Please wait a minute...

Frontiers of Mechanical Engineering

Front Mech Eng    2013, Vol. 8 Issue (1) : 70-79     https://doi.org/10.1007/s11465-013-0365-4
RESEARCH ARTICLE |
Kinematic, workspace and singularity analysis of a new parallel robot used in minimally invasive surgery
Alin STOICA, Doina PISLA(), Szilaghyi ANDRAS, Bogdan GHERMAN, Bela-Zoltan GYURKA, Nicolae PLITEA
Technical University of Cluj-Napoca, RO-400114 Cluj-Napoca, Romania
Download: PDF(452 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the last ten years, due to development in robotic assisted surgery, the minimally invasive surgery has greatly changed. Until now, the vast majority of robots used in surgery, have serial structures. Due to the orientation parallel module, the structure is able to reduce the pressure exerted on the entrance point in the patient’s abdominal wall. The parallel robot can also handle both a laparoscope as well an active instrument for different surgical procedures. The advantage of this parallel structure is that the geometric model has been obtained through an analytical approach. The kinematic modelling of a new parallel architecture, the inverse and direct geometric model and the inverse and direct kinematic models for velocities and accelerations are being determined. The paper will demonstrate that with this parallel structure, one can obtain the necessary workspace required for a minimally invasive operation. The robot workspace was generated using the inverse geometric model. An in-depth study of different types of singularity is performed, allowing the development of safe control algorithms of the experimental model. Some kinematic simulation results and the experimental model of the robot are presented in the paper.

Keywords parallel robot      minimally invasive surgery      kinematics      simulation     
Corresponding Authors: PISLA Doina,Email:doina.pisla@mep.utcluj.ro   
Issue Date: 05 March 2013
 Cite this article:   
Alin STOICA,Doina PISLA,Szilaghyi ANDRAS, et al. Kinematic, workspace and singularity analysis of a new parallel robot used in minimally invasive surgery[J]. Front Mech Eng, 2013, 8(1): 70-79.
 URL:  
http://journal.hep.com.cn/fme/EN/10.1007/s11465-013-0365-4
http://journal.hep.com.cn/fme/EN/Y2013/V8/I1/70
Fig.1  Kinematic scheme of the parallel robot
Fig.2  Parallel module
Fig.3  The angles and
Fig.4  Simulation results for the kinematic model of parallel structure
Fig.5  Singularity Type I corresponding to Case 2
Fig.6  Singularity Type II corresponding to Case 3
Fig.7  The reachable workspace of the parallel robot (isometric view)
Fig.8  Section view in the workspace, parallel with the plane at = 0
Fig.9  Experimental model of the parallel robot
Fig.10  Experimental model of the parallel module
1 Gherman B, Vaida C, Pisla D, Plitea N. Singularities and workspace analysis for a parallel robot for minimally invasive surgery. In: Proceedings of 2010 IEEE International Conference on Automation Quality and Testing Robotics (AQTR) , 2010, 1-6
2 Taylor R, Stulberg S. Medical robotics working group section report. NSF Workshop on Medical Robotics and Computer-Assisted Medical Interventions , Bristol, England, 1996
3 Plitea N, Hesselbach J, Pisla D,Raatz A, Vaida C, Budde C, Vlad L, Burisch A, Senner R. Innovative development of surgical parallel robots. In: Proceedings of 1st International Conference of Advancements of Medicine and Health Care through Technology , 2007, 201-206
4 Kraft B M, J?ger C, Kraft K, Leibl B J, Bittner R. The AESOP robot system in laparoscopic surgery: increased risk or advantage for surgeon and patient? Surgical Endoscopy , 2004, 18(8): 1216-1223
doi: 10.1007/s00464-003-9200-z pmid: PMID:15457381
5 Mettler L, Ibrahim M, Jonat W. One year of experience working with the aid of a robotic assistant (the voice-controlled optic holder AESOP) in gynaecological endoscopic surgery. Human Reproduction , 1998, 13(10): 2748-2750
doi: 10.1093/humrep/13.10.2748 pmid:9804224
6 Long J A, Descotes J L, Skowron O, Troccaz J, Cinquin P, Boillot B, Terrier N, Rambeaud J J. Use of robotics in laparoscopic urological surgery: state of the art. Progres en Urologie , 2006, 16(1): 3-11 PMID:16526532
7 Biomed Homepage. 2010, http://biomed.brown.edu
8 Taylor R H, Funda J, Eldridge B, Gomory S, Gruben K, LaRose D, Talamini M, Kavoussi L, Anderson J. A telerobotic assistant for laparoscopic surgery. Engineering in Medicine and Biology Magazine , 1995, 14(3): 279-288
doi: 10.1109/51.391776
9 Kobayashi E, Masamune K, Sakuma I, Dohi T, Hashimoto D. A new safe laparoscopic manipulator system with a five-bar linkage mechanism and an optical zoom. Computer Aided Surgery , 1999, 4(4): 182-192
doi: 10.3109/10929089909148172 pmid:10567096
10 Rininsland H. ARTEMIS. A telemanipulator for cardiac surgery. European Journal of Cardio-Thoracic Surgery , 1999, 16(Suppl 2): S106-S111
doi: 10.1016/S1010-7940(99)00282-1 pmid:10613569
11 Aiono S, Gilbert J M, Soin B, Finlay P A, Gordan A. Controlled trial of the introduction of a robotic camera assistant (EndoAssist) for laparoscopic cholecystectomy. Surgical Endoscopy , 2002, 16(9): 1267-1270
doi: 10.1007/s00464-001-9174-7 pmid:12235507
12 Degani A, Choset H, Wolf A, Zenati M A. Highly articulated robotic probe for minimally invasive surgery. In: Proceedings of 2006 IEEE International Conference on Robotics and Automation , Orlando, 2006, 4167-4172
13 Lee Y J, Kim J, Ko S Y, Lee W J, Kwon D S. Design of a compact laparoscopic assistant robot: KaLAR. In: Proceedings of the International Conference on Automation and Systems , Korea, 2003, 2648-2653
14 Berkelman P, Ma J. A compact modular teleoper-ated robotic minimally invasive surgery system. In: Proceedings of International Conference on Intelligent Robots and Systems , 2003
15 Kim S K, Shin W H, Ko S Y, Kim J, Kwon D S. Design of a compact 5-DOF surgical robot of a spherical mechanism: Cures. In: Proceedings of the 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics , 2008, 990-995
16 Polet R, Donnez J. Using a laparoscope manipulator (LAPMAN) in laparoscopic gynecological surgery. Surgical Technology International XVII-Gynecology , 2008, 17: 187-191
pmid:18802900
17 Saing V, Sotthivirat S, Vilasrussamee J, Suthakornm J. Design of a new laparoscopic-holder assisting robot. In: Proceedings of 3rd International Symposium on Biomedical Engineering , Bangkok, Thailand, 2008, 278-281
18 Voros S, Haber G P, Menudet J F, Long J A, Cinquin P. ViKY robotic scope holder: initial clinical experience and preliminary results using instrument tracking. In: Proceedings of IEEE/ASME Transactions on Mechatronics , 2010, 15(6): 879-886
19 Intuitive Surgical Homepage. 2010, http://www.intuitivesurgical.com
20 Titan Medical Homepage. 2010, http://www.titanmedicalinc.com
21 Hagn U, Konietschke R, Tobergte A, Nickl M, J?rg S, Kübler B, Passig G, Gr?ger M, Fr?hlich F, Seibold U, Le-Tien L, Albu-Sch?ffer A, Nothhelfer A, Hacker F, Grebenstein M, Hirzinger G. DLR MiroSurge: a versatile system for research in endoscopic telesurgery. International Journal of Computer Assisted Radiology and Surgery , 2010, 5(2): 183-193
doi: 10.1007/s11548-009-0372-4 pmid:20033517
22 http://www.roboticstrends.com/research_academics/article/new_robot_with_force_feedback_promises_better_surgery
23 Pisla D, Plitea N, Vaida C. Kinematic modeling and workspace generation for a new parallel robot used in minimally invasive surgery. Advances in Robot Kinematics: Analysis and Design , 2008, 459- 468
24 Vaida C, Pisla D, Plitea N, Gherman B, Gyurka B, Stancel E, Hesselbach J, Raatz A, Vlad L, Graur F. Development of a control system for a parallel robot used in minimally invasive surgery. In: Proceeding of International conference on Advancements of Medicine and Health Care through Technology , 2009, 26, 171-176
25 Plitea N, Pisla D, Vaida C. On kinematics of a parallel robot for minimally invasive surgery. PAMM , 2007, 7(1): 4010033-4010034
doi: 10.1002/pamm.200700850
26 Vaida C. Contributions to the development and kinematic-dynamic modelling of parallel robots for MIS. Dissertation for the Doctoral Degree , Cluj-Napoca, 2009
27 Merlet J P. Parallel Robots. Springer: Kluwer Academic Publisher, 2006
28 Gogu G. Structural Synthesis of Parallel Robots. New York: Springer, 2006
29 Lum M J H, Rosen J, Sinanan M N, Hannaford B. Kinematic optimization of a spherical mechanism for a minimally invasive surgical robot. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, USA , 2004, 829-834
30 Beasley R A, Howe R D, Dupont P E. Kinematic error correction for minimally invasive surgical robots. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, USA , 2004, 358-364
31 Pisla D, Plitea N, Gherman B, Pisla A, Vaida C. Kinematical analysis and design of a new surgical parallel robot. Computational Kinematics , 2009, 273-282
32 Graur F. Experimental laparoscopic cholecistectomy using PARAMIS parallel robot, In: Proceedings of SMIT 2009 , Sinaia, Romania, 2009
33 Zlatanov D, Bonev I A, Gosselin C M. Constraint singularities of parallel mechanisms. In: Proceedings of the IEEE International Conference on Robotics and Automation, USA , 2002, 496-502
34 Gosselin C, Angeles J. Singularity analysis of closed-loop kinematic chains. IEEE Transactions on Robotics and Automation , 1990, 6(3): 281-290
doi: 10.1109/70.56660
35 Pastorelli S, Battezzato A. Singularity analysis of a 3 degrees-of-freedom parallel manipulator. Computational Kinematics , 2009, 331-440
36 Staicu S. Recursive modelling in dynamics of delta parallel robot. Robotica , 2009, 27: 199-207
37 Maxon Motor A G. Maxon Motor Control. User CD-ROM , 2011
38 B&R. Automation Studio, Control Software. DVD-ROM , 2011
Related articles from Frontiers Journals
[1] Yue WANG, Jingjun YU, Xu PEI. Fast forward kinematics algorithm for real-time and high-precision control of the 3-RPS parallel mechanism[J]. Front. Mech. Eng., 2018, 13(3): 368-375.
[2] Elijah Kwabena ANTWI, Kui LIU, Hao WANG. A review on ductile mode cutting of brittle materials[J]. Front. Mech. Eng., 2018, 13(2): 251-263.
[3] Qizhi MENG, Fugui XIE, Xin-Jun LIU. Conceptual design and kinematic analysis of a novel parallel robot for high-speed pick-and-place operations[J]. Front. Mech. Eng., 2018, 13(2): 211-224.
[4] Gang HAN, Fugui XIE, Xin-Jun LIU. Evaluation of the power consumption of a high-speed parallel robot[J]. Front. Mech. Eng., 2018, 13(2): 167-178.
[5] Yun ZHANG, Wenjie YU, Junjie LIANG, Jianlin LANG, Dequn LI. Three-dimensional numerical simulation for plastic injection-compression molding[J]. Front. Mech. Eng., 2018, 13(1): 74-84.
[6] Xiaoguang GUO,Qiang LI,Tao LIU,Renke KANG,Zhuji JIN,Dongming GUO. Advances in molecular dynamics simulation of ultra-precision machining of hard and brittle materials[J]. Front. Mech. Eng., 2017, 12(1): 89-98.
[7] Shaohui YIN,Hongpeng JIA,Guanhua ZHANG,Fengjun CHEN,Kejun ZHU. Review of small aspheric glass lens molding technologies[J]. Front. Mech. Eng., 2017, 12(1): 66-76.
[8] Yang LI,Yunxin WU,Hai GONG,Xiaolei FENG. Air bearing center cross gap of neutron stress spectrometer sample table support system[J]. Front. Mech. Eng., 2016, 11(4): 403-411.
[9] Huaxin LIU,Marco CECCARELLI,Qiang HUANG. Design and simulation of a cable-pulley-based transmission for artificial ankle joints[J]. Front. Mech. Eng., 2016, 11(2): 170-183.
[10] Fugui XIE,Xin-Jun LIU. Analysis of the kinematic characteristics of a high-speed parallel robot with Schönflies motion: Mobility, kinematics, and singularity[J]. Front. Mech. Eng., 2016, 11(2): 135-143.
[11] Mingfeng WANG,Marco CECCARELLI,Giuseppe CARBONE. A feasibility study on the design and walking operation of a biped locomotor via dynamic simulation[J]. Front. Mech. Eng., 2016, 11(2): 144-158.
[12] Saeed ABDOLSHAH,Erfan SHOJAEI BARJUEI. Linear quadratic optimal controller for cable-driven parallel robots[J]. Front. Mech. Eng., 2015, 10(4): 344-351.
[13] Jonnathan D. SANTOS,Jorge I. FAJARDO,Alvaro R. CUJI,Jaime A. GARCÍA,Luis E. GARZÓN,Luis M. LÓPEZ. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite short natural fibers reinforced injection molded[J]. Front. Mech. Eng., 2015, 10(3): 287-293.
[14] Yuzhe LIU,Liping WANG,Jun WU,Jinsong WANG. A comprehensive analysis of a 3-P (Pa) S spatial parallel manipulator[J]. Front. Mech. Eng., 2015, 10(1): 7-19.
[15] Pankaj SHARMA,Ajai JAIN. Analysis of dispatching rules in a stochastic dynamic job shop manufacturing system with sequence-dependent setup times[J]. Front. Mech. Eng., 2014, 9(4): 380-389.
Viewed
Full text


Abstract

Cited

  Shared   0
  Discussed