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Abstract Electric power conversion system (EPCS),
which consists of a generator and power converter, is
one of the most important subsystems in a direct-drive
wind turbine (DD-WT). However, this component
accounts for the most failures (approximately 60% of the
total number) in the entire DD-WT system according to
statistical data. To improve the reliability of EPCSs and
reduce the operation and maintenance cost of DD-WTs,
numerous researchers have studied condition monitoring
(CM) and fault diagnostics (FD). Numerous CM and FD
techniques, which have respective advantages and dis-
advantages, have emerged. This paper provides an over-
view of the CM, FD, and operation control of EPCSs in
DD-WTs under faults. After introducing the functional
principle and structure of EPCS, this survey discusses the
common failures in wind generators and power converters;
briefly reviewed CM and FD methods and operation
control of these generators and power converters under
faults; and discussed the grid voltage faults related to
EPCSs in DD-WTs. These theories and their related
technical concepts are systematically discussed. Finally,
predicted development trends are presented. The paper
provides a valuable reference for developing service
quality evaluation methods and fault operation control
systems to achieve high-performance and high-intelligence
DD-WTs.

Keywords direct-drive wind turbine, electric power
conversion system, condition monitoring, fault diagnosis,
operation control under faults, fault tolerance

1 Introduction

The development and utilization of renewable energy
sources, such as wind energy, have received growing
attention as the global energy crisis and environmental
pollution worsen. Wind energy has become one of the most
promising types of renewable energy that can be
implemented on a large scale because of its relatively
low cost and abundant global supply [1]. Furthermore,
wind energy has been one of the fastest-growing renewable
energy resources in the world in the last three decades
according to statistical data. The new worldwide wind
power capacity reached 432.42 GW by the end of 2015,
with a recorded average growth of 21% in the past decades
[2]. This growth momentum is expected to continue as an
increasing number of countries set urgent targets for
sustainability and reduction of pollutant emissions.
Geared doubly fed induction generators (DFIGs)

systems have several drawbacks, such as short gearbox
life span and frequent maintenance. Compared with
conventional gearbox-coupled wind turbine generators,
permanent-magnet synchronous generators (PMSGs) in
direct-drive wind turbines (DD-WTs) allow for reduced
overall size, low installation cost, and low maintenance
cost. PMSGs require a simple and flexible control method.
Furthermore, they can quickly respond to wind fluctuations
and load variation. For large-capacity wind turbines,
direct-drive permanent-magnet synchronous generators
(DD-PMSGs) have become attractive because of their
high efficiency, high power density, and robust rotor
structure. The attractiveness of DD-PMSGs is further
enhanced with the improvements in the characteristics of
permanent magnets and the reduction in the cost of
materials. In addition, water cooling systems are generally
unnecessary for PMSGs [3]. Therefore, DD-WTs are
expected to may be the future trend in the utilization of
wind energy, particularly for offshore applications.
A DD-WT, which always operates in variable-speed
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constant-frequency mode, is connected to the power grid
through full-power converters [4]. As shown in Fig. 1, a
DD-WT is typically composed of blades, a hub, a
generator, power converters, a pitch system, a tower, a
yaw system, and an auxiliary hanger [5]. A low-speed
PMSG is utilized in a DD-WT [6–7].

Figure 2 shows the control system of a DD-WT. The
control system consists of the WT main control system and
power converter control system. The DD-WT is divided
into two subsystems, namely, wind energy conversion
system (WECS) and electric power conversion system
(EPCS). The WECS, which converts wind energy into

mechanical energy, is divided into four sections, namely,
blades, hub, pitch system, and yaw system. The EPCS,
which converts mechanical energy into electric power,
comprises a PMSG and a power converter.
Figure 3 shows the structure of EPCS, which plays a key

role in the DD-WT. The PMSG converts mechanical
energy into variable-amplitude and variable-frequency
electric power, which is then converted by the power
converter into electric power with constant amplitude and
frequency. The grid-side PWM converter converts the
alternating current (AC) into direct current (DC), and the
machine-side PWM inverter converts DC into AC with
constant amplitude and frequency.
In a hostile operating environment, under harsh and

highly variable weather conditions, the difficulty and cost
of maintenance and operation of DD-WTs increase.
Therefore, DD-WTs demand a high degree of maintenance
to provide a safe, cost-efficient, and reliable power output
with acceptable equipment life.
Most faults in a DD-WT occur in the generator and

power converter, which account for 60% of all failures [8].
Thus, condition monitoring (CM), fault diagnostics (FD),
and operation control under EPCS faults should be
investigated to ensure reliable and safe operation of WTs
(including grid and equipment) and to reduce the
maintenance cost. Numerous techniques for CM, FD,
and operation control under faults have been studied.
Several of these techniques have shown considerable
potential, whereas others present problems due to their
inherent limitations. However, few published papers have
provided comprehensive overviews of CM, FD, and
operation control of EPCSs in DD-WTs under faults
[9–10].
The objective of this paper is to provide a detailed

overview of the methods and techniques for CM, FD, and

Fig. 1 Configuration of a typical DD-WT
1–Blades; 2–Pitch system; 3–Generator stator; 4–Generator rotor; 5–
Yaw system; 6–Anemometer; 7–Tower; 8–Auxiliary hanger; 9–Power
converters; 10–Bearing

Fig. 2 Control system of a DD-WT
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operation control of EPCSs in DD-WTs under faults.
Different existing methods are sorted and compared, and
future research directions are recommended.

2 Condition monitoring of EPCSs in DD-WTs

Condition monitoring is conducted to monitor the status of
critical components of an EPCS in a DD-WT, such as the
PMSG, main bearings, and power converter. Monitoring
can be either on-line, in which instantaneous feedback on
the condition are provided, or off-line, in which data are
collected at regular time intervals with measurement
systems that are not integrated into the equipment [11].

2.1 Condition monitoring of PMSGs

2.1.1 Condition monitoring of stators of PMSGs

The stator of a PMSG is mainly composed of a stator core,
windings, and base. The stator core and base are subject to
various forces transferred from the drive chain of the DD-
WT. Consequently, damage, cracks, and deformation are
likely to occur in both of these parts after a long service
period. Being costly and difficult to maintain, the stator
base and core are not replaced even if they incur certain
faults. As a result, safety during operation is compromised.

Therefore, the stator core and base should be monitored in
real time. The methods for monitoring stator windings are
listed in Table 1 [12–34]. Current condition-monitoring
methods include penetrate inspection, ultrasonic inspec-
tion, magnetic testing, X-ray detection, laser holographic
detection, and acoustic emission technology.
When insulation damage occurs between the silicon

steel sheets of the stator core, eddy currents may cause the
stator core to overheat and consequently induce ground or
phase-to-phase fault. The main methods for detecting the
faults in the stator core are iron loss method [35] and
electromagnetic core imperfection detector test [36].
The main stator winding faults include inter-turn short

circuit, overheating, and insulation failure. The inter-turn
short circuit is the foremost fault in the stator windings. If
the incipient inter-turn fault is not monitored or the
corresponding measures are not implemented in a timely
manner, the more serious phase-to-phase or turn-to-ground
fault may emerge [37]. At present, the practical monitoring
methods for the inter-turn short-circuit fault are classified
into the following five types:
1) Methods based on temperature signal analysis
The continuous monitoring of temperature signals can

facilitate the observation of the winding insulation in the
DD-WT and the condition of the wind turbine [25–29].
When the temperature in the DD-WT exceeds a certain
value, the DD-WT must be shut down for maintenance. At
present, thermistors and thermocouples are used to monitor
the temperature in the stator slot, base, and cooling system
[30]. Determining the best installation location for the
temperature sensors for improved monitoring effectiveness
is the main challenge in this type of method.
2) Methods based on partial discharge
Aside from temperature monitoring, partial discharge

monitoring has become the most extensively used method
for monitoring the stator winding insulation over the past
25 years, with more than 50% of large-scale North
American utility generators employing this technology
[31,32]. Partial discharge on-line monitoring systems

Fig. 3 Structure of EPCS in DD-WT

Table 1 Monitoring methods for stator windings

Methods References Monitoring results Limitations

Spectral analysis of stator
current

[12–14] Monitoring stator winding fault Judgment is not accurate, and it is related
to load and power supply reliability

Symmetrical component
method

[15,16] Monitoring of inter-turn short-circuit fault Insulation is not monitored

Park vector analysis of stator
current

[17,18] Monitoring of inter-turn short-circuit fault Relationship between the ellipticity of the
trajectory of (id, iq) and the fault is unclear

Axial magnetic flux leakage [19–21] Monitoring of inter-turn short-circuit fault as well as
phase-to-phase and phase-to-ground insulation deterioration

Installation of multiple probes with high
concentricity is required

Vibration signal analysis [22–24] Monitoring of inter-turn short-circuit fault and winding
insulation deterioration

Multiple vibration sensors should
be installed

Temperature signal analysis [25–30] Monitoring of inter-turn short-circuit fault and
phase-to-ground insulation deterioration

Temperature sensors, which are difficult
to locate, should be installed

Partial discharge [31–34] Monitoring of inter-turn short-circuit fault and
insulation deterioration

High cost
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based on high-pass filters have been widely used [33].
However, extracting the discharge signals in strong-noise
jamming environments is an issue in this type of method
[34].
3) Methods based on vibration signal analysis
The inter-turn short circuit or interphase short circuit can

cause an asymmetrical magnetic field in the air gap and
form an electromagnetic pulse wave of a certain frequency;
this pulse wave induces vibration in the DD-WT [22–24].
Numerous factors can cause vibration; thus, methods based
on vibration signal analysis are not recommended.
4) Methods based on axial flux
Faults can be detected through shaft voltage and axial

magnetic flux leakage [19–21]. However, methods based
on axial flux have two drawbacks that can weaken
monitoring efficiency [19]. First, multiple probes with
high concentricity must be installed at the end of the
winding coil. This configuration is difficult to realize.
Second, the dependence on the load is strong.
5) Methods based on stator current signal
A. Spectral analysis of stator current
The spectral analysis of the stator current is based on fast

Fourier decomposition. However, frequency spectrum
analysis is easily affected by low-frequency resolution,
and fault characteristic harmonics are difficult to extract. In
addition, the monitoring accuracy under loaded conditions
is low, and it is affected by inherent DD-WT asymmetry
and power fluctuations [12–14].
B. Symmetrical component method
Monitoring a negative-sequence component of a stator

current was proposed in Ref. [15] to determine whether an
inter-turn short circuit has occurred. Nonetheless, this
approach has limitations in practical applications as the
experimental results show that the negative-sequence
component of the current significantly changes along
with the fluctuations in the power supply [16].
C. Park vector analysis of stator current
Park vector analysis of the stator current can be

conducted in inter-turn short-circuit fault monitoring
[17,18]. Under normal conditions, the trajectory of (id,
iq) is a circle. If the fault of the inter-turn short circuit
appears in a one-phase winding, then the balance of the
three-phase stator current will be destroyed. As shown in
Fig. 4, the trajectory of the Park vector will change from a
circle to an ellipse. However, certain problems in this
method have to be solved, such as the relationship between
the ellipticity of the trajectory of the Park vector and the
inter-turn short-circuit fault.

2.1.2 Condition monitoring of rotors of PMSGs

The condition monitoring of rotors of wind power
generators mainly uses the following indicators: Speed,
torque, vibration, and temperature. Rotor faults mainly
include rotor asymmetry, rotor eccentricity, and rotor
demagnetization faults. Rotor asymmetry accounts for

35% of the total faults, and rotor eccentricity accounts for
40%.
1) Rotor asymmetry
The vibration monitoring method for rotor asymmetry

faults uses vibration sensors to monitor the generator. The
output signal of the vibration sensor is compared with the
known fault characteristic frequency to determine fault
properties and faulty parts [38]. A power spectrum
extraction method based on wavelet energy feature
coefficient was proposed in Ref. [39]. In this method,
vibration signals generated from operating rotating
machinery are analyzed.
2) Rotor eccentricity
An analytical calculation method for the static magnetic

field of the eccentric gap was proposed in Ref. [40] for
eccentricity detection; this method is based on the
equivalent residual magnetism method. An alternate pole
PMSG analytical model was established in Ref. [41] under
the condition of rotor eccentricity. Both Poisson’s and
Laplace’s equations were derived using a perturbation
method. The magnetic field distribution of the motor
eccentric gap was obtained to calculate the extent of rotor
eccentricity by solving both equations.
3) Rotor demagnetization
In recent years, advancements in electromagnetic design

and finite element analysis of electromagnetic and
temperature fields of the PMSG have promoted the
application of PMSGs in DD-WTs. However, rotor

Fig. 4 Vector trajectory of Park vector. (a) Normal operation;
(b) A phase 6 turns short circuit; (c) B phase 18 turns short circuit;
(d) C phase 18 turns short circuit
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demagnetization adversely affects the reliability and
stability of the DD-WTs in operation. Rotor demagnetiza-
tion has three main causes. The first is overheating or the
rise of the temperature beyond the threshold for the
permanent-magnet material used. The second is large
stator winding current, which exceeds the allowed scope
for permanent magnets. The third is the gradual decay of
the magnetic field of the permanent magnet after a long
service time; this problem seriously affects PMSG
performance and power efficiency [42,43]. Once demag-
netization occurs in a PMSG, the output power quality
deteriorates. Such deterioration can adversely affect the
entire grid. Thus, on-line monitoring and evaluation of
PMSG demagnetization rotor faults are necessary [44].
The thermal and time stabilities of the rare-earth

permanent-magnet materials, such as cobalt and NdFeB,
were studied in Ref. [45], and mathematical expressions
for demagnetization were obtained under specific condi-
tions. The influence mechanism of the alternating magnetic
field produced by the phase currents on the permanent-
magnet materials was investigated in Ref. [46]. Currently,
the most commonly used method to prevent demagnetiza-
tion is to optimize the magnetic circuit structure and reduce
the risk of magnetic loss by optimally designing the motor
[47]. These methods belong to static prevention measures.
In off-line detection methods, the generators are shut down
to detect the demagnetization fault when apparent failure
occurs. An off-line detection method called “D-the
Module” flux observation method was proposed in Ref.
[48]; the method can respond to a change in the permanent-
magnet chain. An improved back-electromotive force
(EMF) method was presented in Ref. [49]; the method
can be used to estimate the permanent-magnet flux.
However, these two methods can only be used to observe
flux linkage amplitude fluctuations of permanent magnets
in a fixed direction, and the latter convergence is slow
under low speeds. Thus, these methods are difficult to use
in practical applications. The changing rotor flux is used to
verify control robustness in Ref. [50]. In Ref. [51], a
reactive power feedback method is employed to compen-
sate for torque ripple caused by flux linkage. However,
these methods only consider flux amplitude fluctuation,
and the flux linkage wave of the amplitude jump is given.
An on-line monitoring method for permanent-magnet flux
linkage was proposed in Ref. [47]; the method is based on
Kalman filter. This method achieved the optimal operation
of a PMSG under the magnetic field fluctuations of the
permanent magnet. The methods for demagnetization
monitoring their features are shown in Table 2 [45–49,51].

2.1.3 Condition monitoring of bearings of PMSGs

Three methods are extensively used in monitoring the
condition of PMSG bearings, namely, temperature
monitoring-based, vibration analysis-based, and acoustic
measurement-based methods [52,53].

1) Temperature monitoring-based method
Temperature monitoring is one of the most commonly

used condition monitoring methods for the bearings of
PMSG. Temperature is measured with a series of sensors.
The temperature measurements can be used for predictive
and preventive maintenance. Sensors of various types,
such as resistance thermometers, resistance temperature
detectors, and optical pyrometers, can be used in
temperature measurement [54]. Every component or
subcomponent has a set temperature operating range. If
the real-time temperature is higher than its threshold, then
the information is extracted and the fault is defined.
However, this method is slow, thereby delaying the
rectification of the signals, and is less efficient than other
methods for incipient and precise detection.
Temperature data from a supervisory control and data

acquisition (SCADA) system were analyzed in Ref. [55].
The generator bearings in a wind farm were examined and
several abnormal PMSGs were detected. In Ref. [56], a
novel condition monitoring method based on the speed of
the DD-WT was proposed. The method was proved
effective in monitoring bearings under varying wind
speeds.
2) Vibration analysis-based method
The vibration analysis method has been widely used for

fault diagnosis in rotating machinery and other generator
systems. Favorable results have been achieved. This
method is an effective condition monitoring technique
for PMSG bearings. Accelerometers are often used as
sensors in the vibration analyses of DD-WTs. These
sensors allow for the preprocessing and post-processing of
the vibration data in the time, frequency, and time-
frequency domains. The performances of commonly used
time-domain and frequency-domain vibration analysis
methods are affected by the loads of wind turbines,
which are smoothly variable. The fast Fourier transform
(FFT) analysis method in signal processing needs to be
improved. However, information can be extracted from
both time-domain and frequency-domain signals by signal-
processing algorithms and alarms, such as envelope signal
and narrowband envelope alarms. Several statistical
indicators, such as root mean square, peak-to-peak
amplitude, and crest factor, can be used to extract useful
information from acquired vibration signals [57,58].
Vibration analysis has been proved an efficient method

to achieve improved frequency resolutions at both low and
high frequencies. However, complex aliasing occurs in the
high-frequency portion.
3) Acoustic measurement-based method
In the acoustic measurement-based method, acoustic

sensors and sound-level meters are used to detect the
components [59,60]. These sensors have a microphone that
transforms variations or pressure levels into a voltage
signal, which can be recorded on a meter [61]. Devices that
have anti-aliasing properties, dynamic range, and high
sampling rate are ideal for acoustic measurement [61,62].
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Acoustic emission (AE) technique is effective for bearing
health monitoring. AE is a transient impulse caused by a
rapid release of strain energy in a solid material under
stress conditions, such as mechanical or thermal loads. The
AE technique is mainly applied to detect cracks. Therefore,
it is often used to monitor bearing faults and shaft cracks.
Sound pressure and intensity determine the accuracy of
this method [53,63–64]. Surface and subsurface micro-
damage can be captured using this technology. This
method is also more inexpensive and simpler than other
techniques [60]. Thus far, AE has been proved more
effective than the vibration analysis-based method in
detecting faults at an early stage [64].

2.2 Condition monitoring of power converters

Reference [65] asserted that power converters in large-
capacity PMSGs exhibit high failure frequency. The
downtime caused by the failures of the electronic
subsystem constitutes approximately 24% of the total
DD-WT downtime. Studies have revealed that the
maintenance cost for power electronics is high, particularly
for offshore PMSGs.
Data-driven methods and physical models are usually

adopted in monitoring the condition of insulated gate
bipolar transistor (IGBT) modules of wind power con-
verters. Data-driven methods are either based on the end
characteristic of the device or based on the sensor signal.
The end characteristics of an IGBT are closely related to
the degree of failure; thus, a thermal expansion coefficient
mismatch (thermal stress) can lead to wire and welding
layer fatigue of the IGBTas the power cycles increase. The
IGBT gate valve voltage was studied in Ref. [66] from the
aspects of transconductance and Tong state voltage drop
under variable temperature. The experimental results
showed that gate valve voltage, transconductance, and
pressure drop of the electrical components can be used as
parameters for monitoring the state of an IGBT module.
However, the change in the power device end signal is

weak, and it can be easily affected by other factors, such as
temperature change and measurement difficulty. Therefore,
depending only on the device end characteristics of the
IGBT module for monitoring the state of the module may
be unreliable in practical applications.
A method for monitoring the signal of the sensor was

adopted in Ref. [67] to examine the disconnection problem
in an IGBT.
As shown in Fig. 5, the S-terminal leading to the IGBT

emitter is used to access the resistance, Rc, and auxiliary
measurement circuit for condition monitoring. When the
lead wire is off, the resistance values of the S and E ends
change. Therefore, these values can be used to monitor the
disconnection of IGBT. Although additional data can be
obtained easily by increasing the amount of sensors inside
the power module, the condition monitoring method based
on sensor signals is limited because of the changing
operating conditions of the wind power converter and the
temperature of large inertia. A method based on model
considering the correlation of the aging degree and the
strength of the captured character signal should be
established to achieve accurate condition monitoring for
power converters in DD-WTs. This method can be used to
characterize the remaining life of the module prior to
failure by a scale process. Combining converter status
monitoring and wind turbine/wind farm-level SCADA
system to monitor the status of the IGBT module of a wind
power converter presents a new method (Fig. 6). In
addition, a model-based method based on the condition
monitoring parameters and a data-driven method for
evaluating the trend of the feature data can be combined
to improve the effectiveness of the health status monitoring
of a power module [68].

2.3 Supervisory control and data acquisition (SCADA)

An SCADA system, which is used in DD-WTs, has the
following basic functions [69]: 1) Real-time monitoring
function; 2) alarm function; 3) historical data down-

Table 2 Methods for demagnetization monitoring and their features

Methods for demagnetization detection References Features

Static prevention methods [45] Permanent-magnet materials were studied, and an expression for demagnetization in specific
cases were derived by this method

[46] The effect of the alternating magnetic field on the permanent-magnetic material was studied
by this method

Off-line detection methods [48] The method of “D-the Module” flux observation was proposed. The method can respond to the
changing flux linkage, but it can only observe fluctuations in the flux amplitude in a fixed direction

[49] An improved back-EMF method was proposed. The method can be used to estimate the flux
linkage, but it can only observe the fluctuations in the flux amplitude in a fixed direction

[51] A reactive power feedback method to compensate for the torque ripple caused by flux linkage was
proposed. However, the method can only consider the fluctuations in the flux linkage amplitude

On-line detection methods [47] An on-line flux linkage monitoring method based on the Kalman filter was proposed. The method
can ensure the optimal operation of PMSGs under fluctuating magnetic field of the permanent

magnet
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loading; 4) database functions; 5) landing function; and
6) self-diagnostic function. The network topology of the
SCADA system is shown in Fig. 7.
The condition monitoring of important components,

such as power chain and transmission chain, and
supporting parts can be achieved by modeling and
analyzing the data of the SCADA system. In Ref. [70],
an on-line evaluation scheme based on a regression
prediction model and SCADA alarm system was proposed,
and a regression forecasting model based on a support
vector regression algorithm was established. In the model,
a portion of the monitoring project in the SCADA system
is the input, and the active power of the wind power
generator is the output. In Ref. [71], a nonlinear condition
estimation technique was used as a modeling method; the
wind vibration characteristics of a generator tower and
their influencing factors were analyzed in detail, and a
tower vibration model was established. In Ref. [72],
SCADA engine room vibration data and other operational
parameters were extracted. Tower modal frequencies and
the corresponding vibration modes were obtained using a
finite element simulation method, and the effects of wind
speed, rotating speed, and pitch and yaw motions on the
vibration were analyzed.

3 Fault diagnosis of EPCSs in DD-WTs

3.1 Fault diagnosis of PMSGs

3.1.1 Fault diagnosis of stators of PMSGs

Current methods for the fault diagnosis of stator windings
are grouped into two: Model-based fault identification
methods and signal detection-based diagnostic methods.
For the first group of methods, a mathematical model of
motor fault is established for fault identification, and
parameter estimation method is a representative of this
group. In the second group of methods, fault feature
information is extracted from the current, voltage of the
PMSG, vibration and magnetic signals.
Stator faults include inter-turn short circuit, overheating,

insulation faults, and cracks and deformation failure in the
core and base, as shown in Table 3 [31,73–92]. The
diagnostic methods for phase-to-phase and turn-to-ground
short-circuit faults are similar to inter-turn short-circuit
fault diagnosis methods.
1) Inter-turn short-circuit fault diagnosis methods
At present, the three commonly used types of methods to

diagnose inter-turn short-circuit faults are the following:
Analytical model-based methods, signal-based diagnostic
methods, and knowledge-based diagnostic methods:
A. Analytical model-based diagnostic methods
The accuracy of the diagnosis based on a mathematical

model is easily affected by environmental conditions, loads
on the DD-WT, and other factors. Therefore, the results
based on the model analysis are likely to lead to
misjudgment [73,74]. Fault diagnosis in DD-WTs based
on parameter identification method need to be studied
further [75,76].
B. Signal-based diagnostic methods
Numerous operational parameters of DD-WTs are

detected, such as voltage, current, power, flux, speed, and
vibration. The methods based on signal processing, such as
current spectrum analysis, motor current signature analysis,
Fourier transform, symmetrical component method, coor-
dinate transform, and wavelet transform, are adopted to
diagnose the operating conditions of DD-WTs [77–82].

Fig. 5 Equivalent circuit of a power module

Fig. 6 Condition monitoring method for wind power converters based on SCADA
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C. Knowledge-based diagnostic methods
The knowledge-based diagnostic methods for the inter-

turn fault include expert system [83], fuzzy logic [84,85],
information fusion [86], pattern recognition [87], and
artificial neural network (ANN) [88]. The diagnostic
process in which system modeling and fault modeling
are eliminated can be divided into three steps: Fault signal
extraction, fault identification, and fault evaluation. The
drawbacks of knowledge-based methods include local
optimum trapping and overlearning.
A single-fault diagnosis technology can hardly meet the

requirements for the fault diagnosis of DD-WT equipment.
Thus, integrated intelligent diagnostic systems have
become a hot research topic in the fault diagnosis of DD-
WTs. For example, combinations of fuzzy logic and ANN,
wavelet transform and information fusion, chaos theory
and ANN, fuzzy neural network and expert system, Park
vector method and information fusion were investigated.

The characteristics of stator winding faults are unremark-
able at the early stage. Thus, an accurate diagnosis is
difficult to achieve under complex external conditions.
However, several features may manifest in a fault and
several faults may manifest the same features. In summary,
the accurate localization and timely diagnosis of stator
inter-turn short-circuit faults in DD-WTs are difficult to
achieve with only a single theory or method as basis.
2) Diagnostic methods for insulation faults
The partial discharge phenomenon is the most obvious

early sign of insulation damage; thus, the insulation
condition of stator windings can be evaluated by checking
for partial discharge. Methods based on partial discharge
have gradually matured. The rated voltages of the
generator and motor are higher than 4 kV. For this reason,
the results of on-line partial discharge testing are highly
reliable. A portable test instrument called TGA-B is
available for this purpose [89]. A by-product of the partial
discharge, ozone can also be used to monitor the insulation
condition [31].
3) Detection methods for cracks and deformation in

stator core and base
The stress nephogram database, stress nephogram

module, critical crack-length calculation module, and
inspection cycle module were established by the finite
element analysis software platform to detect cracks and
deformation in the stator core and base [90–92]. These
methods provide the basis for the timely detection and
treatment of incipient faults. Electrical diagnostic methods
can also be used. A deformation in the stator core or base
can lead to an unbalanced air gap. Inevitably, a specific
harmonic and noise will occur. In core and base
deformation diagnosis, the voltage, current, and vibration
signals of the generator are first extracted and then
processed using a wavelet transform to obtain its features.

3.1.2 Fault diagnosis of rotors of PMSGs

Faults that frequently occur in the rotors of PMSGs include
rotor asymmetry, eccentricity, and demagnetization.
1) Rotor asymmetry
Rotor asymmetry is mainly due to the mass eccentricity

of the rotor system and other defects in the rotor. The
asymmetrical quality of a rotor, which is also known as
initial asymmetry, can be attributed to manufacturing

Fig. 7 SCADA network structure diagram

Table 3 Stator fault types

Stator fault types References Number of faults Diagnostic methods

Inter-turn short circuit [73–88] 50 a. Model-based diagnostic methods
b. Signal-based diagnostic methods

c. Knowledge-based diagnostic methods

Insulation fault [31,89] 45 TGA-B diagnostic instrument; O3 monitoring

Cracks and deformation in core and base [90–92] 5 a. Finite-element diagnosis
b. Electrical signal-based diagnosis
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errors, rotor assembly errors, and uneven material. The
main rotor defects are local damage on and loss of rotor
parts as a result of corrosion, wear, medium scale, and
fatigue stress. In addition, the damage on blades commonly
induces the defects in the rotors of PMSGs. As the unit
capacity of DD-WTs increases, so does the blade diameter.
Freezing and blade material loss promote rotor imbalance,
which causes the entire generator structure to vibrate.
Consequently, fatigue stress is produced in the drive chain,
and the service life of the unit is significantly reduced.
Most of the existing studies extract fault features from the
electrical signals of the PMSGs. The influence of mass
unbalance of the wind turbine blades on the electric power
of a PMSG was studied by analyzing the formation
mechanism of this fault in Ref. [93]. The rotor asymmetry
caused by blade mass imbalance was studied in Ref. [94];
the frequency and time-frequency domain features of the
output power and vibration signals obtained from the
PMSG were analyzed to detect asymmetry in the rotor.
However, this method is unsuitable for large-capacity
WTs, and its scope of application is narrower than those of
the methods based on spectral and time-frequency domain
analyses of vibration signals [95].
2) Rotor eccentricity
Rotor eccentricity is due to the uneven air gap between

the rotor and stator. Many factors can induce rotor
eccentricity, such as motor bearing deformation due to
long-term operation, low machining accuracy, and impre-
cise installation. An additional component in the stator
current will appear after this fault occurs. Thus, a signal
detection method based on the output current, voltage, and
power can effectively identify rotor eccentricity [96]. In
Ref. [97], output signals were analyzed using a continuous
wavelet transform to detect generator rotor eccentricity
failure. This method is commonly used to detect rotor
eccentricity in engineering.
3) Rotor demagnetization
Rotor-demagnetization fault-diagnosis methods are

divided into those based on signal transformation and
those based on an equivalent magnetic circuit.
A. Demagnetization fault diagnosis based on signal

transformation
A PMSG excitation-loss fault can induce a particular

stator current harmonic [98,99]. This harmonic component
can be the basis for analyzing the stator current spectrum to
judge whether a failure has occurred. The main methods
for demagnetization diagnosis based on signal processing
include Hilbert-Huang transform (HHT) [100], continuous
wavelet transform (CWT) [101], discrete wavelet trans-
form (DWT) [101], and FFT [102]. The entire time-
frequency energy distribution of a signal is given by HHT,
which is suitable for the analysis of nonlinear and non-
static signals. An empirical mode decomposition method
was proposed in Ref. [100] for the analysis of the stator
current to obtain the intrinsic mode function. For each
intrinsic mode function, the space signal is converted into a

time-frequency signal by the HHT, the instantaneous
frequency is gained, and then fault occurrence is
determined. The simulation and experimental results
showed that this method can determine steady-state
dynamic situations of demagnetization fault. CWT and
DWT were proposed to analyze the stator current in a
previous study [101]. The application of specific harmo-
nics, namely, 1/3 fs (full scale) and 5/3, can be used as
basis to judge whether a fault has occurred. The simulation
results showed that CWT can rapidly diagnose faults, and
DWT can acquire the entire spectrum of the stator current.
Setting the inductance value to 1 was proposed in Ref.
[102] so that the short circuit current would not exceed the
rated current of the electrical system, but the machine
performance would decline. The methods for diagnosing
demagnetization at different rotational speeds are divided
into two. In the first group of methods, FFT is used to
analyze the stator, harmonic, and zero-sequence currents.
In the second group of methods, the zero-sequence and q-
axis currents are analyzed on the basis of the rated torque.
Although several methods can diagnose demagnetization
fault, they do not apply to changing loads. Furthermore,
harmonic frequency, which is the basis for judging fault
occurrence, varies with speed. Therefore, this type of
method is relatively complex to implement.
B. Demagnetization fault diagnosis based on equivalent

magnetic circuit
An equivalent magnetic network is based on the

principle of equivalent magnetic flux. Flux distribution,
which is relatively uniform, geometry and more rules part
is divided as a unit in the motor, and is calculated the
equivalent permeability. Through the node connection
between each unit, the magnetic potential of each node
and/or relevant parameters of the magnetic flux unit are
obtained using the similarities between the magnetic
network and electric network. A magnetic network
model presents high precision and significantly reduces
computer storage and computing time. This model
provides an effective calculation method for the optimal
design of permanent-magnet motor and dynamic perfor-
mance simulations. A semi-analytical equivalent model
was proposed in Ref. [103], and the equivalent magnetic
network was used to simulate the performance of a
permanent-magnet motor. The EMF and electromagnetic
torque calculated or measured under faults are compared
with that under normal operation of the motor to judge
whether demagnetization fault has occurred. Compared
with traditional methods, this method is characterized by
relatively low accuracy, but its speed is high. The various
demagnetization fault diagnosis methods and their features
are summarized in Table 4 [100–103].

3.1.3 Fault diagnosis of bearings of generators

DD-PMSG spindle bearings are key components of DD-
WTs. The main shaft bearing of a DD-WT suffers from
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continuous damage because of complex operating condi-
tions, such as high torque, fluctuating rotation speed, and
transmission load mutation. The operating conditions of
the main bearings directly affect the performance, life, and
reliability of wind turbines. Generally, the main bearings of
DD-WT are spherical roller bearings. Spindle bearings
must have the heart function owing to the influence of the
stress from the wind rotor and the deformation of the
spindle.
DD-WTs can be divided into two types according to the

number of main bearings, namely, double-bearing wind
turbines and single-bearing wind turbines. Figure 8 shows
a diagram of a double-bearing outer-rotor permanent-
magnet DD-WT, which was designed by Xinjiang Gold-
wind Science & Technology Co. Ltd. [104]. Together with
Vensys, Goldwind produced a permanent-magnet DD-WT
[105]. Component 10 in Fig. 1 is the bearing of a single-
bearing rotor permanent-magnet DD-WT designed by
XEMC. XEMC manufactures MW-class wind turbines,
with 2 MW permanent-magnet DD-WT as its key product
[106–108]. Researchers in China and other countries have
also investigated the faults of main bearings.
On the basis of the nonstationary and nonlinear

characteristics of the vibration signals of wind turbine

bearings, a previous study [109] proposed a DD-WT
bearing fault diagnosis method based on a least-squares
support vector machine (LS-SVM) and intrinsic time
deposition (ITD). First, ITD was used to decompose
complex vibration signals effectively and derive several
intrinsic rotational components. Spectral analysis was
conducted to examine the instantaneous amplitude of the
intrinsic rotational component with an apparent periodic
shock component. The amplitude of the fault characteristic
frequency was extracted as the feature vector for bearing
fault diagnosis, and then the LS-SVM was used as a
classifier to identify the operating status of the DD-WT
bearings. The experimental results showed that the fault
diagnosis method based on ITK and LS-SVM can
effectively identify the DD-WT bearing fault [110–112].
The feature vectors obtained from the fault data of the
experiment of Case Western Reserve University were
presented and studied in Ref. [113]. The standard SVM
method was combined with other parameter optimization
methods, such as cross-validation, grid search, particle
swarm optimization, and genetic algorithm, to optimize the
parameters. The condition for the signal was classified and
identified according to the conditions of the bearing,
namely, the fault conditions of the inner ring, outer ring,
and rolling body [114]. The selected depths of the bearing
fault were 7 and 21 mil (1 mil = 0.0254 mm) on the basis of
the fault severity. A total of 20 samples were included in
each fault training set, and testing sets were constructed for
testing. The most common SVM kernel function is the
radial-basis kernel function [115]. The classification results
for the optimized parameters were analyzed. The genetic
algorithm exhibited the best parameter optimization
capability, whereas the SVM was superior to other
methods in terms of accuracy in classifying fault signals
in wind turbine bearings.

3.2 Fault diagnosis of power converters

The power converter is a key component of the EPCS;
thus, its reliability has captured the interest of researchers
and engineers on a global scale. Power converter failures

Table 4 Demagnetization fault diagnosis methods and their features

Demagnetization fault diagnosis
methods

Methods presented
in references

References Features

Demagnetization fault diagnosis
based on signal transformation

HHT [100] This method can detect demagnetization fault
under steady-state dynamic situations

CWT [101] This method can rapidly diagnose faults

DWT [101] This method can acquire the spectrum of the
stator current

FFT [102] This method is capable of detecting demagne-
tization, but it is not applicable under conditions

of changing loads and variable speed

Demagnetization fault diagnosis
based on an equivalent magnetic circuit

Semi-analytical
equivalent model

[103] The accuracy of calculation is low, but the
computational speed is fast

Fig. 8 Diagram of a double-bearing outer-rotor permanent-
magnet DD-WT
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have the highest frequency among the faults in DD-WTs
[116,117]. Power converter failures include open-circuit
and short-circuit faults. They are caused by thermal stress,
high electrical, wire disconnection, or gate driver failure
[118–121].
The Park vector approach was first proposed in Ref.

[122] as a diagnostic tool for voltage source inverter faults.
However, this approach is unsuitable for integration into
the drive controller because it requires highly complex
pattern-recognition algorithms. In Ref. [123], a new
algorithm was presented for multiple open-circuit fault
diagnosis in full-scale back-to-back converters, which are
used in the PMSG drives of wind turbine systems. The
proposed method is based on a Luenberger observer and an
adaptive threshold, which can independently guarantee a
reliable diagnosis of the drive operating conditions. In Ref.
[124], a fault-detection method was proposed for an open-
circuit fault of the switches of grid-connected neutral-point
clamped inverter systems. The proposed method can not
only detect the fault condition but also identify the location
of the faulty switch in two fundamental periods without
using additional sensors or performing complex calcula-
tions. Open-circuit fault diagnosis of two power converters
of a PMSG drive for wind turbines was presented in Ref.
[125]. A diagnostic method was proposed for each power
converter to allow for real-time detection and localization
of multiple open-circuit faults. The proposed methods can
be suitably integrated into the drive controller and can
trigger remedial actions.
Short-circuit faults due to unpredictable factors can

adversely affect converters in DD-WTs. This problem was
addressed in 2003 when a DC–AC converter known as Z-
source inverter (ZSI) was proposed by Peng [126].
The reliability of the inverter is substantially improved
because the shoot-through state, which is forbidden in the
voltage source inverter, is feasible in ZSI. ZSI can prevent
short-circuit faults in the power converters of EPCS in DD-
WTs.

4 Operation control of EPCSs in DD-WTs
under faults

The large-scale centralized energy transport causes a DD-
WT in a grid to present unbalanced harmonic distortion
after a long operating period. This distortion, in turn, leads
to current harmonic distortion and various negative effects,
including fluctuations in power, torque, and vibration. DD-
WT serious faults lead to grid operation failures. In recent
years, large-scale off-grid accidents have occurred in
several wind farms, including those in Yumen, Gansu, and
Helan Mountain, Ningxia [127]. These accidents demon-
strate that DD-WT failures pose challenges to the safety,
stability, and efficiency of a grid. Not only does DD-WT
fault downtime result in economic losses for wind farms
but off-grid faults also result in grid failure, which

negatively affects the stable operation of the grid. Faults
that may occur during operation must be considered to
meet increasing demand for high reliability. In the research
on the protection and control of PMSGs and power
converters, fault-tolerant (FT) operation control technolo-
gies under typical faults have been designed. The control
technologies can improve the equipment operation safety,
enhance the stability of grid operation, reduce the
operation cost, and avoid devastating accidents.
Operation control under faults, that is, the operational

control technology for EPCSs in the DD-WTs under fault
conditions, mainly includes: 1) On-line monitoring and
condition maintenance technology, 2) FT control for
PMSGs and power converters, and 3) operation control
under grid faults.
1) On-line monitoring and condition maintenance

technology
On-line monitoring and condition maintenance is an

extended operation control under faults. It is necessary to
guarantee that the components continue to perform the
functions for which they are designed. The basic objective
of an on-line maintenance activity is to deploy the
minimum resources required to ensure that the components
perform their intended functions properly, safeguard
system reliability, and facilitate recovery from a break-
down [128].
2) FT control of PMSGs and power converters
The concept of fault tolerance [129] was proposed

formally in a seminar on control held in the United Santa
Clara University in the 1980s. In engineering systems that
consists of power electronic equipment similar to converters
in DD-WT, three fault tolerance techniques are widely used,
namely, hardware redundancy [130], software redundancy
[131], and the combination of both [132]. FT grid converters
and PMSGs for EPCSs in the DD-WTs are strongly related
to the system topology adopted in normal operation. Various
FT control strategies, which differ in terms of the machine
and fault type, are presented in the literature.
3) Operation control under grid faults
Grid voltage faults include symmetrical grid voltage

drop and asymmetrical grid voltage drop. The latter
presents a grid voltage imbalance of less than 2%. The
continuous operation control process for power converters
under symmetrical voltage drops and asymmetrical voltage
drop faults is called low-voltage ride-through or fault ride-
through [133]. The grid codes of different countries have
specific requirements for low-voltage ride-through. The
low-voltage operation capability of DD-WTs directly
impacts grid stability.

4.1 Operation control of PMSGs under faults

4.1.1 Magnetic field-adjusting control of PMSG

When the wind speed jumps, a weak magnetic control can
adjust the back EMF and prevent the overvoltage of the
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converter. A closed-loop field-weakening control for
generator-side converters was introduced in Ref. [134].
The parameters of the current control loop and field-
weakening control loop were designed by the eigenvalue
method for state-space equations, in consideration of the
large inertia property of DD-WTs. In addition, excitation
losses of different degrees occur in PMSG rotors as the
service time of DD-WTs extends [135]. Similar to the weak
magnetic principle of permanent magnets, id is used to
increase the magnetic field to realize instantaneous
excitation loss or partial demagnetization for reliable
operation. A direct-torque control strategy for PMSGs was
proposed in Ref. [136] to improve the reference flux-
linkage amplitude of the rotor and enhance the torque
output capacity of the motor. This control strategy can be
applied to wind turbines to increase the magnetic field of
the rotor [137].

4.1.2 Harmonic suppression and spectral analysis of
PMSGs

Stator current harmonics can not only increase the copper
and iron losses of a motor but also induce motor saturation
and runaway phenomenon. Consequently, these harmonics
seriously affect the stability of the system and reduce
power generation efficiency. The following methods for
inhibiting stator current harmonics have been presented in
the literature:

1) In Ref. [138], the fifth and seventh harmonics were
detected with a low-pass filter and by coordinate
transformation. The current harmonic component was
extracted by a feedforward control method and the
corresponding compensation was investigated. Through
this method, the current harmonics were suppressed and
the current dynamic response was improved.
2) Resonant controllers were used in Ref. [139] and

added to the current control loop. The gain of a resonant
controller at a given resonant frequency is infinite; thus, the
controller can completely suppress the harmonic at this
frequency. However, when the input is a step signal, an
overshoot occurs in the current response. A command
feedforward compensation method was used in Ref. [140]
to eliminate this overshoot and improve the dynamic
response of the current, with the effects of the digital
control delay considered. A fast-current response without
overshoot behavior was achieved.
3) In Ref. [141], a feedforward compensation method

was presented to suppress the current harmonics in a
PMSG. The harmonics of different frequencies were
compensated by the developed system. The phases and
amplitudes of the compensation voltage for different motor
conditions were obtained using an auto-search algorithm
for on-line compensation.
4) A control strategy for machine-side converters was

proposed in Ref. [142] (Fig. 9). The strategy uses a
frequency variable proportional-integral-resonant (PI-
RES) controller to regulate the stator current and inhibit

Fig. 9 Motor-side converter control strategy for suppressing second-order voltage ripple
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the main stator harmonic current in the synchronous
rotating coordinate system of the rotor.

4.1.3 FT control of multiphase PMSGs

Compared with three-phase machines, multiphase
machines offer additional degrees of freedom; thus, they
can be used for FT operation [143]. The remaining healthy
phases in a multiphase machine can be used to compensate
for the faults and continue to drive operation under fault
conditions [144,145]. The FT operation of a multiphase
machine can be achieved by modifying the existing control
technique without any additional hardware. Multi-phase
PMSGs have received wide acceptance in applications that
require fault tolerance. Reference [146] presented FT
control techniques for a nine-phase PMSGwith trapezoidal
back-EMF forces under various open-circuit conditions.
The multiphase PMSG is shown in Fig. 10. The proposed
control strategy uses only the fundamental and third-
harmonic current components to excite the healthy stator
phases.

4.2 Fault tolerance in power converters

Fault tolerance in EPCSs has been proposed for three-
phase PMSGs that suffer from an external phase-loss fault.
Fault tolerance has been introduced for Y-connected three-
phase PMSGs in which an auxiliary fourth leg is added to
the standard two-level inverter topology [147,148], and the
fourth leg is connected to the neutral point of the motor
stator windings, as shown in Fig. 11. A split DC-bus
capacitor branch can also be used as the fourth leg [149].
The fourth leg in Fig. 11 provides a post-fault normal
operation with two running phases, whereas the other
phase open circuited. A similar fault tolerance technique

can be implemented for D-connected machines without a
neutral point [150].
The circuit topologies shown in Figs. 12(a) and 12(b)

can tolerate open- and short-circuit switch faults with
unique post-fault behavior [151]. In both circuits, the
fourth leg is connected to the main legs through a set of
triacs. Under healthy conditions, the triacs are switched off
and the system operates normally. Adding a fourth leg to
two-level inverters can be applied to various technologies,
such as mechanical relay usage, to isolate a faulty leg
[152].

4.3 Operation and control of EPCSs in DD-WTs under grid
faults

Grid voltage dips are classified as symmetrical or
asymmetrical. In the operation of power systems,
symmetrical voltage dips often occur, whereas asymme-
trical voltage dips rarely happen. In terms of performance,
both types of voltage dips rapidly increase the energy of
the conversion system. This rapid energy increase leads to
a remarkable increase in DC-bus voltage, damages the
capacitance and power devices, and even destroys the
entire power system [153]. In addition, when the power-
grid voltage dips are not symmetrical, the grid-side
converter under the influence of a negative-sequence
component and the outlets of the converter produces
double-frequency fluctuations in the DC-bus voltage;
consequently, the stator current of the generator is affected
[154]. In a mechanism analysis model, an asymmetrical
fault voltage drop can be transformed into a positive- and
negative-sequence separation problem of symmetrical
voltage drop by using the symmetrical component method
[155,156]. Therefore, the asymmetry of the power-grid
voltage drop may be considered a complex form of
symmetrical voltage drop. In summary, the operation
control for grid voltage dips includes: 1) The control of the
energy balance on the machine side and grid side, and

Fig. 10 Multiphase permanent-magnet synchronous generator

Fig. 11 Schematic of two-level three-phase reconfigurable
inverter for external single phase-loss faults [149]
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2) the second-order frequency fluctuation suppression of
the DC-bus voltage (Table 5).
Energy balance problem in a variable-flow system: A

DD-WT with full-power back-to-back converter and grid-
side converter is controlled by the power grid voltage
orientation [157]. When a network voltage drop occurs, the
power grid voltage dips from egd to e′gd. No direct link
exists between the machine-side converter and the power
grid; thus, the output power of the machine-side converter
remains the same. The active current of the grid should
change to igd from i′gd. Thus,

Pdc ¼
3

2
egdigd ¼

3

2
e#gdi#gd: (1)

The actual instantaneous active current is i″gd, where
i″gd< i′gd. Then,

Pdc ¼
3

2
egdigd >

3

2
e#gdi$gd: (2)

In accordance with the principle of power balance,

Pdc ¼
3

2
e#gdi$gd þ ΔP: (3)

Although the actual capacity of the current transformer
is limited, a current-limiting protection is necessary for the
current transformer to prevent damage to the overcurrent
converter. Therefore, storing extra energy DP in the DC-
bus capacitor can increase the energy and DC-bus voltage,
such that the DC-side capacitor voltage is much higher
than the rated voltage.
Scholars have suggested the following methods to

address failures under variable-flow system energy balance
[153–161]:
1) The energy balance method based on crowbar energy

consumption connects the DC side and power devices
through unloading resistance to prevent the bus voltage
from increasing substantially. This method is simple and
highly reliable. However, the energy consumed is in the
form of heat. Furthermore, a high impedance load is
required. Thus, this method cannot effectively protect the
DC bus from undervoltage failure.
2) A unit-energy balance method based on the energy

storage can detect whether the DC-bus voltage is
excessive. When the DC-bus voltage is too high, an
energy storage unit can transfer excess energy. The energy
equilibrium scheme integrating this energy storage device
is shown in Fig. 13 [158]. After recovery, the stored energy
is fed back into the grid. This method reduces energy
consumption because of the effect of feeding back the
energy. However, the effectiveness of the protection is
dependent on the energy storage crowbar with sufficient
capacity in the energy storage device. As the degree of grid
drop and duration of spin increase, the cost-efficiency of
this scheme is reduced significantly.
3) The energy balance method for a parallel converter

uses an auxiliary converter to transfer excess energy. The
energy balance method is shown in Fig. 14 [160]. When a
voltage drop is detected, the auxiliary converter assists the
grid-side converter to transfer redundant energy through a
parallel set of electronic devices.
4) Suppressing the circulation between parallel con-

verters is an effective method to protect the security of the

Fig. 12 Schematics of two-level three-phase FT inverters [151]. (a) Switch-based four-leg inverter; (b) capacitor-based four-leg inverter

Table 5 Types and features of voltage drop faults

Fault types Symptoms Control

Symmetrical voltage drop Conversion system energy accumulation and DC-bus
voltage rapid increase

Energy balance control

Asymmetrical voltage drop 1) Conversion system energy accumulation and
DC-bus voltage rapid increase

2) Double-frequency DC-bus voltage fluctuations
affecting the generator stator current

Energy balance control and suppression of
second-order frequency fluctuation
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system. However, the current level of the auxiliary
converter is dependent on the magnitude of the allowed
grid voltage drop. When the voltage drop is serious, the
capacity of the auxiliary converter is large; thus, the
economic benefit is low.
Double-frequency fluctuation problem in the DC-bus

voltage: A DD-WT often connects to the grid through a
three-phase line without a neutral network. In this
situation, the unbalanced voltage and unbalanced current
can be decomposed into a positive-sequence component
and negative-sequence component by the symmetrical
component method. However, the zero-sequence compo-
nent is eliminated.
According to instantaneous power theory, the complex

power of the grid-side converter can be expressed as

S ¼ Pg þ jQg ¼
3

2
egi

*
g

¼ 3

2
eP

gdq
ejωgt þ eN

gdq
ejωgt

� �
iP
gdq
ejωgt þ iN

gdq
e – jωgt

� �
: (4)

Equation (4) is rewritten in algebraic form and
decomposed into active and reactive power components

as follows:

Pg ¼ P0 þ P1cosð2ωgtÞ þ P2sinð2ωgtÞ
Qg ¼ Q0 þ Q1cosð2ωgtÞ þ Q2sinð2ωgtÞ

(
: (5)

Therefore, a harmonic two times the power grid
frequency exists in the system output; as a result, double-
frequency fluctuations occur in the DC-bus voltage and
affect the generator stator current.
Scholars have proposed various solutions to the double-

frequency fluctuations in the DC-bus voltage [162–168].
A. Methods based on device improvement
1) For an improved variable-flow structure topology, a

previous study [169] suggested mounting the grid-side
inverter on the AC side to the band-pass filter to filter out
the negative-sequence component in the power grid
voltage. Although this method achieved a favorable effect,
it requires additional filter parts. Consequently, the wind
farm construction cost is increased.
2) Flexible AC transmission system (FACTS) devices

can be used. Static compensators (STATCOMs) and static
var compensators (SVCs) are used in induction generator-
based wind farms to enhance the reactive power control.
STATCOM and SVC are two main shunt-connected
FACTS devices connected at the predict current control
to improve the transient and steady-state performance of
the system. However, one of the main drawbacks of this
method is the use of high-cost devices. As a result, this
method is higher in cost that the other related methods
discussed in this paper.
B. Methods based on control system improvement
1) A double-current-loop vector control method was

proposed using the positive- and negative-sequence
synchronous rotating coordinates. The phase sequence is
decomposed by the symmetrical component method, and
the positive- and negative-sequence component control
method for the inverter output voltage is used.
2) A single-current-loop vector control strategy was

proposed to suppress AC disturbance in the frequency of a
double power grid with a PI-RES controller in a positive-
sequence synchronous rotating reference frame. This
method can control the positive-sequence current and
eliminate the negative-sequence current without positive-
and negative-sequence decomposition.

5 Future trends and directions

With the increasing proportion of DD-WTs in power grids,
wind power is expected to become an important energy
resource in the future. As regards the development of
EPCSs in DD-WTs, the following future trends and
directions of CM, FD, and operation control under faults
can be deduced.
1) Although condition monitoring and fault diagnosis

methods vary at present, the fault characteristic signals of

Fig. 13 Diagram of energy equilibrium scheme using an energy
storage device [158]

Fig. 14 Schematic of energy balance method for a parallel
converter [160]
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mechanical parameters and electrical parameters are
relatively independent. Their effective and thorough
integration has not been explored. Therefore, condition
monitoring and fault diagnosis in the future are expected to
emphasize the in-depth and effective integration of the
fault characteristic signals of both types of parameters. As
a result, the Fault diagnosis of wind turbines will be more
efficient and reliable.
2) Rotor eccentricity, rotor asymmetry, and base failure

can induce harmonics during operation. They can also
cause motor vibration and noise. Therefore, harmonics
need to be monitored and suppressed to eliminate the
vibration and noise and achieve effective operation control
of wind turbines.
3) A new generation of on-line maintenance strategies

for EPCSs is emerging. Thus, intelligent systems for
condition monitoring, fault diagnosis, and operation
control under faults are expected in the future. These
systems will be based on reliability-centered maintenance
mechanisms.
4) Service quality, condition monitoring, and main-

tenance quality control technologies constitute the future
trend in the development of DD-WTs. Therefore, the
following may be future research directions: Wind power
system access to information technology based on
compressed sensing, effective technologies for condition
monitoring of DD-WTs, and warning cloud platform
technology for large wind turbines based on Internet Plus
and big data. A service quality index system for system
state characterization needs to be established. Analysis and
evaluation of service quality and maintenance quality
control methods should be conducted. Operating norms,
standards, and improvement methods for service quality
and maintenance quality need to be formulated.

6 Conclusions

This paper mainly reviewed the technologies and methods
for the CM, FD, and operation control of EPCSs in DD-
WTs under faults. The highlights are summarized as
follows:
1) CM technologies for EPCSs in DD-WTs are

reviewed. These technologies include the PMSGs, grid
power converters, and SCADA system. CM technologies
and systems for the entire wind turbines are expected to be
the development trends.
2) FD technologies for EPCSs in DD-WTs, such as those

for PMSGs (including generator stator windings, rotor, and
bearings), grid power converters, and other components
are reviewed. Few studies have focused on rotor
demagnetization faults, which should be the next research
focus.
3) Operation control of EPCSs in DD-WTs under faults

are discussed, including on-line maintenance and repair,
FT control, and operation control under grid voltage faults

for EPCS. The low-voltage ride-through capability of wind
turbines has been one of the hot topics over the last two
decades because it is essential for the safe operation of the
EPCS in the DD-WT.
4) Both service quality condition monitoring and

maintenance quality control technologies will be the
development trends for DD-WTs.

Notations
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WT Wind turbine

AC Alternating current

DC Direct current

PWM Pulse width modulation

IGBT Insulated gate bipolar transistor

EMF Electromotive force

EPCS Electric power conversion system

DD-WT Direct-drive wind turbine

CM Condition monitoring

FD Fault diagnostics

DFIG Doubly fed induction generator

PMSG Permanent-magnet synchronous generator

DD-PMSG Direct-drive permanent-magnet synchronous generator

WECS Wind-energy conversion system

AE Acoustic emission

SCADA Supervisory control and data acquisition

ANN Artificial neural network

HHT Hilbert-Huang transform

CWT Continuous wavelet transform

DWT Discrete wavelet transform

FFT Fast Fourier transform

ZSI Z-source inverter

FT Fault tolerant

STATCOM Static compensator

SVC Static var compensator

FACTS Flexible alternative current transmission system

ITD Intrinsic time deposition

LS-SVM Least-squares support vector machine

SVM Support vector machine

PI-RES Proportional-integral-resonant
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