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Abstract Machinery fault diagnosis has progressed over
the past decades with the evolution of machineries in terms
of complexity and scale. High-value machineries require
condition monitoring and fault diagnosis to guarantee their
designed functions and performance throughout their
lifetime. Research on machinery Fault diagnostics has
grown rapidly in recent years. This paper attempts to
summarize and review the recent R&D trends in the basic
research field of machinery fault diagnosis in terms of four
main aspects: Fault mechanism, sensor technique and
signal acquisition, signal processing, and intelligent
diagnostics. The review discusses the special contributions
of Chinese scholars to machinery fault diagnostics. On the
basis of the review of basic theory of machinery fault
diagnosis and its practical applications in engineering, the
paper concludes with a brief discussion on the future trends
and challenges in machinery fault diagnosis.

Keywords fault diagnosis, fault mechanism, feature
extraction, signal processing, intelligent diagnostics

1 Introduction

Machinery fault diagnosis is becoming increasingly
important in the field of process monitoring due to greater
demands for mechanical systems that provide higher
performance, safety, and reliability. Advancements in
science and technology have led to the development of
mechanical systems, such as those found in wind turbines,
aircraft, high-speed trains, and machine tools (Fig. 1).

Meanwhile, engineers must find ways to guarantee the
performance of these systems so that they can execute the
required functions under the stated conditions for a
specified period of time. Some of these functions include
monitoring the operation conditions of machines, identify-
ing whether an abnormal condition or fault arises in
machines or components, determining the original cause of
abnormal conditions or faults, assessing its level of
severity, and predicting the remaining useful life or trends
of abnormal conditions. Machinery fault diagnosis is one
of the key techniques for continuous maintenance (Fig. 1
[1,2]), which can help avoid abnormal event progression,
reduce offline time, forecast residual life, and reduce
productivity loss. In turn, these can help avoid major
system breakdowns and catastrophes.
The key components of mechanical equipment would

inevitably generate different faults of varying degrees
because of complex and severe conditions, such as heavy
load, high temperature, and high speed. Figures 2–4 [3–6]
display some possible fault modes in various machine
components in transmission systems, including helicop-
ters, a hot strip milling production line, and wind turbines.
Machine faults also occur and lead to serious outcomes
even in sophisticated machine systems. One such example
is the “bad rub” incident of the F135 engine, which
resulted in the F-35A catching fire during take-off [7–9].
Machinery fault diagnosis techniques involve observing

a mechanical system over a period of time using
periodically sampled measurements from an array of
sensors, extracting fault-sensitive features from these
measurements, conducting statistical analysis of these
features to determine the current health state of the system,
and predicting the remaining useful life and trend of the
fault. For example, engine health management (EHM) is a
collection of capabilities to create customized designs that
best meet the needs of individual users. An EHM system in
the F135 engine is designed to provide real-time data to
maintainers on the ground, drastically reducing trouble-
shooting and replacement time by as much as 94% over
other legacy engines. Such a system consists of both
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engine-hosted and ground-based elements. The engine-
hosted element generates data from on-board sensors and
performs basic fault isolation and prediction, thus
supporting on-wing maintenance. In comparison, the
ground-based element supports long-term degradation
trending, thus providing planning information that can be
used by aircraft fleet managers. The health usage and
monitoring system (HUMS) monitors the condition of
critical components and systems in helicopters, especially
the drivetrain, so that the timely detection of progressive
defects or faults is possible and maintenance can be
performed before such defects can have an immediate
effect on operational safety. HUMS records vibration
measurements taken at various critical components using
different sensors, and then stores these measurement data

in a removable memory for further diagnostics and
prognostics. HUMS is also widely used for other
mechanical systems, such as wind turbines and machine
tools, especially for systems with high operational
reliability requirements. As can be gleaned from the
information above, fault diagnosis is a major research topic
that has attracted considerable interest from industrial
practitioners and academic researchers.
The available literature ranges from analytical methods

to artificial intelligence and statistical approaches, includ-
ing four basic research directions of machinery fault
diagnosis (Fig. 1). These four directions are the four key
procedures involved in machinery fault diagnosis. Prior to
mechanical fault diagnosis using various methods, the root
cause of fault generation in the view of fault mechanism is

Fig. 1 Scope and basic research directions of machinery fault diagnostics (based on Refs. [1,2])
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analyzed first. For example, in diagnosing the bearing
fault, the characteristic frequencies must also be calculated.
The second step is signal acquisition through various
sensors. Subsequently, signal processing along with
feature extraction has to be implemented to reduce the
dimension of raw data and to obtain useful information
representing faults. The performance of mechanical fault
diagnosis largely depends on selected signal processing
techniques and appropriate feature extraction. Finally, a
mapping relation between the fault-sensitive features and
certain faults can be established by intelligent methods for
fault detection and identification.

The remaining part of this paper is organized as follows.
Section 2 reviews the modeling methods for the typical
fault of the rotating machinery and composite structure.
Section 3 briefly describes the data acquisition step using
different sensors. Section 4 reviews the signal processing
methods for fault feature extraction. Section 5 reviews the
ideas and methodologies employed to carry out fault
intelligent decision making. Section 6 highlights the
development of machinery fault diagnosis in China.
Section 7 lists the possible future development trends
and challenges of machinery fault diagnosis, pointing out
some existing challenges in diagnostics. Section 8 provides

Fig. 3 Worn teeth on a faulty gear in the milling stand of a hot strip milling production line [5,6]. (a) Front view; (b) back view

Fig. 4 Machine faults in transmission systems of wind turbines. (a) Scratches on bearing race; (b) spalls on gear teeth surface; (c)
abrasion on gear teeth top

Fig. 2 OH-58A main rotor helicopter transmission faults [3,4]. (a) Spalled planetary bearing race; (b) spalled sun gear; (c) scored spiral
bevel face gear

266 Front. Mech. Eng. 2018, 13(2): 264–291



conclusions about the basic research on machinery fault
diagnosis.

2 Fault mechanism

Understanding the mechanism of fault generation and
propagation is the foundation of mechanical fault diag-
nosis. The model-based approaches generally use physics-
specific and explicit mathematical models of the machines
being monitored. Most model-based approaches are
represented by complete mass, stiffness, and damping
matrices of the system based on input-output and state-
space models, where mechanical faults are performed by
introducing external forces in equations. Currently, various
model-based diagnostic approaches, including analytical
method, finite element (FE) method, and combined
analytical––FE approach, have been applied to conduct
fault diagnosis of a variety of rotating machineries and
composite structures, such as gearboxes, bearings, rotors,
and cutting tools.

2.1 Rotating machineries

Rotating machineries play an important role in industrial
and economic development and have become increasingly
complex due to the rapid advancements in the industry.
Notably, the reliability and robustness of rotating machi-
neries have also undergone significant improvement. Yet,
some occasional failure events often lead to unexpected
downtime with huge economic losses. Model-based
approaches in rotor dynamics consider the model of a
fully assembled machine, which consists of the sub-models
of the rotor, bearing, gear, and foundation. In addition,
fault diagnosis on the component level is also very
important.

2.1.1 Component level

The three basic rotating components (i.e., bearing, gear,
and rotor) play an important role in industrial rotating and
transport machinery applications. However, these compo-
nents are prone to breakdown. Among all the mechanical
parts, rolling element bearings are widely used and easily
damaged. Bearing defects serve as warnings for other
possible faults in rotating machineries. For example,
misalignment or imbalance can lead to bearing defects
[10]. The dynamic modeling of rolling element bearings is
helpful in understanding the mechanism of vibration
generations in a faulty rolling element bearing and to
improve the efficiency of the vibration-based condition
monitoring and fault diagnosis [11]. The time-varying and
transient dynamic behaviors of bearing components under
high-speed and other complex operating conditions make
the vibration of a faulty bearing rather complicated. Such
complications, in turn, make it more difficult to carry out

vibration-based diagnosis techniques. Therefore, a
dynamic model considering transient and time-varying
motions of bearing components is urgently needed to
predict the dynamic behavior of faulty rolling element
bearings.
One of the most comprehensive dynamic models of

rolling element bearings was proposed by Gupta [12–17].
Gupta’s model considered the high-speed effect, transient
impact between bearing components and lubrication and
cage effect, thus provides a powerful tool to investigate the
transient dynamics of rolling element bearings. Based on
Gupta’s model, the dynamics and vibration responses of
ball [18,19] and cylinder roller bearings [19] with localized
surface defects on raceways are investigated. The finite
size of a rolling element, an important factor in this case,
largely affects the impact between a rolling element and a
raceway defect [20]. Therefore, when modeling the
localized defects, the finite size of a rolling element has
also been considered in Ref. [21]. Moreover, the lubrica-
tion effect and impacts at cage/ball and cage/guiding ring
contacts have been considered in Ref. [21]. Therefore, the
model proposed in Ref. [21] capably analyzed the time-
varying orbital speed of a ball, which largely affects the
defect frequencies of raceways. Patel et al. [22] developed
a dynamic model of deep groove ball bearing in the
presence of defects on either of races under steady and
dynamic loading condition. They concluded that the
amplitude of vibration velocity in multiple defects is
higher than a single defect on either race.
Meanwhile, gears are the most important elements in the

gearbox. They are subjected to wear and fatigue even
under normal operating conditions, which means that they
are often subjected to premature failure. Local faults of
gears are more dangerous because they tend to develop
rapidly once initiated and often have significant effects on
power transmission. If the most important local faults are
not detected in a timely manner, dramatic consequences
might occur, such as tooth breakage, pitting, and scoring.
Ma et al. [23] developed an FE model of a geared rotor
system with tooth root crack, while considering the effects
of the extended tooth contact and tooth root crack on the
time-varying mesh stiffness. Furthermore, considering the
accurate transition curve, misalignment of gear root circle,
and base circle, they developed an improved model for
obtaining the mesh stiffness of the perfect and cracked gear
pair, and then validated the model by the FE method [24].
In the last three decades, several scholars have focused

on the diagnosis of rotor cracks in rotating machineries.
The excellent review papers by Dimarogonas [25], Wauer
[26], and Gasch [27] cover many aspects of this area and
present valuable information and knowledge in this field.
In 2008, as the guest editors, Bachschmid and Pennacchi
[28] edited an issue in Mechanical Systems and Signal
Processing about crack rotors. The challenge of modeling
a crack is one of the most significant issues in this area. In
relation to this, the dynamic behavior of rotors with
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transverse crack has been studied by many authors [25,27].
Pennacchi et al. [29] proposed a model-based transverse
crack identification method in the frequency domain to
investigate the dynamic behavior of cracked horizontal
rotors, which they validated by experimental results
obtained on a large test rig. Papadopoulos [30] reviewed
the strain energy release approach (SERP) for modeling
cracks in rotors and presented some extensions and
limitations of SERP. They found that when more than
one crack appears in a structure, the dynamic response
becomes more complex depending on the relative posi-
tions and depths of these cracks. Sekhar summarized the
different studies on double/multi-cracks and noted the
identification methods in vibration structures, such as
beams, rotors, pipes [31]. Gasch [32] studied the dynamic
behavior of the Laval rotor with a transverse crack. Despite
these abovementioned studies, explicit mathematical
modeling may not be feasible for complex systems,
because it would be very difficult or even impossible to
build mathematical models for such systems.

2.1.2 System level

Modeling the whole assembled systems is more significant
compared with modeling the individual components. The
model-based fault diagnosis in rotor systems is essentially
a multiple-input and multiple-output inverse problem. The
typical faults in rotating machineries, including rotor bow,
rigid coupling misalignment, transverse crack, and axial
asymmetry, have been modeled as equivalent forces by
modal representation [33]. The M-estimate technique is
more robust and accurate than the traditional least squares
method and has been applied to identify unbalances of
rotor in a gas turbogenerator of a power plant [34]. Past
studies [35,36] presented a model-based method exploiting
analytical redundancy for detecting faults in a gas turbine
process; the authors then tested the model on a single-shaft
industrial gas turbine prototype model. In order to monitor
a powerful 20-cylinder diesel engine, Desbazeille et al.
[11] modeled the angular speed variations at the crankshaft
free end, including the crank shaft dynamic behavior and
excitation torques. Then, they optimized the mechanical
and combustion parameters of the model by actual data and
employed neural networks to identify healthy and faulty
conditions. Hou et al. [37] considered the maneuver load of
a climbing-diving flight and modeled an aircraft rotor-ball
bearing system and analyzed the nonlinear dynamic
behaviors of cracked rotors in flight maneuvers. Subse-
quently, they studied the nonlinear responses of a cracked
rotor-ball bearing system by considering the breathing
mechanism of the transverse crack and the maneuver load
of a climbing-diving flight [37]. Lu et al. [38] analyzed the
nonlinear dynamic characteristics of a rotor system
supported by ball bearings with pedestal looseness.
Liang et al. [39] developed a dynamic model to simulate

the vibration source of a planetary gearbox and investi-

gated the vibration properties of healthy and cracked tooth
conditions. Ma et al. [40] established a rubbing model
between the rotating blade and elastic casing based on the
law of conservation of energy. Recently, Ma et al. [41]
reviewed the dynamics of cracked gear systems mainly
from three aspects, namely, crack propagation prediction,
time-varying mesh stiffness calculation, and vibration
response calculation. In a latter study, Ma et al. [42]
established an FE model of a rotational shaft-disk-blade
system and simulated the rubbing between the blade tip
and casing using contact dynamics theory. Furthermore,
they also investigated the dynamic behaviors of a
perforated gear system by considering the effects of the
gear crack propagation paths [43]. Hu et al. [44] proposed a
FE node dynamic model of the gear-rotor-bearing system
with different lengths of crack considering time-varying
mesh stiffness, backlash, transmission error excitation,
flexible shaft, and supporting bearing. Rolling element
bearings are often at the heart of rotating machineries and
tend to suffer from faults more frequently. Gui et al. [45]
established a gear-bearing coupling dynamics model of
planetary gear trains based on a nonlinear bearing
dynamics model with two degrees of freedom and a
bending-torsion coupling dynamics model to study fault
diagnosis of localized bearing defects of planetary gear
system. Tadina and Boltežar [46] considered the centrifu-
gal load effect and radial clearance and developed an
improved bearing model to investigate the vibrations of a
ball bearing during the run-up, which introduced various
surface defects due to local deformation [45].

2.2 Reciprocating machineries

The structure of reciprocating machineries is much more
complex as it has both rotating and back-and-forth motion
parts. The working environment is usually tough and bears
heavy loads during operation. Therefore, the classical fault
diagnosis methods that are used for rotating machineries
with steady rotating speed may be ineffective when
evaluating reciprocating machineries (e.g., reciprocating
compressors, gas engines, and diesel engines) because the
signals measured in the reciprocating machineries often
contain strong noise components even if they are in the
normal state. The typical characteristics of the reciprocat-
ing engine vibration include impact excitations, time-
varying transfer properties, and non-stationary random
response [47]. Sudden breakdown of reciprocating machi-
neries and decreased machinery service performance often
occur due to difficult fault detection in some parts of the
reciprocating machineries. Although many studies have
been carried out to achieve fault diagnosis of reciprocating
machineries, the diagnosis and isolation of the faults of
reciprocating machineries remain very challenging pro-
blems in this field.
To help solve the problem, Wang and Chen [48]

developed a fault diagnosis method using the adaptive
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filtering technique and a fuzzy neural network with the aim
of diagnosing faults of a rolling bearing used in
reciprocating machineries. In another study, Wang and
Chen [49] proposed a feature extraction based on
information theory for reciprocating machineries. Lee
and White [50] presented an enhancement scheme to aid
the measurement and characterization of impulsive sounds
and vibration signals for fault detection in reciprocating
machineries. Shen et al. [51] developed rough sets theory
to diagnose the valve fault for a multi-cylinder diesel
engine, while considering the complex structure of the
engine and the presence of multi-excite sources. Wang and
Hu [52] investigated the use of basic fuzzy logic principle
as a fault diagnostic technique for five-plunge pump used
in oil field. El-Ghamry et al. [53] proposed the automated
pattern recognition and statistical feature isolation techni-
ques for the diagnosis of reciprocating machinery faults
using acoustic emission (AE). They found that the non-
uniform cylinder-wise torque contribution increased tor-
sional vibration levels of the crankshaft and stress of
mechanical components in reciprocating engines. Östman
and Toivonen [54] developed a method for reducing the
torsional vibration of the crankshaft system. Schultheis
et al. [55] investigated the risk-based decision making for
condition monitoring of reciprocating compressors.
Goodwin et al. [56] provided an extensive review on
theoretical and experimental work undertaken on the
design and performance assessment of bearings in
reciprocating machineries. Geng et al. [47] presented a
systemic and detailed review of impacting excitations,
time-varying vibration characteristics, and applicable
analysis and diagnosis strategies for reciprocating engines.

2.3 Composite materials and structures

Composites consist of two or more distinct phases of
constituent materials, which can provide enhanced proper-
ties that would be impossible with any of the monolithic
materials alone. Therefore, especially in the past decade,
composite materials have received considerable attention
in many modern industries, such as aerospace engineering
and wind power energy engineering. The use of composite
materials contributes to the development of analysis
techniques, which are capable of determining homoge-
nized properties for composite materials with various
microstructures and material constituents. These accelerate
the development circle of a material system with the
desired mechanical and physical properties by circumvent-
ing the traditional trial-and-error approach based on actual
fabrication and laboratory testing. However, the aniso-
tropic nature and hard-to-access property of the composite
make the overall and local responses notoriously compli-
cated. Hence, a good understanding and predictive
capability of their stress-strain and failure behaviors is
critical in the effective utilization of these materials.
New approaches are continuously being developed and

proposed, but the majority of these are based on the FE
method. The FE method can be easily used to solve
physical and mechanical problems of composite materials
because of the popularities of commercial FE software
with convenient graphical interfaces. Furthermore, with
the facility of standard explicit FE code, various types of
constitutive theories for composite analysis can be easily
accommodated into the FE framework. Pituba et al. [57]
developed a contact FE in order to capture the effects of
phase debonding, interface crack closure or opening, and
the cracking process inside the matrix of fiber-reinforced
composites. Zuo et al. [58] developed the wavelet FE
method adopting B-spline wavelet on the interval to
investigate static and free vibration problems of laminated
composite plates. Nonetheless, the FE approach often
requires very complex boundary conditions, which makes
applying different loading combinations quite difficult. In
addition, the FE method is sensitive to mesh discretization.
Substantially refined meshes are needed for solving
nonlinear and crack problems, which generally generate
large stress and deformation gradients.
The finite-volume theory has been proven to be an

attractive alternative to the well-established FE method
[59]. Initially developed to help solve fluid mechanics
problems, finite-volume theory has rapidly evolved during
the past 20 years in the solid mechanics area after
transitioning from the fluid mechanics field. The contribu-
tions of Pindera and his colleagues [60–62] have the
spurred extensive use of finite-volume theory in predicting
the stress-strain behaviors and fracture phenomena in a
wide range of fiber-reinforced composite materials. The
accuracies of homogenized and local responses have been
shown to be comparable to those of the FE method but with
even greater efficiency. Recently, Chen et al. [63] proposed
a new multiscale method based on finite-volume theory
and the classical lamination theory to investigate the
effects of thermal residual stresses and loading rate on the
global and local responses of laminated polymer compo-
sites that are widely used in wind turbine blades. The finite-
volume theory has also been further extended to 3D
domains by Chen et al. [64] to investigate the deformation
behavior of composites with discontinuous reinforce-
ments.
Monitoring the performance of a composite structure

and damage prognosis is very important due to the current
emphasis on sustainability and efficiency in modern
structural designs. Utilization of composites in aerospace
engineering and wind power engineering has entailed
intensive research and development of nondestructive
evaluation techniques in the past 30 years. The traditional
nondestructive evaluation equipment is unable to provide
efficient access to appropriate sections of the structures in
real time. Therefore, new nondestructive evaluation
approaches are continuously being developed and pro-
posed so as to achieve real-time damage detection. In
practice, acoustic emission monitoring and strain monitor-
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ing are two available structural health monitoring (SHM)
methods that can potentially achieve continuous online
monitoring. Joosse et al. [64] employed AE monitoring
during their testing of fiber composite blades to detect the
source of damage events and assess the blade condition.
Schroeder et al. [66] utilized the fiber Bragg gratings to
monitor loads in horizontal-axis 4.5 MW wind turbines.
Tian et al. [67] proposed a damage detection method based
on static strain responses using fiber Bragg gratings in a
220-kW wind turbine blade.
Another popular SHM technique for the composite

material is the ultrasonic guided wave technique [68],
which is widely acknowledged as one of the most useful
tools for quantitative identification of damages incurred by
plate- and pipe-like structures [68,69]. A typical sensor
configuration consists of a sparse array of fixed or
embedded piezoelectric disks. Response signals are
recorded from the sensor array after certain excitation
signals are transmitted. Given the high sensitivity of
guided waves for various types of damage, damage can be
located and quantified with some signal processing
techniques. The time-reversal (TR) method of guided
wave, as a spatial and temporal self-focusing technique,
can improve the detectability of damage in composite
plate-like structures [70]. Park and Sohn [70,71] investi-
gated the TR process in a quasi-isotropic composite plate
and developed a reference-free damage diagnosis techni-
que based on TR to identify defects. Lin et al. [72,73]
investigated different parameters affecting the guided-
wave inspection resolution and developed the pulse
compression method for carbon fiber reinforced plastic
laminates. Hall et al. [74,75] proposed the minimum
variance ultrasonic imaging method, which adaptively
determines the weighting coefficients at each pixel based
on traditional delay-and-sum imaging, and better imaging
performance was achieved in a composite plate, such as
fewer artifacts and robustness to multiple wave modes.
Levine and Michaels [76] proposed a Lamb wave
propagation model-based imaging method via sparse
reconstruction to locate damage position. The method
takes prior knowledge of the sparsity of structural damage
and significantly improves the accuracy and precision of
the identified damage location. Li et al. [77] developed a
crack growth sparse pursuit method for composite wind
turbine blades based on the model-based imaging method,
and achieved accurate crack detection with correct
locations and extension length.

3 Sensor techniques and signal acquisition

Data acquisition is the process of sampling and storing
signals (information) that measure real-world physical
conditions for condition-based maintenance. In practice,
condition monitoring data, such as vibration [78,79],
sound [80,81], temperature [82], and pressure [83], are

versatile. Sensors are devices that convert physical
parameters into their corresponding electrical or optical
signals, which should be designed to have a small effect on
what they measure. Basically, a good sensor must have the
following capacities and features:
� Sensitivity to the measured properties;
� Insensitivity to any other properties that are likely to be

encountered during application; and
� Resistance against the influence of measured proper-

ties.
The past 50 years have witnessed the rapid development

of sensor techniques. On the basis of the physical
phenomenon or physical properties to be measured,
various sensors have been designed and used to collect
different types of data, as summarized in Table 1. For
example, AE sensors can detect transient elastic waves
produced by sudden redistribution of stress in a material
due to damage/crack initiation or propagation [84], making
them very efficient tools for monitoring damage expan-
sion. Accelerometers are some of the most frequently used
sensors and are often used to measure global information,
such as frequency and mode shape [85]. Strain gauges not
only provide localized measurement, they are also good at
capturing static or dynamic measurands at a relatively low
variation rate [86]. Fiber-optic sensors measure local
strain, are immune to electromagnetic interference, and
are suitable for long-distance data transportation [87]. A
comprehensive review of various types of sensors for
composite materials can be found in Ref. [88].
Nowadays, cables are still the most widely used tools in

sensor data communication. Delivering data through
cables is a very stable technique, and users need not
worry about bandwidth and data packet dropout. However,
many difficulties and potential troubles are encountered in
cable displacements, switches, and replacements, which in
turn, restrict the use of cables especially in an industrial
environment. Numerous cables are needed when placing
transmission networks of traditional equipment, which
increases the installation and maintenance costs. More-
over, once the cables are damaged, the process of replacing
these is often very complicated and may even be
impossible in some cases. With technological progress,
wireless sensor networks (WSNs), as a new signal
collection and transmission technique, can provide an
alternative solution to cost-efficient data communication in
the fault diagnosis of mechanical equipment [89,90]. The
advantages of WSNs are well known: Support from fixed
networks is not necessary, countless wireless sensors can
be arranged flexibly, and sensor positions in remote
locations would be easier to install and maintain.

4 Signal processing

It is difficult or even impossible to make sense of the
information buried in a raw signal directly; because such
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signals obtained from an instrument measuring a vibration
response always contains noise. In relation to this, signal
processing is a technique that uses various algorithms to
analyze and transform raw signals into a meaningful
representation of the information contained in the raw
signal while suppressing the effects of noise. Accordingly,
condition signals must be analyzed using signal processing
methods to generate fault-related characteristic features
that facilitate decision making. Signal processing methods,
such as wavelet and wavelet packet methods, empirical
mode decomposition (EMD), time-frequency distributions,
minimum entropy deconvolution, spectral kurtosis (SK),
and envelope analysis, are widely used in mechanical fault
diagnosis [91]. These methods can be categorized into
three aspects: Time domain, frequency domain, and time-
frequency domain. These methods are not totally inde-
pendent, and in many cases, are complementary to one
another. The choice of such approaches and characteristic
features depends on the nature of the signal and the
required information [92].

4.1 Spectral kurtosis

Narrowband filtering is a common method for fault
detection of rotating machines, although it needs extra
frequency band information. Moreover, the oscillation
frequency and time duration of the impulse response are
relative to the dynamic parameters of the mechanical
system, which are difficult to estimate dynamically for
condition monitoring. Thus, classical filter-based methods
require historical data or a priori knowledge to determine
filter parameter. Compared with the classical approach, SK
can automatically indicate the optimal frequency at which
to perform amplitude envelope demodulation to obtain an
envelope signal without requiring historical data or a priori
knowledge. Thus, SK has become one of the powerful
techniques for vibration signal analysis, especially for
extracting periodic impulses induced by localized fault in
rotating machine components, such as bearings [93–96]
and gears [97,98].
Early research on SK can be traced back to 1983, and it

Table 1 Comparison of different types of sensors used in machinery fault diagnosis

Sensor Main application Advantages Disadvantages

Ultrasonic probe Flaw detection; distance and thickness mea-
surements

Exact and efficient Limited by the shapes of surfaces and
the density or consistency of the

material

Acoustic emission
(AE) sensor

Crack growth, friction, delamination and
matrix cracking detection

Detect, locate and characterize damage Changes in physical properties only

Magnetic sensor Speed, motion and position measurements;
crack or large deformation detection with

magnetic leakage

Efficient Magnetic field required; expensive

Eddy-current transducer Displacement, distance and position,
oscillation and vibration measurements

Useful for demanding industrial envir-
onments; high resolution and tempera-
ture stability; high-frequency response

Only for electrically conductive
materials; expensive

Accelerometer Shock, vibration and acceleration
measurements

High-frequency response; simple and
reliable

Expensive

Strain gauge Deformation and strain measurements Cheap Low-frequency response

Shape memory alloy Deformation detection; active control Fast response to change in temperature Low-frequency response; structural
fatigue and functional fatigue

Laser interferometer Derivation or displacement measurements High precision Very expensive

Fiber-optic sensor Strain, displacement, pressure and
temperature measurements

Small size; high precision; immune to
electromagnetic interference

Expensive

Electromagnetic acoustic
transducer

Flaw detection; thickness measurements Useful for automated inspection, and hot,
cold, clean, or dry environments

Limited to metallic or magnetic
products; low transduction efficiency

Piezoelectric lead zirconate
titanate (PZT) element

Active sensor; vibration and crack detection High-frequency response; cheap Cannot be used for truly static
measurements; drop in internal

resistance and sensitivity at elevated
temperature

PZT paint/polyvinylidene
fluoride (PVDF)
piezoelectric films

Vibration and crack detection High-frequency response; cheap Drop in internal resistance and
sensitivity at elevated temperature

Laser Doppler
velocimetry (LDV)

Velocity measurement Absolute, linear with velocity and
requires no pre-calibration;
non-contact measurement

Expensive

Digital image correlation (DIC) Deformation, displacement, strain, and
optical flow measurements

Ease of implementation and use; non-
contact measurement

Cannot measure existing damage
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was conducted by Dwyer [99,100] for detecting impulsive
events in sonar signals defined in the frequency domain for
real and imaginary parts of each frequency component.
After two decades of development, SK was explicitly
defined as the normalized fourth-order cumulant of the
Fourier transform or short-time Fourier transform (STFT)
[101]. The application of SK to machinery fault diagnosis
was first outlined by Antoni and Randall [102,103], who
conducted a very thorough study of the definition and
calculation of SK for this purpose. Their work served as the
cornerstone of SK theory and its subsequent application in
machinery fault diagnosis. In the following years, the
application of SK to the fault diagnosis of rotating
machines has attracted a considerable amount of attention.
The main purpose of SK techniques in machinery fault

diagnosis is to generate filters to extract the periodic
impulses (or impulse responses) from background noise or
other interactions. The early research on SK in machinery
fault diagnosis was based on STFT. The map formed by the
STFT-based SK as a function of frequency and window
length is called a kurtogram. However, all possible
window widths should be enumerated to optimize the
filter, which is computationally expensive and can hamper
the practical application. On the basis of the multi-rate
filter-bank and quasi-analytic filters, the fast kurtogram
was further developed to carry out the computation quickly
[104]. Since then, the fast kurtogram has been widely
applied in machinery fault diagnosis because of its
effective computation.
Benefiting from the development of the time-frequency

analysis (TFA) techniques, some interesting SK methods
have been studied over the years. One example is the
wavelet transform (WT), which is used as an alternative for
time-frequency decomposition and can be an equivalent of
the kurtogram [105]. The Morlet WT has also been
investigated as a filter bank to construct an adaptive SK
filtering technique in order to extract the signal transients
[106]. Considering that wavelet packet transform (WPT)
could process nonstationary transient signals more effi-
ciently than STFT, Lei et al. [107] replaced STFT with
WPT to improve the original kurtogram. Chen et al. [5]
presented a type of quasi-analytic wavelet tight frame
(QAWTF), which is generated from dual-tree complex
WT, to replace the multi-rate filter-bank or STFT to map a
new kurtogram. The main merit of the QAWTF is that it
can achieve finer frequency resolutions and more compre-
hensive frequency partition, while offering a good
approximation of the four fundamental requirements for
a feasible detection filter [104]. Various efforts to improve
the performance of adaptive SK have also been presented
in Ref. [108]. Most time-frequency decomposition-based
SK techniques share the same idea that the optimal
combination of center frequency and bandwidth can
maximize the kurtosis of filtered signals, thereby generat-
ing filters to extract the most impulsive signals from
background noise.

The original framework of SK is effective under some
conditions. However, its performance is not very good
when encountering strong noise or non-Gaussian noise,
especially the fault-unrelated sporadic impulse, which
causes the incorrect selection of the optimal filter [109–
111]. Strategies to solve the problem can be generally
divided into two categories: Preprocessing and SK
indicator improvement strategies. The former uses other
signal processing techniques to reduce the interference and
thus improve the performance of the SK. An early attempt
to use an autoregressive model (AR) to prewrite the signal
in order to increase impulsiveness has been carried out by
Randall [105]. Similarly, the AR model has been used as a
preprocessing technique to remove the disturbance caused
by discrete frequency noise, such as rotating frequency
components [112]. Hence, the minimum entropy decon-
volution (MED) technique is used to deconvolve the effect
of the transmission path and clarifies the impulses and thus
enhances the surveillance capability of SK to overcome
overlapping impulse responses [113]. He et al. [114]
studied a similar idea for multi-fault diagnosis, which
helped construct enhanced kurtosis or improved filter
procedure to comprehensively consider the composition of
the complex vibration signal, thus reducing the effect of
the interference to filter periodic impulses. To achieve this
goal, Chen et al. [5] proposed an enhanced signal
impulsiveness indicator called “spatial-spectral ensemble
kurtosis,” which simultaneously considers the Gaussian
noise, harmonics, and sporadic impulse. Numerical
validations, experimental tests, and engineering applica-
tions demonstrated that the proposed ensemble SK
indicator is more robust than the original SK indicator.
Smith et al. [111] used the knowledge of the bearing
parameters to set the bandwidth, and then selected the
optimal center frequency through a stepping process to
overcome the electromagnetic interference. The method
specified the bandwidth to be as narrow as possible so that
the signal-to-noise ratio is maximized due to a wideband
interference, after which the electromagnetic interference
could be reduced, thus improving the impulse detection.
Inspired by the benefits of SK in impulse detection, the

SK technique has also been combined with other advanced
signal processing techniques to improve their performance.
A kurtosis-guided adaptive demodulation technique for
bearing fault detection based on tunable Q-factor WT has
been presented in Ref. [115]. Patel et al. [116] dealt with
the detection of local defects existing on races of deep
groove ball bearing in the presence of external vibrations
using envelope analysis and Duffing oscillator, in which
they selected the key parameter of envelope analysis (i.e.,
the center frequency) using SK for filter lengths 32 and 64.
Based on SK and cross-correlation, Tian et al. [117]
presented a fault feature index using principal component
analysis and a semi-supervised k-nearest neighbor distance
measure for bearing fault detection and monitoring in
electric motors. Moreover, apart from vibration signal
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analysis, the SK technique has also been investigated in
other measurement methods, such as current signals [118–
120] and AE signals [121,122]. Beyond the machinery
fault diagnosis, SK has also been considered in other
research fields [123–125]. Furthermore, the statistical
properties of the SK estimator were also investigated
[126,127].
In the current work, we used a practical application case

to demonstrate the effectiveness of the SK method for
machinery fault diagnosis [5]. To investigate the potential
transient vibration features hidden in the vibration signal
(Fig. 5(a)), which were measured from a machine tool
(detailed information in Ref. [5]), a dual-tree wavelet
decomposition combined with the classical kurtosis
indicator (evaluated in the time domain) was applied to
process this signal. The corresponding optimal sub-band
was selected as [5867,6400] Hz (Fig. 5(c)). However, by
inspecting the associated time-domain signal, only a record
of high-frequency noise was detected. “Spatial-spectral
ensemble kurtosis” was introduced to enhance the
processing result. The resulting kurtosis distribution is

shown in Fig. 5(d). By retrieving the associated time-
domain signal concentrated in the frequency band of
[2400,2800] Hz and its envelope spectrum (Fig. 5(e)), we
can find repetitive single-side damping components
located with a constant interval of 0.075 s (13.33 Hz).
This periodicity is exactly the same as the rotating
frequency of the worm shaft according to the drive-chain
parameters. Hence, the incipient fault features caused by a
fault on the worm shaft are successfully extracted using an
improved kurtosis method.

4.2 Sparse decomposition analysis

In the past 20 years, sparse theory has received consider-
able attention and made remarkable achievements in the
field of signal and image processing. Recently, sparse
decomposition (also called sparse representation or sparse
regularization) has been widely used in fault diagnosis of
rotating machineries. Particularly, sparse decomposition is
a powerful tool in extracting the impulsive component of
bearing. For example, when a fault occurs in a bearing,

Fig. 5 (a) The time domain signal and (b) the frequency spectrum of the collected vibration signal; (c) kurtogram distribution using the
original concept of kurtosis; (d) kurtogram distribution using an improved “spatial-spectral ensemble kurtosis”; (e) the retrieved fault
features and (f) its envelope spectrum
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periodic or quasi-periodic impulses appear in the time
domain of the vibration signal; meanwhile, the correspond-
ing bearing characteristic frequencies (BCFs) and their
harmonics emerge in the frequency domain [128].
However, in the early stage of bearing failures, the BCFs
usually carry very little energy and are often hidden by
severe noise and higher-level vibrations. Cui et al. [129]
developed an adaptive matching pursuit algorithm for fault
diagnosis of rolling element bearing, which established the
dictionary according to the characteristics of rolling
bearing faults. He et al. [130] proposed a new approach
for fault diagnosis of rolling element bearing based on
sparse representation, which helped construct the diction-
ary by using the unit impulse response function of the
damped second-order system derived from the fault signal.
For capturing the underlying structure of a machinery fault
signal, Tang et al. [131] proposed a sparse representation-
based latent component decomposition method for weak
fault detection of rolling bearings and gears, which
eventually generated the dictionary learning scheme.
Zhang et al. [132] proposed an algorithmic framework
based on nonlocal self-similarity for feature extraction of
aero-engine bearings. Subsequently, Zhang et al. [133]
proposed a weighted sparse model with convex optimiza-
tion framework for bearing fault diagnosis. He and Ding
[134] proposed a local time-frequency template matching
method for bearing transient feature extraction. Wang et al.
[135,136] used the sparse representation method with
wavelet dictionary for extracting the transient feature in a
faulty gearbox, in which wavelet was selected by
correlation filtering. A comparison study demonstrated
that the proposed sparse representation method outper-
formed the EMD in transient feature extraction [137]. Li
et al. [77] proposed a sparse pursuit algorithm for pursuing
the extension of the crack in wind turbine blade. Qiao et al.
[138] proposed a novel force identification method based
on sparse deconvolution, which proved to be more
accurate and efficient than the common Tikhonov
regularization method, considering the sparse nature of
impact-force in the time domain. Subsequently, Qiao et al.
[139] proposed a sparse representation frame of identifying
force on mechanical structures; they used Dirac, Db6,
Sym4, and B-spline dictionaries to represent the impact
force and the discrete cosine dictionary to represent the
harmonic force. Lin et al. [140] proposed a novel blade tip-
timing method based on sparse representation for recon-
structing unknown multi-mode blade. He et al. [141–143]
introduced the periodic group sparse model for bearing
fault diagnosis, which used the nonconvex penalty to
explore sparser solutions.
Compressed sensing (CS), a method first proposed by

Donoho, helps overcome the traditional Nyquist rate and
enables the unique solution of the under-determined
equations [144]. Tang et al. [145] developed a sparse
classification strategy based on CS theory for rotating
machinery faults, which helped construct a learning

dictionary to represent the vibration signal. Chen et al.
[146] proposed a new method based on CS for extracting
impulse components in the fault gearbox; this method
effectively learned the sparse dictionary from the noisy
signal. On the basis of the union of redundant dictionary
for wind turbine gearbox fault diagnosis, Du et al. [147]
proposed a sparse feature identification method which,
which identified multiple faults in the wind turbine
gearbox. Chen et al. [148] also proposed a sparsity-
enabled signal decomposition method for fault localization
of automatic tool changers. Wang et al. [149] proposed a
CS-based sparse time-frequency representation (TFR)
method for remote machine health condition monitoring,
which proved to be useful in bearing and gear fault
diagnosis. By considering the joint sparsity nature of
impact-force in the temporal and spatial domain, Qiao et al.
[150] proposed the compressed sensing frame for impact-
force identification, which simultaneously identified multi-
ple impact locations and force history from highly
incomplete and inaccurate measurements.
In the current work, we used a practical application case

(i.e., the transmission system in a wind turbine) to illustrate
the effectiveness of the sparse decomposition method for
machinery fault diagnosis [147]. Figures 6 and 7 show a
typical result of using sparse decomposition methods to
decompose a gearbox vibration signal into the harmonic
component, impulsive components, and random compo-
nents. The gearbox fault is shown in Fig. 4(b). The sparse
decomposition results are shown in Figs. 6 and 7, including
the decomposed harmonic component and impulsive
components and their envelope spectrum. In Figs. 6 and
7, the dominance of periodic impulses indicates the
occurrence of faults in the gearbox. Meanwhile, the
characteristic frequencies (from Rx1 to Rx4) indicate the
rotational frequency of the gearbox output shaft and its
multiples, respectively. The dominant frequency in Fig.
7(c) is the characteristic frequency of spalling fault.

Fig. 6 Vibration signals of the gearbox and the extracted three
subcomponents through the sparse diagnosis technique. (a) The
original vibration signals; (b) harmonic components; (c) impulsive
components; (d) residual components
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4.3 Time-frequency analysis and wavelet transform

Compared with SK and sparse representation, TFA and
WT are classical signal processing techniques in conduct-
ing machinery fault diagnosis; these are derived from inner
product theory and are proven effective in nonstationary
signal processing. Feng et al. [151] provided a review and
summarized the development and applications of TFA in
machinery fault diagnosis over the past year. Peng et al.
[152] and Yan et al. [153] presented review papers in 2004
and 2014, respectively, on using wavelets as a powerful
tool for signal analysis in fault diagnosis in rotary
machines. Therefore, in this subsection, the current review
mainly discusses the progress made over the past several
years.
Synchrosqueezing transform (SST) is related to the

time-frequency reassignment family and can effectively
improve the readability of the TFR of nonstationary signals
[154]. The WT-based SST was proposed by Daubechies
et al. [155] in the context of audio signal analysis and was
further studied as an alternative theoretical way to
understand EMD with a convenient mathematical frame-
work. Although standard time-frequency reassignment
methods (STFRM) provide a direct and powerful TFR of
nonstationary signals, signal reconstruction techniques
using STFRM remain lacking [154]. By contrast, the
SST improves the time-frequency energy concentration in
a similar manner to STFRM, but most importantly, it
remains invertible, thereby enabling mode reconstruction
as in EMD. Li and Liang [156,157] first introduced the
SST in gearbox fault diagnosis, in which they proposed a
generalized SST for representing the time-frequency
pattern of vibration signals to improve the blurred TFR
caused by nonstationary operating conditions. Later,
similar SST methods were used for fault diagnosis of
wind turbine planetary gearbox [158] and bearing [159].

To overcome the shortcoming of the WT-based SST in the
higher frequency region, Cao et al. [160] proposed a zoom
SST to generate both excellent time and frequency
resolution in a specific frequency region, thereby improv-
ing the instantaneous frequency (IF) estimation. The
effectiveness of the zoom SST has been validated by
rub-impact fault diagnosis. Variable operating conditions
of machines always induce a vibration signal with fast
varying IF, especially in significant speed changes. Even
though rotating machines work in a stationary condition,
some mechanical faults in rotating machines cause time-
varying stiffness, thereby resulting in fast oscillation
phenomenon of IF for the vibration signals [161,162]. To
address this issue, the matching synchrosqueezing wavelet
transform (MSWT) has been proposed, in which a chirp-
rate estimation is introduced into a comprehensive IF
estimation to match the time-frequency (TF) structure of
the signals with fast varying IF, thereby attaining a highly
concentrated TFR as the standard TF reassignment
methods. Most importantly, the MSWT retains the
reconstruction benefits of the SWT. The effectiveness of
MSWT has been verified by a case study of a dual-rotor
turbofan engine for aero-engine vibration monitoring [163]
(Fig. 8). In weak signal detection, a special TFA method
called nonlinear squeezing time-frequency transform
(NSTFT) has been proposed [164,165]. Compared with
the SST using reassignment strategy, the NSTFT combines
two TF representations to emphasize the coefficient at the
IF and to squeeze the coefficient around the IF. Moreover,
the NSTFT is only relevant to the signal phase and is
independent of the signal amplitude; thus, it can be used
for weak signal detection and weak fault diagnosis.
A further indication of progress in the TFA over the past

several years is the emergence of parametric TFA methods,
which are applied in mechanical fault diagnosis. Peng et al.
[166,167] systematically studied the parametric TFA, and
first proposed polynomial chirplet transform and spline-
kernelled chirplet transform [168]. They then generalized
warblet transform [169], and later parameterized TFA
[170,171]. Benefiting from the advantage of the parametric
TFA in improving TFR, Yang et al. used the method for
wind turbine condition monitoring [172], and later used it
for dispersion analysis for broadband guided wave [173]
and system identification [174]. All parametric TFA
methods use the parametric time-frequency basis function
to approximate the analyzed signals, in which the more
precise the approximation by parametric basis functions,
the better the resulting TFRs. As opposed to parametric
TFA methods, matching demodulation transform (MDT)
does not have to devise ad-hoc parametric time-frequency
basis functions, and can generate TFRs with satisfactory
energy concentration with an iterative algorithm, gradually
matching the true IF of the signal [175]. The effectiveness
of the MDT has been verified by the application in rub-
impact fault diagnosis [161].
As a special TFA method, WT is widely researched in

Fig. 7 Hilbert envelope spectrum of the original vibration
signals and the extracted three subcomponents via the sparse
diagnosis technique. (a) Original vibration signals; (b) harmonic
components; (c) impulsive components; (d) residual components
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the field of mechanical fault diagnosis. Recently, classical
WT techniques have also been widely applied [176–178],
and some new WT methods for mechanical fault diagnosis
have been studied and introduced. Inspired by the
systematic research on WT by Selesnick et al. [179–
181], overcomplete rational dilation discrete WT and
tunable Q-factor WT have been studied and applied for
bearing and gearbox fault diagnosis [115,182–184]. As
opposed to the classical WT using a single wavelet
function to capture fault-related features, the multi-wavelet
concept offers multiple wavelet functions, thus matching
one or more faults for diagnosis [185–188].
Although the techniques of TFA and WT for mechanical

fault diagnosis have been researched for more than two
decades, some challenges remain in using TFA andWT for
mechanical fault diagnosis. For example, the essence of the
TFA and WT is a type of inner product between the signal
to be analyzed and time-frequency atoms or wavelet
functions. The more similar the signal to the time-
frequency atom or the wavelet function, the better the
defect-related features to be extracted. The essential
similarity between the impulse response caused by
localized faults and the time-frequency atoms or wavelet
functions guarantees superiority in fault feature extraction.
Therefore, given that the TFA and WT have become
increasingly mature and new theoretical contributions are
being made, they will continue to be the most appealing
techniques to dominate the field of mechanical fault
diagnosis. TFA and WT are also considered powerful tools
in SK and sparse representation.

4.4 EMD, LMD, and VMD

EMD is one of the most powerful signal processing

techniques, particularly in nonlinear and non-stationary
signal processing. At present, EMD and Hilbert-Huang
transform (HHT) have been widely used in fault diagnosis
of rotating machineries. Lei et al. [189] surveyed and
summarized the recent research, development, and appli-
cation of EMD in terms of key components, such as rolling
element bearings, gears, and rotors. Babu et al. [190]
applied HHT to detect the transverse breathing crack from
time response of the cracked rotor passing to its critical
speed. Lin and Chu [191] applied HHT on AE feature
extraction of natural fatigue cracks induced on rotating
shafts, and demonstrated that HHT is a better tool for
conducting natural fatigue crack characterization com-
pared with fast Fourier transform (FFT) and continuous
WT (CWT). A past study investigated the start-up transient
response of a rotor with a propagating transverse crack via
EMD; the authors extracted the one-, two-, and three-time
rotating frequency vibration components during the start-
up process [192]. Given that HHT has the capability of
processing nonlinear vibration signals, Zhang and Yan
[193] proposed an HHT-based signal processing method to
obtain the natural frequency of the multi-cracks cantilever
beam with a higher resolution. In Ref. [194], three signal
processing tools, namely, STFT, CWT, and HHT, are
compared to evaluate their detection performance and
computational time in a rotor bearing system. Xu [195]
proposed a methodology based on translation-invariant
denoising and HHT to detect rolling element bearing faults
against strong background noise. Li and Wang [196]
summarized the development and application of HHT for
solving the problem of rolling bearing fault diagnosis from
several aspects. Lei et al. [197] introduced the enhanced
empirical mode decomposition (EEMD) for fault diagnosis
of rotating machineries, in which the problem of the

Fig. 8 MSWT representation of vibration signal of the dual-rotor turbofan engine. The LPR and HPR represent the “low-pressure rotor”
and “high-pressure rotor”, respectively. The reconstructed signal shows the evidence for vibration jumping fault in the engine, as indicated
by the arrow T1 [163]
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mixing modes is partially solved by adding white noise to
the original signal. Feng et al. [198] proposed a new
method based on EEMD and the Teager energy operator to
extract the characteristic frequency of bearing fault, which
demonstrated better performance than the traditional
spectral analysis and the squared envelope spectral
analysis methods. Meanwhile, Ricci and Pennacchi [91]
introduced a merit index for the automatic selection of the
intrinsic mode functions used to obtain the HHT spectrum,
which they verified by using a spiral bevel gearbox with
high contact ratio. Wu et al. [199] utilized the instanta-
neous dimensionless frequency normalization and HHT to
characterize the different gear faults, including worn tooth,
broken tooth, and gear unbalance, under variable rotating
speed levels. Furthermore, the support vector machine
(SVM) has been used to classify the different gear faults.
Another adaptive time-frequency method, namely, local

mean decomposition (LMD), has been applied to decom-
pose the non-stationary signal into a number of product
functions. LMD was developed by Smith [200] in 2005
and was originally used as a TFA tool of the encephalo-
gram signals. The LMD method is similar to the EMD
method, but the former is actually better than the latter in
certain aspects. In Ref. [201], LMD has been proposed for
rub-impact fault diagnosis, which can extract the transient
fluctuations of the IF of the fundamental harmonic
component. In Ref. [202], the authors applied the LMD
method to the gear and roller bearing fault diagnosis and
proved that LMD has better performance compared with
EMD [202]. Feng et al. [203] proposed a joint amplitude
and frequency demodulation method based on LMD for
fault diagnosis of planetary gearboxes, whereas Liu and
Han [204] used LMD to decompose the non-linear and
non-stationary fault bearing signals into a series of product
functions for feature extraction. Variational mode decom-
position (VMD) is a newly developed technique for
adaptive signal decomposition, and can non-recursively
decompose a multi-component signal into a number of
quasi-orthogonal intrinsic mode functions. Wang et al.
[205] proposed a novel method for the rub-impact fault
diagnosis of the rotor system based on VMD, and proved
that multiple features can be better extracted with the VMD
than empirical WT (EWT), EEMD, and EMD.

5 Intelligent diagnostics

Traditionally, fault diagnosis requires expertise in the
specifics of diagnostic application. Thus, highly trained
and skilled personnel are needed. Various artificial
intelligence (AI) techniques have emerged in the field of
fault diagnosis. Intelligent fault diagnostics simulate the
inference process of the thinking pattern of the human.
Thus, by capturing, transferring, and processing, the
diagnosis information, the operation condition, and fault
of the monitoring machine can be decided intelligently.

Intelligent fault diagnostics also enable the learning and
automatic capture of the diagnosis information for
providing real-time diagnostics. The intelligent fault
diagnostics technologies and practical diagnosis systems
in the assessment of complex mechanical equipment are
crucial in the conduct of mechanical fault diagnostics.
Numerous intelligent system approaches for fault diag-
nosis have been developed, such as artificial neural
network (ANN), support vector machines (SVMs), particle
swarm optimization (PSO), deep learning, and Bayesian
networks [206]. In the following section, different fault
intelligent diagnostic approaches are discussed, with
emphasis on various AI and statistical approaches.

5.1 AI approaches

AI approaches have been increasingly applied to mechan-
ical fault diagnosis and have improved system perfor-
mance over conventional approaches [207]. Numerous
studies have been conducted on intelligent diagnosis of
rotating machineries. Among these studies, ANNs are one
of the most commonly used methods; these employ signal
processing techniques for fault extracting features and
further input the features to ANNs for classifying faults
[208]. Various neural network (NN) models are available.
The feedforward neural network (FFNN) structure is the
most widely used NN structure in mechanical fault
diagnosis [209–211]. Gebraeel and Lawley [212] proposed
a NN-based degradation model that uses real-time signals
to estimate the failure time of partially degraded
components, which they then validated on rolling element
bearings. Vyas and Satishkumar [213] used an ANN with a
back-propagation learning algorithm to detect unbalance,
misalignment, and roller bearing looseness in a small-scale
test-rig. Jack and Nandi [214] compared NNs and support
vector machines in condition monitoring applications.
Saravanan et al. [215] attempted fault diagnosis of spur
bevel gear box by extracting features using WT, which
they then used as NN inputs for classification purposes.
The results showed that the developed method can reliably
diagnose different conditions of the gearbox. Nguyen et al.
[216] applied genetic algorithm (GA) for optimal feature
selection in mechanical fault detection of induction motor.
Based on specific distance criteria, they introduced GA to
reduce the dimension of features. Another study used the
decision tree and multi-class support vector machine to
illustrate the potentiality and efficiency of the classification
method. Spoerre [217] applied cascade correlation neural
network (CCNN) to bearing fault classification, and found
that CCNN can apply the minimum network structure for
fault diagnosis with satisfactory accuracy. Other NN
models applied in fault diagnostics are backpropogatation
neural network (BPNNs) [218], recurrent NN [219], and
counter propagation NN [220]. The above ANN models
usually employ supervised learning algorithms that require
external inputs, such as prior knowledge about the target or
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desired output. Nyanteh [221] developed a novel approach
to short-circuit fault detection in a permanent magnet
synchronous machine using ANNs, in which the PSO
algorithm is applied to increase convergence time of ANN
weights. Samanta [222] extracted time-domain features
and used three optimized NNs to detect pump faults. Wang
and Too [223] applied the unsupervised NNs, self-
organizing map (SOM), and learning vector quantization
in rotating machinery fault diagnosis. Wang et al. [225]
proposed a method of fault diagnosis for non-stationary
fault signals of rotating machineries, which used EEMD
and a SOM NN to extract features and classify them,
respectively.
Support vector machine is a relatively new computa-

tional learning method that is based on statistical learning
theory and has been widely used in mechanical fault
diagnosis. Windodo and Yang [206] surveyed the applica-
tion of SVM in mechanical fault diagnosis including
rolling element bearings, induction motors, machine tools,
pumps, compressors, valves, turbines, and so on. Yang
et al. [225] applied artificial bee colony algorithm for SVM
parameter optimization of gearbox fault diagnosis, and
found that the accuracy of the artificial bee colony
algorithm is higher compared with GA and PSO. Widodo
et al. [226] studied the incipient fault diagnosis of low-
speed bearings using multi-class relevance vector machine
and SVM. Another study [227] employed the Hilbert
transform-based envelope spectrum analysis to extract
fault bearing features, and then used the improved SVM to
classify the fault rolling bearings into ball fault, inner race
fault, and outer race fault. Liu et al. [228] proposed a novel
model for fault diagnosis based on EMD and multiclass
transductive SVM, which they applied to diagnose the
faults of the gearbox. Moreover, Samanta and Nataraj
[229] used time-domain features to characterize the
bearing health conditions and then used ANNs and SVM
for bearing fault diagnosis. Meanwhile, Seera et al. [230]
proposed an ensemble of hybrid intelligent models for
condition monitoring of induction motors; the model
consisted of the fuzzy min-max NN and the random forest
model, which comprises an ensemble of classification and
regression trees. Shen et al. [231] proposed a new
intelligent fault diagnosis scheme based on the extraction
of statistical parameters from a wavelet packet transform, a
distance evaluation technique, and a support vector
regression-based generic multi-class solver. Another
study [232] applied wavelet packet decomposition to
clean the noisy signals, and then extracted the informative
feature vectors by using EEMD. Finally, the states of the
bearings are classified by SVM. Rajeswari et al. [233]
applied EEMD for signal processing and feature extrac-
tion, hybrid binary bat algorithm for feature selection, and
machine learning algorithms for classification purposes in
gear fault diagnosis.
In practice, applying AI approaches in mechanical fault

diagnosis is not easy due to the lack of efficient procedures

for obtaining the training data and specific knowledge,
which are required to train the models. At present, most of
the applications in the literature simply use experimental
data for model training [229]. Although these methods
work well in intelligent fault diagnosis, they retain two
deficiencies: (1) The features are manually extracted
depending on considerable prior knowledge about signal
processing techniques and diagnostic expertise, and (2) the
ANNs adopted in these methods have shallow architec-
tures, thereby limiting the capacity of ANNs to learn the
complex non-linear relationships in fault diagnosis issues
[234].

5.2 Deep learning

As a breakthrough in AI, deep learning holds the potential
to overcome the aforementioned deficiencies and can
automatically map input samples into hierarchical feature
representations. The fault diagnosis method based on deep
architectures results in fault feature extraction becoming
inessential. Certain deep learning methods such as deep
belief network (DBN) and deep convolution neural
network, have been developed to conduct machinery
fault diagnosis.
Recently, deep neural network (DNN) has become a

popular approach in machine learning for its promised
advantages such as fast inference and the ability to encode
higher-order network structures. Although ANNs require
supervised learning, DNNs work well with the help of
unsupervised learning. DNN with the deep architectures
can adaptively capture the representative information from
raw signal via multiple nonlinear transformations and
approximate complex nonlinear functions with a low error
[208]. DBN uses a hierarchical structure with multiple
stacked restricted Boltzmann machines and works by a
layer-by-layer successive learning process [23]. Ma et al.
[235] applied DNN for bearing acceleration life test, which
used the time-domain and frequency-domain features as
raw inputs. Tao et al. [236] proposed DBN for bearing fault
diagnosis by using multi-sensor information, in which
time-domain statistical features from three sensors served
as the inputs. Chen et al. [237] applied DBN-based DNN
for gearbox fault diagnosis, in which a feature vector
consisting of load and speed measure, time-domain, and
frequency-domain features served as inputs. Shao et al.
[238] proposed DBN for induction motor fault diagnosis,
which directly selected raw vibration signals as inputs.
Tran et al. [234] proposed an approach to fault diagnosis of
reciprocating compressor valves based on Teager-Kaiser
energy operator and DBN. Meanwhile, Tamilselvan and
Wang [239] presented a multi-sensor fault diagnosis
method for health state classification via DBN. Aircraft
engine health diagnosis and electric power transformer
fault diagnosis have been used to demonstrate the
advantages of the proposed approach over SVM, back-
propagation neural network, SOM, and Mahalanobis
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distance. Jia et al. [208] presented a DNN-based intelligent
method for diagnosing the faults of rotating machineries,
the performance of which they verified in fault classifica-
tion in five datasets from rolling element bearings and
planetary gearboxes. Gan et al. [240] proposed a novel
hierarchical diagnosis network based on deep learning for
the fault pattern recognition of rolling element bearings.
The experiment demonstrated that the proposed method
performed fault classification more excellently than did
BPNN and SVM. Li et al. [241] proposed a deep statistical
feature learning method for detecting faults and fault
patterns of rotating machineries, which has a better fault
classification than SVM. Guo et al. [242] presented an
automatic denoising and feature extraction method based
on deep learning. Bearing rolling fault and gearbox fault
experiments demonstrated that the proposed deep fault
recognizer method had higher accuracy than DBN without
denoising. Ahmed et al. [243] applied DNN frameworks
with two and three hidden layers based on sparse
Autoencoder for automatic fault detection and classifica-
tion of bearings.

5.3 Statistical approaches

Uncertainties, such as measurement noise, environment
fluctuation, operational variability, and other factors from
feature estimation algorithms, are inevitable in mechanical
fault diagnosis. In this case, probabilistic models can be
established. The hidden Markov model (HMM) is an
effective pattern recognition method that has been widely
used in speech recognition, visual recognition, and fault
diagnosis. HMM is a joint probabilistic model of a set of
random variables representing the hidden states as state
variables given the observation sequence. Xin et al. [244]
studied the rolling element bearing diagnostics by using
HMM and validated its performance via numerical
experiments. Bunks et al. [245] applied HMM to analyze
the Westland helicopter data, including gearbox fault class
information and vibration response with different faults.
Another study treated the fault classes and measured
vibration signal as states in the hiddenMarkov chain and as
realizations of the observation process, respectively. Dong
and He [246] proposed a more general model, hidden semi-
Markov model, for analyzing pump experimental data in
pump diagnostics. Xu and Ge [247] presented an
intelligent fault diagnosis system based on an HMM. Ye
et al. [248] considered the application of two-dimensional
HMM based on TFA for fault diagnosis. Zhou et al. [249]
proposed a new fault diagnosis model for rolling element
bearing based on shift-invariant dictionary learning and
HMM. The method has been proven to have better
performance than the k-nearest neighbor and BPNN in
terms of feature extraction or classifiers.
Baydar et al. [250] investigated the use of a multivariate

statistical technique, known as principal component

analysis (PCA), for analyzing the time waveform signals
in gear fault diagnosis. González and Fassois [251]
proposed a novel supervised PCA-type statistical metho-
dology for damage detection, by using data records from
the healthy and damaged states of a scale wind turbine
blade under various conditions. Mao and Todd [252]
presented a statistical model for quantifying the uncertainty
of transmissibility (output-to-output relationship) magni-
tude estimation. Song et al. [253] proposed an intelligent
condition diagnosis method for rotating machineries using
the probability density analysis and the canonical dis-
criminant analysis. Lei et al. [254] presented a new
intelligent fault diagnosis approach based on statistics
analysis, an improved distance evaluation technique and
adaptive neuro-fuzzy inference system, which they then
applied in fault diagnosis of rolling element bearings.
Wang et al. [255] proposed a Bayesian network for

diagnosing the faults in a gear train system, in which six
time-domain features are selected as the input to the
Bayesian network. Mao and Todd [256] proposed a
Bayesian recursive framework for ball-bearing damage
classification, and selected the frequency response function
as the main features. Wang et al. [257] proposed a
Bayesian approach to extract bearing fault features, which
represented a joint posterior probability density function of
wavelet parameters using a set of random particles.
Subsequently, Wang et al. [258] proposed a Gauss-Hermite
integration based Bayesian inference method for estimat-
ing the posterior distribution of wavelet parameters.
Bearing fault experiments demonstrated that the proposed
method has better visual inspection performance than the
fast kurtogram.

6 Machinery fault diagnosis in China

Compared with other developed countries, China is
relatively later in terms of the research and application of
machinery fault diagnosis technologies [90]. However,
many research universities and institutions in the country
have undertaken many efforts towards machinery fault
diagnosis. The early research on machinery fault diagnosis
in China began at Xi’an Jiaotong University, Tsinghua
University, Shanghai Jiao Tong University, Huazhong
University of Science and Technology, Harbin Institute of
Technology, Northwestern Polytechnic University, North-
eastern University, and Dong Fang Turbine Co., Ltd.,
among others. Since the 1960s, exploratory development
of fault diagnosis method has been carried out. Notable
progress has been made in the sub-fields of reliable signal
acquisition and advanced sensing technology, failure
mechanism, fault feature extraction, intelligent diagnosis
of complex mechanical equipment as well as the R&D of
the practical diagnostic system, and so on. Diagnostic
technologies continuously improve and new technologies
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are emerging. In this section, although not all the details are
covered, it attempts to briefly summarize the contributions
of Chinese researchers on machinery fault diagnosis.
Qu and co-investigators [259–261], using the synthetical

application of the multi-sensor information fusion techni-
que in the field of rotor balancing, proposed a new analysis
method based on field balancing method in 1989. This
method uses FFT spectra and combines the ordinary
spectra of rotor vibration both in horizontal and vertical
directions. Unlike the traditional FFT spectra in rotor
vibration monitoring, their proposed method synthetically
uses frequency, amplitude, and phase information. There-
fore, they called it “holospectrum” because it realizes a full
utilization of the rotor precession information. The
holospectrum was widely used for the diagnosis of many
oil refineries and chemical plants in China in the 1990s.
Qu’s group was awarded the 2nd Prize in the National
Award for Technological Invention in 2003 by the Chinese
government for their ongoing work. This award is one of
the highest state-initiated science and technology awards.
To overcome the difficulties in traditional finite element

method (FEM) for solving crack singular problems, He
and co-investigators [262–265] derived wavelet finite
element methods (WFEM). Compared with traditional
FEM, WFEM has several advantages for modal analysis of
crack problems. One attractive feature is that WFEM has
the ability to accurately represent general functions with a
small number of wavelet coefficients and to characterize
the smoothness of such functions from the numerical
behavior of these coefficients. Furthermore, given that the
condition numbers of WFEM is independent of mesh size,
WFEM can avoid numerical instability in traditional FEM
in the analysis for the crack problems. In addition, when
orthogonal Daubechies wavelet functions with compact
support are used as interpolation functions, the stiffness
matrixes generated by WFEM are sparse, thereby making
the computational time considerably shorter. He’s group
was awarded the 2nd Prize during the National Award for
Technological Invention in 2009 for contributions related
to the identification of cracks in a rotor system based on
WFEM.
To prevent and eliminate faults of machines by

engineering means, Gao and co-investigators [266–268]
proposed the fault self-recovery theory based on the
systematic theory and the idea of “self-recuperation”
therapeutic method in modern medicinal science. In their
investigations, the machines can heal themselves when
malfunctions occur, as can human beings and living
animals. Thus, mechanical faults can be controlled and
eliminated during the machine’s runtime, thereby short-
ening the downtime of machines. The fault self-recovery
theory can provide a theoretical basis for developing a new
generation of machines that have the self-recovery ability.
Wen and co-investigators [269–273] constructed the

concept and the theoretical framework of vibration
utilization engineering following a long research period.

The utilization of vibration and wave is regarded as one of
the most valuable technological applications and has been
rapidly developing in recent years. In their work, they
developed and studied several new craft theories and
techniques, and the results have been widely used in
engineering. Their work on vibration utilization engineer-
ing has been summarized in six books and over 400
research papers.
The machinery fault diagnosis technique has created

huge social and economic benefits because it is closely
related to the industry. We end this section by presenting
the number of sponsored programs and the total number of
awards given since 2006 (Fig. 9) [274]. The key programs
for machinery fault diagnosis sponsored by the National
Natural Science Foundation of China (NSFC) since 2011
are also listed in Table 2 [274]. As can be seen, the number
of sponsored programs and the number of awards given
have increased greatly since 2011.

7 Research trends and challenges

At present, the problems related to the basic research on
machinery fault diagnosis can be summarized in “eight
more and eight less” as follows: More to study fault
behavior, less to failure mechanism; more to study rotating
machineries, less to reciprocating machineries; more to
study general machineries, less to specialized machineries
more to study single method, less to comprehensive
diagnosis; more to study component-level fault, less to
system-level fault; more to study obvious fault, less to
weak fault; and more to study simulation data, less to
engineering data. Therefore, breakthroughs related to the
basic research of machinery fault diagnosis in these five
directions must be realized: Breakthroughs from beha-
vioral research to mechanism study, from qualitative to
quantitative research, from single to group fault research,
from severe to weak fault research, and from component-
level to system-level fault research.

7.1 From behavioral research to mechanism study

Based on the theory of “what you see is what you get” in
the research, only sparse knowledge is obtainable about the
interpretation and diagnosis of mechanical faults. The
failure mechanism is the root cause of the reflection of the
fault in nature. Therefore, further scientific research on
failure mechanisms is needed. Given the lack of previous
samples, mechanical faults of new equipment may be
ignored with a traditional diagnosis method.
Considering the rapid development of science and

technology, many novel, large-scale, and high-speed
mechanical equipment are being developed and widely
applied in practical fields, such as wind power equipment,
industrial gas turbine, railroad locomotives, aircraft power
transmission, and shield tunneling machine. As regards the
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mechanical, electrical, and hydraulic systems in these
novel rotatory and reciprocate mechanical equipment, the
fault mechanism and evolutionary dynamics under special
operational conditions must still be analyzed and
researched. For example, for typical misalignment faults,
we need to build mathematical and mechanical models and
experimental platform, as well as to study the failure
symptoms and frequency spectrum characteristics. As
regards the research results based on clearance mechanism
dynamics, we must study the frequency spectrum charac-
teristics that correspond to different clearance sizes, as well
as build the quantitative relationship between clearance
size and signal features for guiding the fault diagnosis of
clearance mechanism. Therefore, future fault diagnosis
will certainly focus more on mechanism research.

7.2 From qualitative to quantitative research

The procedure of fault diagnosis has four levels: First, we
identify whether a fault exists; second, we position the
fault; third, we evaluate the damage degree of the failure;
and finally, we predict residual life and assessing
reliability. The first two layers are called qualitative
research, and the last two layers are called quantitative

research. The former is the basis of the latter. The third and
last layers are closely linked because residual life
prediction and reliability assessment can never be achieved
without precise damage degree evaluation.
The quantitative research of faults requires the recogni-

tion of fault locations, types, and degrees; the law in fault
occurrence, development, and evolution is found. There-
fore, providing the fundamental basis of mechanical
equipment safe analysis, reliability assessment, and
residual life prediction is possible. For the classical
structure of major equipment, such as aero engine rotor,
large aircraft frame, large wind turbine gearbox, and
classical composite construction, first, we should carry out
dynamic online diagnosis of crack damage. Then, based on
the quantitative diagnosis of crack damage, we should
study the state degradation recognition and residual life
prediction. Therefore, the focus of fault diagnosis research
is expected to shift from qualitative research to quantitative
research.

7.3 From single to group fault research

The diagnosis of a single fault is mainly based on signal
processing methods, through which the vibration signal

Fig. 9 Sponsored programs for machinery fault diagnosis since 2006 [274]

Table 2 Sponsored Key Programs for machinery fault diagnosis within 5 years [274]

Grant number Principal investigator Employer
Amount of award/

(106 CNY)
Study period

51035007 Zhengjia HE Xi’an Jiaotong University 2.5 2011.1–2014.12

51035008 Yimin SHAO Chongqing University 2.4 2011.1–2014.12

51135001 Jinji GAO Beijing University of Chemical Technology 2.9 2012.1–2016.12

51335006 Fulei CHU Tsinghua University 3.2 2014.1–2018.12

51435006 Xuedong CHEN Huazhong University of Science and Technology 3.2 2015.1–2019.12

51535009 Geng LIU Northwestern Polytechnical University 2.8 2016.1–2020.12

51635004 Shuyun JIANG Southeast University 2.8 2017.1–2021.12

51421004 Jing LIN Xi’an Jiaotong University 12.0 2015.1–2020.12
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features and the frequency spectrum of other interference
element can be easily divided. Therefore, the diagnosis of
single fault can be easily implemented. However, its low
accuracy and poor generalization limit its application in the
field of industrial engineering. Furthermore, failures may
be due to several reasons, especially the failure of rotating
machineries. Therefore, diagnosing a single fault of
mechanical equipment can lead to false diagnosis or
misjudgment.
Such failures as abrasion, peeling off, and cracking of

the mechanical equipment core part consistently occur
simultaneously and successively. The vibration signals are
always performed as the inter coupling of fault characteris-
tic signals instead of the simple superposition of multi-
single faults. The generation of fault mass can bring much
more difficulties in fault diagnosis and, hence, it is
expected to be the main development direction of future
fault diagnosis. In fact, fault mass diagnosis is a problem of
multi-fault pattern recognition, and we need to study the
one-time separation and diagnosis method for fault mass
coupling features.

7.4 From severe to weak fault research

Severe fault means that the mechanical fault has been
developed to late stage with obvious fault features, and the
performance degenerates, thereby leading to a major
accident if we do not deal with it in time. By contrast,
for the fault diagnosis of this stage, fault features can be
extracted easily, and the fault conditions can be easily
recognized. Major accidents can be avoided if the under-
lying reasons are diagnosed in a timely manner. However,
the meaning of mechanical fault diagnosis is providing
“treatment protocols” instead of “death certificates.”
Despite this situation, the severe fault diagnosis (late
stage diagnosis) is the “death certificate” of mechanical
equipment definitely. Therefore, engineers and managers
must master the degradation process of the equipment and
the dynamic evolutionary process of the failure, check
erroneous faults at the outset, and take the corresponding
remedial actions for different fault conditions. In other
words, we must transform from strong fault research to
weak fault research.
The weak fault is the fault in the early stage or potential

fault, whose symptoms are not obvious and feature
information is weak. The weak feature maybe occurs that
even the mechanical fault is in the later stage, but the fault
information is submerged by noise, thereby leading to the
fault feature weakening and the difficulties in recognizing
such faults. Therefore, future weak fault diagnosis must
study the effective weak fault feature enhance methods and
feature extraction methods with strong noise. To extract
weak faults accurately, the mapping relation of fault
evolution process and signs should be studied to ensure the
precision and effectiveness of weak feature extraction.

7.5 From component-level to system-level fault research

The component fault of mechanical equipment is mainly
focused on monitoring and diagnosing the faults for the
key components, such as gears, bearings, rotors. However,
the interaction between mechanical systems is often the
root cause of failure. The fault diagnosis of components
can only find out the induced failure, but cannot
completely cure the hidden problems of mechanical
systems. Therefore, future research should first regard the
mechanical equipment as a multilayered, non-linear
complex whole. First, the complex multi-dimensional
and multi-parameters system model is built. Then,
processing from the system integrity and relation occurs,
as do studying the dynamic characteristic, interrelation and
dependencies of different parts; and obtaining the primary
results of components fault. Finally, determining the root
cause of system failure and the primary failure occurs,
thereby resulting in the complete curing the hidden trouble
of mechanical system.
Given the growing popularity of condition monitoring,

prognostics, remote fault, the Internet of Things, Industry
4.0, and cloud computing, the volume of data available for
fault diagnosis has significantly increased. This large
volume of relevant data is now referred to as “big data” [1].
At present, quantitative studies are lacking to understand
the essential characteristics of the complexity of big data.
The traditional signal processing methods are not effective
in executing big data processing. Hence, the key
challenges in handling this high volume of data are as
follows: Diversity in data types (variety), uncertainties in
the data (veracity), and in some cases the speed of data
collection and decision making (velocity) for fault
diagnosis purposes [1]. The increasing amount of data
collected requires the development of new fault diagnosis
models. Compared with the conventional data-driven
methods that are unable to handle large-scale data, deep
learning is suitable for processing large-scale data. Popular
initiatives worldwide have focused on mechanical fault
diagnosis. In this case, renowned research groups have
made changes based on the new situations emerging in the
industry. For example, the Center for Intelligent Main-
tenance Systems in the US, as a National Science
Foundation Industry/University Cooperative Research
Center (I/UCRC), is a leader in the discovery of new
methods to assess machine degradation and predict the
health of industrial systems including e-manufacturing,
e-maintenance, cyber machine systems, cloud-based
machine monitoring and manufacturing, intelligent cyber
machine systems, and so on [275].

8 Concluding remarks

Machinery fault diagnosis is currently far from being
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considered a complete subject. Fundamental research on
machinery fault diagnosis and breakthroughs in the
relevant technologies are motivations for promoting its
development. In the near future, the basic research on
machinery fault diagnosis should be based on engineering
applications, various related research, the proposed solu-
tions for scientific problems, and on independent innova-
tions. Furthermore, programming and establishing the
standard database of fault diagnosis should be encouraged.
The repetition of construction and research can be avoided
by sharing the typical engineering cases as well as the
standard experimental data, algorithms, and verification
models. Finally, many key issues can be examined through
basic research that adopt the discoveries made in the fields
of mathematics, information, mechanics and materials
science, thereby leading to a deeper extension of current
research on machinery fault diagnosis.
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