Please wait a minute...

Frontiers of Mechanical Engineering

Front Mech Eng    2013, Vol. 8 Issue (4) : 350-359
Analytical dynamic solution of a flexible cable-suspended manipulator
Mahdi BAMDAD()
Mechatronics Research Laboratory, College of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran
Download: PDF(340 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Cable-suspended manipulators are used in large scale applications with, heavy in weight and long in span cables. It seems impractical to maintain cable assumptions of smaller robots for large scale manipulators. The interactions among the cables, platforms and actuators can fully evaluate the coupled dynamic analysis. The structural flexibility of the cables becomes more pronounced in large manipulators. In this paper, an analytic solution is provided to solve cable vibration. Also, a closed form solution can be adopted to improve the dynamic response to flexibility. The output is provided by the optimal torque generation subject to the actuator limitations in a mechatronic sense. Finally, the performance of the proposed algorithm is examined through simulations.

Keywords parallel robot      flexible cable      suspended robot      dynamic     
Corresponding Authors: BAMDAD Mahdi,   
Issue Date: 05 December 2013
 Cite this article:   
Mahdi BAMDAD. Analytical dynamic solution of a flexible cable-suspended manipulator[J]. Front Mech Eng, 2013, 8(4): 350-359.
E-mail this article
E-mail Alert
Articles by authors
Fig.1  General cable-suspended manipulator model
Tab.1  Manipulator inertial parameter
15E-2Winch radius r/m
2E-2Motor viscous damping coefficient c/(N?m?s)
1E-2Winch moment of inertia J/(kg?m2)
7.55Stall torque τs/(N?m)
3E+3Maximum no-load speed ωm/ RPM
4.5E-1Motor weight/kg
2.27E-1Rotor moment of inertia/(kg.cm2)
Tab.2  Actuator parameters
ClassDia. /inE /psiWeight /(lbf?ft-1)Material
I1/2130000000.38(6×7 with fiber core)
II1/45800000.03(Nylon Fiber)
Tab.3  Cable parameters
Fig.2  Specific trajectory: (a) End-effectorβposes and (b) velocities
Fig.3  Motor Computed Torque
WinchClass IClass II
Tab.4  Maximum Δ percentage
Fig.4  Maximum tension variation Δ for all six cables
Fig.5  Δ and Δ for fourth cable (a),(b) Class I, (c), (d) Class II
Fig.6  Fifth actuator torque and saturation problem
1 Merlet J P. Parallel Robots, Springer , 2006
2 Albus J, Bostelman R, Dagalakis N. The NIST ROBOCRANE. Journal of Robotic Systems , 1993, 10(5): 709-724
doi: 10.1002/rob.4620100509
3 Williams R L II, Albus J S, Bostelman R V. Self-contained automated construction deposition system. Automation in Construction , 2004, 13(3): 393-407
doi: 10.1016/j.autcon.2004.01.001
4 Bosscher P, Williams R L. A Concept for Rapidly-Deployable Cable Robot Search and Rescue Systems, in Proc. IDETC/CIE, ASME , 2005
5 Takemura F, Enomoto M, Tanaka T, Denou K, Kobayashi Y, Tadokoro S. Development of the balloon-cable driven robot for information collection from sky and proposal of the search strategy at a major disaster, in Proc. IEEE/ASME International Conference on Advanced Intelligent Mechatronics , 2005
6 Dewdney P, Nahon M, Veidt B. The large adaptive reflector: A giant radio telescope with an areo twist. Canadian Aeronautics and Space Journal , 2002, 48(4): 239-250
doi: 10.5589/q02-026
7 Nan R, Peng B. A Chinese concept for the 1 km 2 radio telescope. Acta Astronautica , 2000, 12: 66
8 Carrión-Viramontes F J, Ló-López J A. Quintana-Rodríguez J A, Lozano-Guzmán A, Nonlinear assessment of cable vibration in a stayed bridge. Experimental Mechanics , 2008, 48(2): 153-161
doi: 10.1007/s11340-007-9077-1
9 Abdel-Rahman E M, Nayfeh A.H, Masoud Z N. A review: dynamics and control of cranes. Journal of Vibration and Control , 2003, 9, 863
10 Cheng Y, Ren G, Dai S. The multi-body system modeling of the Gough-Stewart platform for vibration control. Journal of Sound and Vibration , 2005. 599-614
11 Jeong J, Kim S, Kwak Y. Kinematics and workspace analysis of a parallel cable mechanism for measuring a robot pose. Mechanism and Machine Theory , 1999, 34(6): 825-841
doi: 10.1016/S0094-114X(98)00080-9
12 Kozak K, Zhou Q, Wang J. Static Analysis of Cable-Driven Manipulators with Non-Negligible Cable Mass. IEEE Transactions on Robotics , 2006, 22(3): 425-433
13 Korayem M H, Bamdad M, Saadat M. Workspace Analysis of Cable-Suspended Robots with Elastic Cable; in Proc. IEEE International Conference, ROBIO , China, 2007
14 Diao X, Ma O. Vibration analysis of cable-driven parallel manipulators. Multibody System Dynamics , 2009, 21(4): 347-360
doi: 10.1007/s11044-008-9144-0
15 Shiang W, Cannon D, Gorman J. Optimal Force Distribution Applied to a Robotic Crane with Flexible Cable, in Proc. IEEE Robotics & Automation, San Francisco , 2000
16 Zhang Y, Agrawal S K, Piovoso M J. Coupled Dynamics of Flexible Cables and Rigid End-Effector for a Cable Suspended Robot, in Proc. American Control Conference , 2006
17 Baicu C F, Rahn C D, Nibali B D. Active Boundary Control of Elastic Cables: Theory and Experiment. Journal of Sound and Vibration , 1996, 198(1): 17-26
doi: 10.1006/jsvi.1996.0554
18 Korayem M H, Tourajizadeh H, Bamdad M. Dynamic Load Carrying Capacity of Flexible Cable Suspended Robot: Robust Feedback Linearization Control Approach. Journal of Intelligent & Robotic Systems , 2010, 60(3-4): 341-363
doi: 10.1007/s10846-010-9423-x
19 Korayem M H, Davarzani E, Bamdad M. Optimal Trajectory Planning with Dynamic Load Carrying Capacity of Flexible Cable-suspended Manipulator. Scientia Iranica. , 2010, 17: 315-326
20 Alp A B, Agrawal S K. Cable-suspended robots: Design, planning and control, in Proc. IEEE International Conference on Robotics and Automation, Washington D.C. , 2002, 4275-4280
21 Duan Q J, Du J L, Duan B Y, Tang A F. Deployment/retrieval modeling of cable-driven parallel robot. Mathematical Problems in Engineering , 2010, 2010: 1-10
doi: 10.1155/2010/909527
22 Choo Y I, Casarella M J. A survey of analytical methods for dynamic simulation of cable-body systems. Journal of Hydronautics. , 1973, 7(4): 137-144
doi: 10.2514/3.62948
23 Hanes Supply Inc. Rope , 2010,
Related articles from Frontiers Journals
[1] Haopeng LIU, Yunpeng ZHU, Zhong LUO, Qingkai HAN. PRESS-based EFOR algorithm for the dynamic parametrical modeling of nonlinear MDOF systems[J]. Front. Mech. Eng., 2018, 13(3): 390-400.
[2] Elijah Kwabena ANTWI, Kui LIU, Hao WANG. A review on ductile mode cutting of brittle materials[J]. Front. Mech. Eng., 2018, 13(2): 251-263.
[3] Qizhi MENG, Fugui XIE, Xin-Jun LIU. Conceptual design and kinematic analysis of a novel parallel robot for high-speed pick-and-place operations[J]. Front. Mech. Eng., 2018, 13(2): 211-224.
[4] Gang HAN, Fugui XIE, Xin-Jun LIU. Evaluation of the power consumption of a high-speed parallel robot[J]. Front. Mech. Eng., 2018, 13(2): 167-178.
[5] Rong ZHU, Ruiyi QUE, Peng LIU. Flexible micro flow sensor for micro aerial vehicles[J]. Front. Mech. Eng., 2017, 12(4): 539-545.
[6] Shifeng YU, Shuyu WANG, Ming LU, Lei ZUO. Review of MEMS differential scanning calorimetry for biomolecular study[J]. Front. Mech. Eng., 2017, 12(4): 526-538.
[7] Dazhi WANG, Xiaojun ZHAO, Yigao LIN, Tongqun REN, Junsheng LIANG, Chong LIU, Liding WANG. Fabrication of micro/nano-structures by electrohydrodynamic jet technique[J]. Front. Mech. Eng., 2017, 12(4): 477-489.
[8] Xiaoming YUAN, Jiabing HU, Shijie CHENG. Multi-time scale dynamics in power electronics-dominated power systems[J]. Front. Mech. Eng., 2017, 12(3): 303-311.
[9] Lingli JIANG, Zhenyong DENG, Fengshou GU, Andrew D. BALL, Xuejun LI. Effect of friction coefficients on the dynamic response of gear systems[J]. Front. Mech. Eng., 2017, 12(3): 397-405.
[10] Shuaishuai WANG, Caichao ZHU, Chaosheng SONG, Huali HAN. Effects of elastic support on the dynamic behaviors of the wind turbine drive train[J]. Front. Mech. Eng., 2017, 12(3): 348-356.
[11] Yunpeng ZHU, You WANG, Zhong LUO, Qingkai HAN, Deyou WANG. Similitude design for the vibration problems of plates and shells: A review[J]. Front. Mech. Eng., 2017, 12(2): 253-264.
[12] Muzhi ZHU,Shengdun ZHAO,Jingxiang LI. Design and analysis of a new high frequency double-servo direct drive rotary valve[J]. Front. Mech. Eng., 2016, 11(4): 344-350.
[13] Huaxin LIU,Marco CECCARELLI,Qiang HUANG. Design and simulation of a cable-pulley-based transmission for artificial ankle joints[J]. Front. Mech. Eng., 2016, 11(2): 170-183.
[14] Fugui XIE,Xin-Jun LIU. Analysis of the kinematic characteristics of a high-speed parallel robot with Schönflies motion: Mobility, kinematics, and singularity[J]. Front. Mech. Eng., 2016, 11(2): 135-143.
[15] Mingfeng WANG,Marco CECCARELLI,Giuseppe CARBONE. A feasibility study on the design and walking operation of a biped locomotor via dynamic simulation[J]. Front. Mech. Eng., 2016, 11(2): 144-158.
Full text



  Shared   0