Please wait a minute...

Frontiers of Mechanical Engineering

Front Mech Eng    2013, Vol. 8 Issue (1) : 17-32
Kinematical synthesis of an inversion of the double linked fourbar for morphing wing applications
Department of Mechanical engineering, ETSI-BILBAO, Vizcaya 48013, Spain
Download: PDF(1016 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

This paper presents the kinematical features of an inversion of the double linked fourbar for morphing wing purposes. The structure of the mechanism is obtained using structural synthesis concepts, from an initial conceptual schematic. Then, kinematic characteristics as instant center of rotation, lock positions, dead point positions and uncertainty positions are derived for this mechanism in order to face the last step, the dimensional synthesis; in this sense, two kinds of dimensional synthesis are arranged to guide the wing along two positions, and to fulfill with the second one some aerodynamic and minimum actuation energy related issues.

Keywords morphing wing      structural synthesis      dimensional synthesis      geometrical kinematics     
Corresponding Author(s): AGUIRREBEITIA J.,   
Issue Date: 05 March 2013
 Cite this article:   
J. AGUIRREBEITIA,R. AVILéS,I. FERNáNDEZ, et al. Kinematical synthesis of an inversion of the double linked fourbar for morphing wing applications[J]. Front Mech Eng, 2013, 8(1): 17-32.
Fig.1  Wing morphing concepts (adapted from Ref. [])
Fig.2  Schematic of the morphing wing mechanism.
Fig.3  Actuation fourbar mechanism. (a) Fourbar mechanism; (b) rigid-solid movement; (c) compliant-solid movement; (d) extreme mechanical advantage positions; (e) fully aligned positions
Fig.4  Proposed new actuation mechanism
Fig.5  Kinematic chain and derived mechanisms. (a) Kinematic chain; (b) double linked fourbar; (c) actuation mechanism
Fig.6  Instantaneous center of rotation of the wing (element 8) as rigid element
Fig.7  Position with instantaneous rotation about one of the fixed points
Fig.8  Simple lock position. Element 3 gets locked
Fig.9  Double lock position. Both elements 2 and 3 get locked
Fig.10  Dead point position. Wing element remains locked
Fig.11  Fully aligned positions
Fig.12  Inversion in the fully aligned position
Fig.13  Curvature centers for points and
Fig.14  Instantaneous equivalent fourbar mechanisms
Fig.15  Instantaneous centers of rotation of wing element in uncertainty position
Fig.16  Movement inversion for rigid-solid guidance problem
Fig.17  Fourbar with aligned coupler point. (a) Topology; (b) two position rigid body guidance synthesis
Fig.18  Synthesis of the fourbar with aligned coupler point. (a) Procedure; (b) resulting mechanism in two positions
Fig.19  Change of the center of buoyancy with the orientation of the wing
Fig.20  Synthesis prearrangement. (a) Determination of the center of rotation; (b) relocation of the extreme positions
Fig.21  Synthesis arrangement. (a) Problem data; (b) problem solution
Fig.22  Synthesis arrangement for the example outlined
Fig.23  Solution mechanism
Fig.24  Minimization worksheet for Fourbar I
Fig.25  Three positions for the wing mechanism. (a) Angle of the wing element 0o; (b) angle of the wing element 7.5o; (c) angle of the wing element 15o
Fig.26  Conservation of the instant center of rotation of the wing
1 Rodriguez A. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2007
2 Sofla A Y N, Meguid S A, Tan K T, Yeo W K. Shape morphing of aircraft wing: Status and challenges. Materials & Design , 2010, 31(3): 1284-1292
doi: 10.1016/j.matdes.2009.09.011
3 Berton B.Shape Memory Alloys Application: Trailing Edge Shape Control. NATO OTAN RTO-MP-AVT-141 , 2006
4 Yu Y, Li X, Zhang W, Leng J. Investigation on adaptive wing structure based on shape memory polymer composite hinge. International conference on smart materials and nanotechnology in engineering, China. In: Proceedings of the Society for Photo-Instrumentation Engineers , 2007, 6423: 64231D-5, 64231D-7
doi: 10.1117/12.779394
5 Wang D P, Bartley-Cho J D, Martin C A, Hallam B. Development of high-rate, large deflection, hingeless trailing edge control surface for the smart wing wind tunnel model. Smart structures and materials 2001: Industrial and commercial applications of smart structures technologies. In: Proceedings of SPIE , 2001
6 Vos R, Barrett R, de Breuker R, Tiso P. Post-buckled precompressed elements: A new class of control actuators for morphing wing UAVs. Smart Materials and Structures , 2007, 16(3): 919-926
doi: 10.1088/0964-1726/16/3/042
7 Lim S M, Lee S, Park H C, Yoon K J, Goo N S. Design and demonstration of a biomimetic wing section using a lightweight piezo-composite actuator (LIPCA). Smart Materials and Structures , 2005, 14(4): 496-503
doi: 10.1088/0964-1726/14/4/006
8 Paradies R, Ciresa P. Active wing design with integrated flight control using piezoelectric macro fiber composites. Smart Materials and Structures , 2009, 18(3): 035010
doi: 10.1088/0964-1726/18/3/035010
9 Mattioni F, Weaver P M, Potter K D, Friswell M I. The application of thermally induced multistable composites to morphing aircraft structures. Industrial and commercial applications of smart structures technologies. Proceedings of the Society for Photo-Instrumentation Engineers , 2008, 6930: 693012-1, 693012-11
doi: 10.1117/12.776226
10 Diaconu C G, Weaver P M, Mattioni F. Concepts for morphing airfoil sections using bi-stable laminated composite structures. Thin-walled Structures , 2008, 46(6): 689-701
doi: 10.1016/j.tws.2007.11.002
11 Ding H, Zhao J, Huang Z. Unified structural synthesis of planar simple and multiple joint kinematic chains. Mechanism and Machine Theory , 2010, 45(4): 555-568
doi: 10.1016/j.mechmachtheory.2009.10.012
12 Sunkari R P, Schmidt L C. Structural synthesis of planar kinematic chains by adapting a Mckay-type algorithm. Mechanism and Machine Theory , 2006, 41(9): 1021-1030
doi: 10.1016/j.mechmachtheory.2005.11.007
13 Butcher E A, Hartman C. Efficient enumeration and hierarchical classification of planar simple-jointed kinematic chains: application to 12- and 14-bar single degree-of-freedom chains. Mechanism and Machine Theory , 2005, 40(9): 1030-1050
doi: 10.1016/j.mechmachtheory.2004.12.015
14 Yang T L. Topological characteristics and automatic generation of structural analysis and synthesis of plane mechanisms, Part I: Theory. American Society of Mechanical Engineers, Design Engineering Division , 1988
15 Manolescu N I. A method based on Baranov trusses and using graph theory to find the set of planar jointed kinematic chains and mechanisms. Mechanism and Machine Theory , 1973, 8(1): 3-22
doi: 10.1016/0094-114X(73)90003-7
16 Hsieh W H. Kinematic synthesis of cam-controlled planetary gear trains. Mechanism and Machine Theory , 2009, 44(5): 873-895
doi: 10.1016/j.mechmachtheory.2008.07.001
17 Kim J U, Kwak B M. Application of edge permutation group to structural synthesis of epicyclic gear trains. Mechanism and Machine Theory , 1990, 25(5): 563-574
doi: 10.1016/0094-114X(90)90070-Z
18 Fernandez de Bustos I, Agirrebeitia J, Avilés R, Ajuria G. Aguirrebeitia, J., Avilés, R., Ajuria, G. Second order analysis of the mobility of kinematic loops via acceleration compatibility analysis. Mechanism and Machine Theory , 2009, 44(10): 1923-1937
doi: 10.1016/j.mechmachtheory.2009.04.007
19 Dijscksman E A. Motion Geometry of Mechanisms. Cambridge: Cambridge University Press, 1976
20 Hernandez A. Cinematica de Mecanismos. Analisis y dise?o. Editorial Síntesis . 2004
21 Hunt K H. Kinematic Geometry of Mechanisms. Oxford: Clarendon Press, 1978
22 Shigley J E, Uicker J J. Theory of Machines and Mechanisms, USA: McGraw Hill, 1980
23 Avilés R, Ajuria M B, García de Jalón J. A fairly general method for the optimum synthesis of mechanisms. Mechanism and Machine Theory , 1985, 20(4): 321-328
doi: 10.1016/0094-114X(85)90037-0
24 Vallejo J, Avilés R, Hernández A, Amezua E. Nonlinear optimization of planar linkages for kinematic syntheses. Mechanism and Machine Theory , 1995, 30(4): 501-518
doi: 10.1016/0094-114X(94)00064-R
25 Avilés R, Vallejo J, Ajuria G, Agirrebeitia J. Second-order methods for the optimum synthesis of multibody systems. Structural and Multidisciplinary Optimization , 2000, 19(3): 192-203
doi: 10.1007/s001580050102
26 Avilés R, Vallejo J, Fernandez de Bustos I, Agirrebeitia J, Ajuria G. Optimum synthesis of planar linkages using a strain-energy error function under geometric constraints. Mechanism and Machine Theory , 2010, 45(1): 65-79
doi: 10.1016/j.mechmachtheory.2009.08.002
27 Holland J H. Adaptation in Natural and Artificial Systems. Cambridge: The MIT Press, 1994
28 Avilés R. Introducción a los algoritmos genéticos con aplicaciones en ingeniería mecánica. Escuela Técnica Superior de Ingenieros de Bilbao , Spain, 1996
29 Fernández de Bustos I, Agirrebeitia J, Avilés R, Angulo C. Kinematical synthesis of 1-DOF mechanisms using finite elements and genetic algorithms. Finite Elements in Analysis and Design , 2005, 41(15): 1441-1463
doi: 10.1016/j.finel.2005.04.001
30 Lasdon L S, Waren A D, Jain A, Ratner M. Design and testing of a generalized reduced gradient code for nonlinear programming. ACM Transactions on Mathematical Software , 1978, 4(1): 34-50
doi: 10.1145/355769.355773
Related articles from Frontiers Journals
[1] Qi WANG, Zhiwei XU, Qian ZHU. Structural design of morphing trailing edge actuated by SMA[J]. Front Mech Eng, 2013, 8(3): 268-275.
[2] D. GOUBET, J. C. FAUROUX, G. GOGU. Gripping mechanisms in current wood harvesting machines[J]. Front Mech Eng, 2013, 8(1): 42-61.
Full text



  Shared   0