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Abstract Device miniaturization is an emerging
advanced technology in the 21st century. The miniaturiza-
tion of devices in different fields requires production of
micro- and nano-scale components. The features of these
components range from the sub-micron to a few hundred
microns with high tolerance to many engineering materi-
als. These fields mainly include optics, electronics,
medicine, bio-technology, communications, and avionics.
This paper reviewed the recent advances in micro- and
nano-machining technologies, including micro-cutting,
micro-electrical-discharge machining, laser micro-machin-
ing, and focused ion beam machining. The four machining
technologies were also compared in terms of machining
efficiency, workpiece materials being machined, minimum
feature size, maximum aspect ratio, and surface finish.

Keywords micro machining, cutting, electro discharge
machining (EDM), laser machining, focused ion beam
(FIB)

1 Introduction

In recent years, the demand for micro-scale components
and products has increased rapidly, particularly in the fields
of electronics, communications, optics, avionics, medicine,
and automobiles [1,2]. Typical applications of such
products include micro-engines, micro-reactors, micro-
heat exchangers, medical implants, drug delivery devices,
and diagnostic devices [3,4]. The fabrication of these
products usually requires micro- and sub-micrometer

components. Given this demand, many studies in manu-
facturing have focused on developing micro- and nano-
machining technologies [3]. This emerging trend requires a
new micro-manufacturing platform that not only integrates
different fabrication technologies but also develops new
machining technologies for micro and nano-components.
Furthermore, the micro-manufacturing platform should
produce different materials in a high throughput and cost-
effective manner.
Lithography-based microelectromechanical systems

(MEMS) technologies are the most commonly used
micro- and nano-manufacturing technologies in the past
few decades and can fabricate micro-components with
micro- and nano-feature sizes [5]. However, they are
generally employed to fabricate two-dimensional and two-
and-half-dimensional microstructures in a narrow range of
workpiece materials [6,7]. Given this limitation, MEMS
technologies are unable to meet the demand for fabrication
of complex three-dimensional microstructures made of
different materials. New micro- and nano-machining
technologies were developed to address these demands.
This paper reviews recent developments in new machining
technologies, including micro-electro discharge machining
(micro-EDM), micro-cutting, laser micro-machining, and
focused ion beam (FIB) micro-machining [5,8,9].

2 Classification of micro- and nano-machin-
ing technologies

Micro- or nano-machining refers to the fabrication of
components or products with at least one feature size in the
micrometer or nanometer scale. In the past two decades, a
wide range of micro- and nano- machining technologies
based on different principles were developed to manufac-
ture complex microstructures. Several classification meth-
ods were proposed to classify these technologies. For
example, Masuzawa [10] summarized the micro-machin-
ing technologies and categorized them based on different
machining characteristics. Madou [11] classified micro-
and nano-manufacturing technologies into lithographic or
non-lithographic techniques. Brinksmeier et al. [12],
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Brousseau et al. [13], and Qiu et al. [14] classified these
technologies into two types, namely, microsystem tech-
nologies (MST) and micro-engineering technologies
(MET). MST is generally employed to produce MEMS,
such as photolithography, electroplating, silicon micro-
machining, micro-electroforming, and chemical-etching.
By contrast, MET mainly refers to some processes related
to mechanical machining, such as cutting, milling,
grinding, laser machining, micro-EDM, and FIB machin-
ing. The MET can be used to produce high-precision
mechanical components and surfaces. Depending on the
type of machined materials, micro- and nano-machining
technologies can also be classified as silicon-based or non-
silicon-based manufacturing technologies [14]. Dimov
et al. [15] and Brousseau et al. [13] classified these
technologies on the basis of the processing dimension. In
their classification, one-dimensional technologies include
micro-cutting, micro-grinding, micro-milling, micro-EDM
and FIB machining. These technologies fabricate micro-
components by performing material removal in a single
dimension. Two-dimensional technologies fabricate micro
structures in a plane by employing masks, including photo/
UV lithography, X-ray lithography, and electron beam
lithography. Three-dimensional technologies are mainly
employed for conducting surface modification and deposi-
tion or fabricating volume structuring. Processes under this
classification include physical vapor deposition (PVD),
chemical vapor deposition (CVD), microinjection molding
(MIM) and nano-imprint lithography (NIL). The present
paper focuses on the recent development of one-dimen-
sional micro-machining technologies, including micro-
cutting, micro-EDM, laser micro-machining, and FIB
machining.

3 State-of-the-art technologies

3.1 Micro-cutting

The machining principle of micro-cutting is essentially
similar to that of conventional macro-cutting. It refers to
the process of mechanical micro-machining employing
micro-tools with geometrically defined cutter edges to
remove materials directly. This process must be performed
on ultra-precision machines or specifically designed micro-
machines. Given that micro-cutting can achieve micro-
form accuracy and nanometer finish, this process is widely
used to machine micro-components or micro-features in
different engineering materials [16–18]. Typical micro-
cutting processes include micro-turning, micro-milling,
micro-drilling, and micro-grinding [19]. Various geome-
tries and high surface quality can be achieved with the
application of different micro-cutting processes to produce
micro-components; these advantages are shown in Table 1
[19–29]. The machining principle of micro-cutting is
similar to that of conventional macro-cutting, but new

challenges, such as predictability, producibility, and
productivity, must be resolved [30]. Moreover, micro-
cutting exhibits several different characteristics because of
significant reduction in size. These characteristics include
cutting chip formation, minimum chip thickness, cutting
force, and tool wear.
The depth of cut in conventional macro-cutting is

significantly larger than the radius of the cutting tool edge.
Thus, macro-chip formation models are created under the
assumption that the cutting tool can completely remove the
surface material of a workpiece and form cutting chips.
The depth of cut in micro-cutting is close or even smaller
than the edge radius of the cutting tool; this feature results
in a large negative rake angle during cutting, as shown in
Fig. 1 [25]. It should be noted that the negative rake angle
can be observed in both micro- and macro-grinding
processes. This negative rake angle significantly influences
the magnitude of shearing and ploughing forces because
the elastic-plastic deformation of workpiece materials is
more apparent in micro- than in the macro-cutting process
[31,32]. According to Liu et al. [6,33], Bissacco et al. [34],
and Kim et al. [35], the workpiece material can undergo
pure elastic deformation during micro-cutting. Kim et al.
[35] also observed a new non-detached chip when the
depth of the cut in the tool exceeded the critical minimum
chip thickness. Further, when the depth of cut is less than a
critical minimum chip thickness, the surface material only
deforms elastically and cutting chips are not generated
during machining.
Minimum chip thickness is an important measure that

determines the formation of cutting chips. According to
Weule et al. [36], minimum chip thickness primarily
depends on the edge radius of a cutting tool and the
material property of the workpiece. They further indicated
that once the depth of the cut of the cutting tool reaches the
minimum chip thickness, surface roughness can be
predicated based on the spring back of the elastically
deformed material. Liu et al. [37] established an analytical
model for predicting minimum chip thickness; this model
is based on the thermo-mechanical properties of the
machined material, which include cutting temperature,
strain, and strain rate. Vogler et al. [38,39] used finite
element modeling approach to investigate the minimum
chip thickness of steel; they found that the minimum chip
thickness is approximately 0.2 and 0.3 times of the edge
radius of a cutting tool for pearlite and ferrite, respectively.
This finding validates the assumption that material
property affects minimum chip thickness. Son et al. [40]
examined the influence of friction between the workpiece
and the cutting tool and established an analytical model for
determining minimum chip thickness. This model estab-
lished the correlations among minimum chip thickness,
edge radius of cutting tool, and friction angle between the
cutting tool and the uncut workpiece. Chen et al. [29]
performed a parametric investigation and developed
micro-grinding technologies for micro aspherical molds
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made of tungsten carbide. They found that the thickness of
an undeformed chip at nanometric scale had insignificant
influence on the surface finish of ground inserts, whereas
grinding trace spacing had a slightly stronger influence on
surface finish. They also developed a new truing and
dressing technique for micro grinding wheels that achieved
satisfactory wheel form accuracy and high grain packing
density. These technologies were applied to fabricate a
micro aspherical insert with a diameter of 200 mm, a
surface finish of 4 nm, and a form error of 0.4 mm.
Many studies investigated cutting force in micro-cutting

and the significant effect of size on chip formation, cutting
tool deflection, and bending stress [41]. Kim et al. [31]
analyzed differences in cutting force between macro- and
micro-cutting. Shear occurred along the shear plane during
macro-cutting. By contrast, shear stress in micro-cutting
gradually increased around the edge radius of the cutting
tool. This study also established a micro-cutting force
model that considered the elastic recovery of workpiece
material, which resulted in sliding along the clearance face
of the cutting tool. Liu et al. [6] demonstrated that the
forced vibration of the cutting tool and the elastic recovery

Fig. 1 Schematic of chip formation in (a) macro-cutting and (b) micro-cutting [25]

Table 1 Machining capabilities of typical micro cutting processes

Process Machining shape Feature size Surface roughness Ra Reference

Micro-turning Rotational convex shape with high aspect ratio

Diameter> 5 mm, but> 100 mm
more applicable

0.05–0.30 mm [19–21]

Micro-milling Convex and concave shapes with high aspect ratio

Slot width> 3 mm, but> 50 mm
more applicable

< 10 nm [22,23]

Micro-drilling Round blind- and through-holes

Diameter> 5 mm, but> 50 mm
more applicable

0.05–0.30 mm [24,25]

Micro-grinding Convex and concave shapes of hard-brittle materials

Structure width> 13 mm,
but> 50 mm more applicable

< 10 nm [26–29]
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of the machined material significantly affected the
magnitude of cutting force at low feed rates. They found
that low feed rates resulted in unstable micro-cutting
because of the elastic deflection of the machined material
thereby leading to the forced vibration of the cutting tool.
To calculate the chip thickness of the machined material,
Bao and Tansel [42,43] proposed a cutting force model that
considered the effect of tool tip trajectory. However, this
model did not consider the effect of the negative rake angle
of the cutting tool and elastic-plastic deformation of the
workpiece material in micro-cutting; both of these factors
significantly differ from that in macro-cutting. The
interaction between the cutting force and the correspond-
ing deformation of the cutting tool is a key issue in micro-
cutting. Dow et al. [41], Duan et al. [44], and Ma et al. [45]
analyzed the effect of tool deformation on cutting force;
they established cutting force models that compensated for
the error induced by cutting-tool deflection during micro-
cutting.
Cutting tools are critical to micro-cutting processes

because these tools can considerably affect surface quality
and the feature size of micro-components. In the past few
years, a continuous effort has been directed toward
developing efficient micro-cutting tools. Diamond materi-
als are often employed in micro-turning and micro-
grinding, but these materials are unsuitable for cutting
ferrous workpiece materials [46]. Micro-cutting tools in
micro-milling and micro-drilling are usually made of
tungsten carbide because of the high hardness and strength
of this material at elevated temperatures [47]. At present,

commercially available micro-cutting tools with a helix
angle that can reach a diameter of 50 mm are fabricated by
ultra-precision grinding [48]. Micro-cutting tools with less
than 50 mm diameter generally have a special zero helix
angle to increase the strength of the tool and mitigate the
limitations of machining methods [23,48]. Onikura et al.
[49] fabricated carbide tools with 11 mm diameter through
ultrasonic vibration grinding to reduce grinding forces
without breaking the cutting tools. Adams et al. [50] used
FIB sputtering to fabricate micro-milling tools with 25 mm
diameter at different cutting edges, as shown in Fig. 2.
They used these tools to machine micro-channels with 25
mm depth and width. Egashira et al. [51] employed EDM to
develop cemented tungsten carbide drilling and milling
tools with 3 mm diameter. They used these tools to fabricate
holes with diameters of 4 mm and slots with 4 mm width
and 3 mm depth, as shown in Fig. 3 [51].

3.2 Micro-EDM

EDM is a thermo-electric machining process that removes
workpiece material through high-frequency, repeated
electrical discharges between the electrode tool and the
workpiece material. Both materials are submerged in liquid
dielectric bath. The development of EDM has been
directed toward machining of features in the micrometric
scale. This development led to the widespread utilization
of micro-EDM to fabricate micro-components, micro-
tools, and parts with micro-features. Micro-EDM can
machine various materials, such as hardened steel,

Fig. 2 Micro-cutting tools of 25 mm in diameter made by FIB micro-milling having (a) 2, (b) 4 and (c) 5 cutting edges [50]

Fig. 3 (a) A micro-cutting tool of 3 mm in diameter made by EDM and the fabricated (b) micro-hole and (c) micro-slot [51]
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cemented carbide, and electrically conductive ceramics
with sub-micron precision [8,52]. Given its small machin-
ing force and good repeatability, micro-EDM is one of the
most valuable processes for fabricating micro-structures
with high aspect ratios [53]. Figure 4 [9,13,54] shows
micro-features machined by micro-EDM. Current micro-
EDM technologies primarily include die-sinking micro-
EDM, micro-wire EDM, micro-EDM drilling, and micro-
EDM milling [13]. The removal mechanism of micro-
EDM is similar to that of macro-EDM, but micro-EDM has
unique features in tool fabrication, discharge energy, and
dielectric fluid flushing [55,56]. Unlike conventional
macro-EDM, the application of micro-EDM is hindered
by limitations in handling of electrodes, preparation of
workpiece-electrode, and planning of the machining
process [53].
Machining error induced by electrode wear is generally

disregarded in conventional macro-EDM. However, elec-
trode wear in micro-EDM significantly affects the
machining accuracy of fabricated micro-features.
Researchers investigated electrode wear mechanism and
compensation approaches to overcome this issue. Pham
et al. [53] investigated the influence of different sources of
errors, including machine, electrode dressing, electrode
wear, and fixture, on the machining accuracy of micro-
EDM milling; they found that electrode wear compensa-
tion was critical to achieving highly accurate micro-
features. They also proposed a micro-EDM milling
approach that did not rely on complex mathematical
calculations. This approach is shown in Fig. 5 [53]. As
shown in Fig. 5, cavity volume is only partially completed
after the first milling passes through Path 1 [53] because
electrode wear primarily appears on the edge and face of
the tool. Zcontact, which denotes the point where the
electrode tip comes in contact with the workpiece, is reset.
The paths for the next milling passes are then designed
(Paths 2 and 3). If electrode wear is small or negligible
(after Path 4 in Fig. 5), a newly dressed electrode is
employed to conduct finishing milling passes. In addition,
Pham et al. [57,58] also investigated the influence of
different factors that contribute to electrode wear in micro-
EDM drilling with micro-rod and micro-tube electrodes.

They discussed possible methods for wear compensation
and calculated electrode wear ratios using a simple
method. This method is based on geometrical variations
during machining. Dimov et al. [59] presented a new tool-
path generating method for layer-based micro-EDM
milling. This method integrates uniform wear method
and adaptive slicing to compensate for electrode wear by
varying layer thickness. Complex three-dimensional
cavities were fabricated by micro-EDM milling using
simple-shaped electrodes. Tasi and Masuzawa [60] studied
the influence of thermal properties on the electrode wear of
various materials in micro-EDM. They found that the
boiling point of an electrode material played a significant
role in electrode wear. Motivated by this finding, they
proposed an index based on boiling phenomenon to
evaluate the erosion property of electrode material. To
reduce electrode wear, Uhlmann and Roehner [61] applied
novel electrode materials to fabricate tool electrodes; these
materials include boron doped CVD-diamond (B-CVD)
and polycrystalline diamond (PCD). They investigated the
performance of B-CVD and PCD and the effect of
electrode materials on tool wear and workpiece surface
quality. However, further investigation must be conducted
on the effects of micro-feature and element concentration
in PCD and B-CVD on material removal and wear
mechanism for industrial applications. Aligiri et al. [62]
employed an electro-thermal model to estimate material
removal volume in real time during micro-EDM drilling; in
this study, the compensation length of electrode wear was
determined by comparing the estimated material removal
volume with the targeted material removal volume.
Bissacco et al. [63] also proposed a new electrode wear
compensation method for micro-EDM milling based on
discharge counting and discharge population characteriza-
tion. They found that electrode wear can be effectively
compensated based on discharge counting without imple-
menting a pulse discrimination system.
Electrode preparation is important in achieving high

accuracy and good repeatability in micro-EDM [53]. Thus,
many researchers have focused on tool-electrode prepara-
tion in the past years. Masuzawa et al. [64] proposed a new
technique called wire electro-discharge grinding (WEDG)

Fig. 4 (a) A sharp-edge microstructure array, (b) a high aspect ratio pillared microstructure array and (c) a micro-compressor machined
by the micro-EDM [9,13,54]
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to facilitate on-the-machine electrode generation. WEDG
is similar to wire EDM given that both approaches used a
traveling wire as tool electrode; however, the wire guide
and the machining setup of WEDG differ from that of wire
EDM, as shown in Fig. 6 [65]. The continually running
wire is fed at a constant speed from the wire pool to the
dressing system. Thus, the wire pool applies constant
tension to the running wire throughout the entire dressing

process. The running wire then passes through a vibration
damper and a fixed wire guide to maintain stability during
the dressing process. The electrode is dressed by a rotating
electrode at the position of the wire guide. Finally, the
running wire goes through a number of wire guides and is
deposited. Using this technique, they investigated the
machining characteristics, including accuracy and repeat-
ability. They demonstrated that WEDG can achieve high
accuracy and good repeatability with an error of less than 1
mm. This method can successfully machine materials into
electrodes of less than 15 mm in diameter. Rees et al. [65]
investigated the effects of electrode material, process
strategy, and machine accuracy on the surface finish,
electrode quality, and aspect ratio of the fabricated
electrode. They demonstrated that tungsten carbide and
tungsten electrodes made by WEDG can achieve high
aspect ratio and good surface finish, respectively. They
also proposed a compensation method based on an optical
verification system to significantly improve the machining
accuracy of tool electrodes.
WEDG is widely used for electrode generation in micro-

EDM, but conventional WEDM still encounters issues in

Fig. 5 Process strategy for wear compensation in micro-EDM milling [53]

Fig. 6 Schematic of a WEDG system [65]
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producing cylindrical electrodes with high aspect ratios.
Considerable research effort has been directed toward
implementing WEDG with a wire micro-EDM. Uhlmann
et al. [66] studied the machining performance of three
different methods for producing cylindrical parts, namely,
electro-discharge turning (EDT), electro-discharge grind-
ing (EDG), and WEDG; they particularly examined pulse
stability, hydrodynamic behavior of dielectrics, machine
dependent gap, and feed control. However, this study did
not attempt to optimize surface quality. Using a similar
method to machine cylindrical parts, Qu et al. [67,68]
improved traditional WEDM by integrating an additional
rotary axis into the micro-EDM machine. They studied the
influences of pulse on-time, part rotational speed, and wire
feed rate on the surface finish and roundness of machined
components. Nonetheless, the approach developed was
employed to fabricate macro-components, not directly
applicable at the micro scale. Rees et al. [69] and
Brousseau et al. [13] used wire micro-EDM combined
with a rotating submergible spindle to perform WEDG. As
shown in Fig. 7 [69], a wire guide was not required at the
contact point between the electrode running wire and the
rotating test-piece. This approach improved the flexibility
of machine cylindrical parts. The use of WEDG set-up can
achieve better surface integrity than that by traditional
WEDG under the same discharge energy levels. Figure 8
[13] shows the micro electrode machined by the WEDG
implemented into micro-wire EDM.

3.3 Laser micro-machining

Laser micro-machining is a widely-used energy-based
machining process, wherein a laser beam is focused to melt
and vaporize unwanted materials from the workpiece [70].
Laser micro-machining is an efficient micro-manufactur-
ing process because of its high lateral resolution, low heat
input, and high flexibility [14]. Laser micro-machining
integrated with a multi-axis micro-machining system can
be used for drilling, cutting, milling, and surface texturing.
This process is suitable for machining micro-components
made of different kinds of workpiece materials, such as
metals, polymers, glasses, and ceramics [71]. Figure 9 [72]
shows typical micro-features fabricated by laser micro-
machining. Laser micro-machining is primarily used for
drilling, cutting, and milling. Specially, laser micro-milling
is gradually gaining recognition as an important micro-
manufacturing technology in rapid prototyping, compo-
nent miniaturization for different applications, and serial
production of micro-devices by batch fabrication methods
[71,73].

Laser micro-drilling is an economical process for
making closely spaced micro-holes. Laser micro-drilling
typically includes two types of processes, namely,
percussion drilling and trepan drilling; the schematic ofFig. 7 WEDG principle implemented into micro-wire EDM [69]

Fig. 8 Micro electrode machined by micro-wire EDM [13]

Fig. 9 (a) Micro-through-hole arrays, (b) honeycomb micro-structures, (c) a micro-spinneret, and (d) cone-like-protrusions fabricated by
the laser micro-machining [72]
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these two processes is shown in Fig. 10 [74]. Percussion
drilling is generally used for fabricating micro-holes,
wherein the laser spot remains stationary on the workpiece
material and a series of pulses is released. Thus, the
diameter of the micro-hole depends on the laser spot size,
which ranges from several micro-meters to tens of micro-
meters. The micro-hole made by laser drilling is tapered
because the diameter of the hole at the exit of the laser
beam is smaller than that at the entrance of the laser as
shown in Fig. 11(a). The tapered shape may be improved
by optimizing the processing parameters [75,76]. The
smallest micro-holes that have been made by the Light-
motif B.V. Corporation have a diameter of sub-microns at
the laser exit. Zheng and Huang [77] proposed a novel
approach for improving laser hole drilling quality by using
an ultrasonic vibrator to excite the work material during
laser drilling. They found that the aspect ratio and wall
surface finish of the micro-holes machined by ultrasonic-
vibration-assisted laser drilling were improved compared
with that without ultrasonic vibration assistance. To
machine holes larger than the laser spot size in diameter,
trepan laser micro-drilling technology can be used, in
which the laser beam cuts the workpiece material around
the circumference of the hole. Figure 11(b) shows the

micro-holes machined by trepan laser micro-drilling,
which exhibits perfectly smooth walls with the absence
of burrs. The machining principle of laser micro-cutting is
similar to that of trepan laser micro-drilling. This approach
also removes the workpiece material by scanning the
contour of the desired cut through the use of pulse lasers to
achieve highly accurate cuts with good surface quality and
low damage [78]. By using fast galvanometer scanners,
laser micro-cutting can facilitate accurate, flexible, and fast
cutting processes.
Laser micro-milling is a new machining process that

employs a focused laser beam to scan over workpiece and
remove workpiece material layer-by-layer through laser
ablation effect [13]. Unlike conventional micro-milling,
scanning pattern in laser micro-milling may vary for each
layer. This feature indicates that this machining process
can fabricate three-dimensional surface structures. In
addition, laser micro-milling can machine different kinds
of engineering materials. This technique is particularly
suitable for hard workpiece materials that are difficult to
machine using traditional machining methods. Laser
parameters in laser micro-milling significantly influence
the machining process. An accurate control of the laser
parameters combined with the optimization of the scan

Fig. 10 Schematic of (a) percussion laser micro-drilling and (b) laser micro-drilling [74]

Fig. 11 Micro-holes machined by (a) percussion laser micro-drilling and (b) trepan laser micro-drilling
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pattern is the key to achieving high-quality laser micro-
milling. Petkov et al. [79] proposed two major material
removal mechanisms based on laser pulse length (i.e.,
ultrashort pulses and long pulses) in laser micro-milling.
Ultrashort pulses refer to femtosecond and picosecond
pulses, whereas long pulses comprise nanosecond and
longer pulses. When ultrashort pulses are used in laser
micro-milling, the duration of laser pulse is less than the
time needed for the electrons and the atomic lattice to reach
thermal equilibrium; thus, laser ablation can be considered
a solid-plasma or solid-vapor transition, having a small or
negligible heat-affected zone [80,81]. However, the
absorbed energy from the laser beam in long pulses
melts the workpiece and heats it to a high temperature
enabling atoms to obtain enough energy to enter a gaseous
state. In this case, the thermal wave has sufficient time to
propagate into the workpiece material, which results in the
evaporation of the liquid state of a material. After
performing laser micro-milling with long pulses, heat
quickly dissipates into the work material, and a recast layer
is generated. Various defects, such as microcracks, debris,
surface layer damage, shock waves, and recast layers, are
also generated [82]. Huang et al. [83] studied the effect of
femtosecond laser micro-milling on the surface character-
istics and microstructures of a Nitinol alloy. They
demonstrated that this process can achieve better surface
quality as well as thinner re-deposited material and heat-
affected layers. Thus, laser micro-milling using ultrashort
pulses can improve surface quality. Pham et al. [73]
investigated laser micro-milling for machining ceramic
micro-components; they demonstrated that laser micro-
milling with microsecond pulses can machine micro-
components with feature sizes as small as 40 mm.
However, their investigation was still in its infancy and
did not reveal the material removal mechanism and the
interactions between the laser beam and the workpiece
involved in the machining process. Dobrev et al. [84]
developed a model to simulate the material removal
process involved in laser ablation. Using this model, they

revealed the formation mechanism of crater defects on
metal materials machined using microsecond laser pulses.
They also employed laser micro-milling to machine
ceramics and silicon nitride micro-components [85].
These previous works verify the machining accuracy of
laser micro-milling at the micrometric scale. Machining
accuracy and surface quality depend on the process
parameters and the composition and initial surface finish
of the workpiece. In general, decent results can be obtained
on workpiece materials that have a fine grain or amorphous
structure and a polished surface.

3.4 FIB-machining

FIB machining can fabricate complex micro- and nano-
features using a focused beam of ion with in situ scanning
electron microscopic (SEM) monitoring to remove
unwanted workpiece material layer by layer. FIB can
also be used to deposit materials via ion beam-induced
deposition when precursor gas exists [86]. Ion beam is
irradiated on the workpiece surface and the surface atoms
receive energy during FIB micro-milling. The workpiece
surface of atoms is sputtered if the received energy exceeds
the surface binding energy [87]. FIB micro-milling can
fabricate complex micro-features on nearly all workpiece
materials with high surface quality and dimensional
accuracy because of ultra-low ion scattering effect. In
particular, FIB micro-milling can machine micro-features
of less than 50 nm in lateral size [13]. At present, FIB
micro-milling technology is widely used in the semicon-
ductor industry for modifying electronic circuits, preparing
transmission electron microscope (TEM) specimens, and
debugging integrated circuits with increasing circuit
density and decreasing feature dimension [88–90]. FIB is
also employed to fabricate high-quality and high-precision
micro-components for optical, mechanical, thermofluidic,
and biochemical applications [88,91,92]. Figure 12
[88,92,93] shows the micro-structures and micro-tools
fabricated by FIB micro-milling.

Fig. 12 (a) A TEM specimen, (b) Mo-alloy micro-pillars and (c) a monocrystal diamond micro-tool fabricated by FIB micro-milling
[88,92,93]
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FIB micro-milling is popularly used in micro-tool
fabrication because of its high accuracy and resolution.
This technology induces small or negligible machining
stress and damage layer comparing with conventional
ultra-precision machining methods. Picard et al. [92]
employed the FIB micro-milling to produce micro-tools
with non-planar materials. These micro-tools were made of
different materials including tungsten carbide, high speed
steel, and single crystal diamond. They successfully
fabricated a variety of micro-cutting tools with dimensions
in the range of 15–100 mm and a cutting edge of 40 nm in
radius. To machine micro-diffractive optical elements, Xu
et al. [94] used FIB micro-milling to fabricate micro-
cutting tools with edge radius of around 25 nm with
complex shapes as shown in Fig. 13. Wu et al. [95]
optimized the fabrication process of diamond cutting tools
with edge radius at nanometric scale by direct writing of
FIB micro-milling. The FIB-induced lateral damage of
diamond micro-tools could be reduced using the optimized
process to improve the cutting ability and prolong the
lifetime of micro-cutting tools.
FIB micro-milling was successfully employed to

fabricate micro- and nano-structures in recent years. Li
et al. [96] studied the FIB micro-milling capacity to
machine micrometer and nanometer scale features on Ni-
based substrates. This paper demonstrated that the micro-
and nano-features machined by FIB micro-milling process
can replace lithography-based pattern transfer techniques
to fabricate Ni-based masters for injection molding and hot
embossing. Li et al [97] further investigated machining
capacity of FIB micro-milling for micro- and nano-features
on fused silica substrates coated with a 15 nm thick Cr
layer. Their study indicated that FIB micro-milling could
also replace e-beam lithography for fabricating fused silica
templates for UV nanoimprinting. According to Wu and
Liu [98], well-defined, laterally site-positioned arrays of
silicon islands could be directly fabricated using the FIB
micro-milling without mask-removal or etching steps.
They also fabricated silicon islands with different shapes

and sizes; nanoscale Si island arrays with hexagonal
symmetry were also fabricated as shown in Fig. 14 [98].
Chang et al. [99] developed a fabrication method of ZnO-
based micro-cavities with different shapes by FIB micro-
milling and systematically investigated the optical char-
acteristics of different shaped micro-cavities. Their
experimental results demonstrated that ZnO-based micro-
cavities with different shapes were fabricated by FIB
micro-milling with high quality. Lu et al. [100] used FIB
micro-milling to fabricate a series of cantilevers with
different dimensions to investigate the facture strength
characterization of protective intermetallic coating on
AZ91E Mg alloys as shown in Fig. 15. FIB micro-milling
has found a number of applications that require complex
micro-structures made of various engineering materials.

3.5 Comparison of micro- and nano-machining technolo-
gies

A series of micro- and nano-machining technologies were
reviewed, including micro-cutting, micro-EDM, laser
micro-machining and FIB machining. Those machining
technologies are essential for the manufacture of micro-
and nano-components. Table 2 shows a comparison
between the four machining technologies discussed earlier
in terms of material removal rate, workpiece materials
being machined, minimum feature size, maximum aspect
ratio and surface finish. Micro-cutting technologies, which
include micro- turning, milling, drilling and grinding, have
the highest machining efficiency. These technologies can
machine various engineering materials including metals,
polymers, ceramics, silicon, and glass. However, micro-
cutting has limitation in terms of achieving the minimum
feature size. Machining features of sizes less than 25 mm
remain challenging. Micro-EDM can achieve the highest
aspect ratio and micro holes with an ultra-high aspect ratio
of more than 30 can be fabricated using micro-EDM
drilling with ease. Nevertheless, micro-EDM can only
machine conductive materials. Laser micro-machining can

Fig. 13 (a) Spherical and (b) hemi-spherical micro-cutting tools fabricated by the FIB micro-milling [94]
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be employed to machine the widest scope of workpiece
materials. There are two main ablation regimes in laser
machining based on the pulse length of laser, which
directly influence machining efficiency and feature size.
When using ultrashort pulses, laser micro-machining can
achieve a feature size of less than 3 mm, but it also has the
lowest material removal rate. FIB machining can fabricate
both micro- and nano-scale components or features and is
suitable for various engineering materials. The limitation

of this process is the lowest material removal rate among
the four technologies. FIB machining and laser micro-
machining with ultrashort pulses lasers have relatively low
material removal rate but both approaches can provide a
removal process with high resolution. Overall, the four
technologies can complement each other for the manu-
facture of micro- and nano- components.

4 Conclusions

This paper summarized the processing principles and
applications of four primary micro-machining technolo-
gies, which include micro-cutting, micro-EDM, laser
micro-machining, and FIB machining. Comparison was
conducted among the four machining technologies in
terms of machining efficiency, workpiece materials being
machined, minimum feature size, maximum aspect ratio
and surface finish. Among four machining technologies,
micro-cutting provides the highest material efficiency and
can be employed to machine various engineering materi-
als. However, this approach has limitation in achieving the
minimum feature size. Micro-EDM can achieve the highest
aspect ratio. Laser micro-machining with ultrashort pulses
lasers and FIB machining can perform high resolution
processing to achieve sub-micrometer features.

Fig. 15 A typical micrometer-sized cantilever machined by FIB micro-milling: (a) 0° tilt/top view, (b) and (c) 40° tilt, (d) 90° tilt/side
view [100]

Table 2 Machining capabilities of micro- and nano-machining technologies

Machining technology Material removal rate Workpiece materials being machined Minimum feature size Maximum aspect ratio Surface finish

Micro-cutting Better Average Worse Worse Average

Micro-EDM Average Worse Average Better Average

Laser machining Average Better Average Average Average

FIB machining Worse Better Better Worse Better

Fig. 14 Nanoscale Si island arrays with hexagonal symmetry
fabricated by the FIB micro-milling [98]
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