and microstructural
features necessitates the use of a crystal plasticity
constitutive model, implemented within SCA.

3.1 Polycrystal

In as-built additively manufactured materials, columnar
grains extending in the build direction are typically seen; in
addition, a preferred orientation, also in the build direction,
is seen. A qualitatively similar microstructure has been
created with DREAM.3D [26], as shown in Fig. 9(a). The
response of this geometry to an applied load in either the X
or Z directions is then computed using the SCA: An offline
dataset (Fig. 9(b)) is used to create clusters (Fig. 9(c));
from this, the overall response (Fig. 9(d)) and local
response (Figs. 9(e) and 9(f)) are computed with SCA.
In Fig. 9(d), a reference solution computed with FEM is

given, to show the difference of less than 1% between the
FEM and SCA solutions. While some speedup is lost when
using crystal plasticity (in part because a more complicated
offline computation is needed), a factor of speedup of
about 2500 is still achieved.

3.2 Void cluster

A relatively large number of voids is another characteristic
of AM metals in the as-built or heat-treated state, even for
well-built materials. To understand the impact of a large
number of voids on the fatigue response of the material, a
microstructure has been reconstructed from focus ion beam
(FIB)-SEM serial sectioning and meshed (Fig. 10(a)). A
fast Fourier transform (FFT)-based solver computed the
offline dataset required (Fig. 10(b)) to compute the clusters
(Fig. 10(c)). From the clustering results, the online
computation stage of SCA was used to compute the
mechanical response of the material to cyclic load, using a
crystal plasticity with kinematic hardening. A Fatemi-
Socie fatigue indicating parameter, akin to that described in
Ref. [27], is then used to determine regions or high fatigue
initiation potency.

4 Data-driven material design

Our group at Northwestern University has proposed a data-
driven material design framework (Fig. 11) [28]. This
framework consists of three steps: (1) Design of experi-
ments, where the input variables describing microstructure,
phase properties and external conditions are sampled;
(2) efficient computational analyses of each design point,
constructing a material response database; and (3) machine
learning applied to the database to obtain a new design or
response model.
Our SCA reduced order method [24,25] alleviates the

Fig. 7 Schematic for coupling CAFE and KMC methods for
modeling grain evolution. A CAFE model will resolve grain
nucleation and growth during solidification. KMC methods will be
used to further evolve the predicted microstructure from the CAFE
model to reproduce the coarsening during cyclic reheating

Fig. 8 Comparison of the predicted temperature history at a
selected point between handbook-based property assumptions for
specific heat and enthalpy change and those predicted by the
CALPHAD method
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Fig. 9 (a) Synthetically generated columnar microstructure; (b) offline data: Plastic strain; (c) clustering results; (d) overall response and
comparison to a DNS simulation with FEA; (e, f) contours of plastic strain in directions X and Z on the surface of the microstructural
element as computed with SCA
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extremely high computational expense of direct numerical
simulations. After efficiently constructing large response
databases, we employ data mining methods, such as
Kriging and neural networks [29], to obtain an optimal
design. With the flexibility of adjusting processing
parameters and tailing microstructures, AM is expected
to benefit from our proposed data-driven design framework
and achieve rapid microstructure acceleration.

5 Conclusions

In order to derive process-structure-property relationships
for AM, we developed multi-scale process models and
mechanistic models at several scales. These models
include factors such as voids, inclusions, and grain
structures, which are the differentiating features of metallic

AM. We proposed to use data-mining techniques to close
the cycle of design-predict-optimize, based on compre-
hensive material modeling of process-structure-property
relationships for AM materials.
Experimental material characterization to determine

crystallographic information and volumetric defect dis-
tributions, and in-process monitoring to observe the
particle melting and molten pool flow, can provide
valuable validation to these models, and advance the
understanding of the fundamental driving mechanisms.
Moreover, close-loop control algorithms incorporating the
feedback of in-process monitoring systems are to be
developed to ensure the stability of manufacturing process
and fabrication quality. We believe that the process-
structure-property models will also provide a roadmap to
guide the development of the monitoring and diagnostics
of AM techniques.

Fig. 10 (a) Voxel mesh of AM voids and (b) offline data for SCA simulation of a cluster of voids in SS316L; (c) clusters built from
plastic strain; (d) fatigue indicating parameter computed with SCA
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