Journal home Browse Most Down Articles

Most Down Articles

  • Select all
  • RESEARCH ARTICLE
    Ziyu Fu, Dongguo Liang, Wei Zhang, Dongling Shi, Yuhua Ma, Dong Wei, Junxiang Xi, Sizhe Yang, Xiaoguang Xu, Di Tian, Zhaoqing Zhu, Mingquan Guo, Lu Jiang, Shuting Yu, Shuai Wang, Fangyin Jiang, Yun Ling, Shengyue Wang, Saijuan Chen, Feng Liu, Yun Tan, Xiaohong Fan
    Frontiers of Medicine, 2023, 17(3): 562-575. https://doi.org/10.1007/s11684-022-0977-3

    The Omicron family of SARS-CoV-2 variants are currently driving the COVID-19 pandemic. Here we analyzed the clinical laboratory test results of 9911 Omicron BA.2.2 sublineages-infected symptomatic patients without earlier infection histories during a SARS-CoV-2 outbreak in Shanghai in spring 2022. Compared to an earlier patient cohort infected by SARS-CoV-2 prototype strains in 2020, BA.2.2 infection led to distinct fluctuations of pathophysiological markers in the peripheral blood. In particular, severe/critical cases of COVID-19 post BA.2.2 infection were associated with less pro-inflammatory macrophage activation and stronger interferon alpha response in the bronchoalveolar microenvironment. Importantly, the abnormal biomarkers were significantly subdued in individuals who had been immunized by 2 or 3 doses of SARS-CoV-2 prototype-inactivated vaccines, supporting the estimation of an overall 96.02% of protection rate against severe/critical disease in the 4854 cases in our BA.2.2 patient cohort with traceable vaccination records. Furthermore, even though age was a critical risk factor of the severity of COVID-19 post BA.2.2 infection, vaccination-elicited protection against severe/critical COVID-19 reached 90.15% in patients aged ≥ 60 years old. Together, our study delineates the pathophysiological features of Omicron BA.2.2 sublineages and demonstrates significant protection conferred by prior prototype-based inactivated vaccines.

  • REVIEW
    Hongze Zhang, Xunjia Cheng
    Frontiers of Medicine, 2021, 15(6): 842-866. https://doi.org/10.1007/s11684-021-0865-2

    Among various genera of free-living amoebae prevalent in nature, some members are identified as causative agents of human encephalitis, in which Naegleria fowleri followed by Acanthamoeba spp. and Balamuthia mandrillaris have been successively discovered. As the three dominant genera responsible for infections, Acanthamoeba and Balamuthia work as opportunistic pathogens of granulomatous amoebic encephalitis in immunocompetent and immunocompromised individuals, whereas Naegleria induces primary amoebic meningoencephalitis mostly in healthy children and young adults as a more violent and deadly disease. Due to the lack of typical symptoms and laboratory findings, all these amoebic encephalitic diseases are difficult to diagnose. Considering that subsequent therapies are also affected, all these brain infections cause significant mortality worldwide, with more than 90% of the cases being fatal. Along with global warming and population explosion, expanding areas of human and amoebae activity in some regions lead to increased contact, resulting in more serious infections and drawing increased public attention. In this review, we summarize the present information of these pathogenic free-living amoebae, including their phylogeny, classification, biology, and ecology. The mechanisms of pathogenesis, immunology, pathophysiology, clinical manifestations, epidemiology, diagnosis, and therapies are also discussed.

  • RESEARCH ARTICLE
    Junhua Zhang, Boli Zhang
    Frontiers of Medicine, 2014, 8(3): 321-327. https://doi.org/10.1007/s11684-014-0370-y

    With the advent of big data era, our thinking, technology and methodology are being transformed. Data-intensive scientific discovery based on big data, named “The Fourth Paradigm,” has become a new paradigm of scientific research. Along with the development and application of the Internet information technology in the field of healthcare, individual health records, clinical data of diagnosis and treatment, and genomic data have been accumulated dramatically, which generates big data in medical field for clinical research and assessment. With the support of big data, the defects and weakness may be overcome in the methodology of the conventional clinical evaluation based on sampling. Our research target shifts from the “causality inference” to “correlativity analysis.” This not only facilitates the evaluation of individualized treatment, disease prediction, prevention and prognosis, but also is suitable for the practice of preventive healthcare and symptom pattern differentiation for treatment in terms of traditional Chinese medicine (TCM), and for the post-marketing evaluation of Chinese patent medicines. To conduct clinical studies involved in big data in TCM domain, top level design is needed and should be performed orderly. The fundamental construction and innovation studies should be strengthened in the sections of data platform creation, data analysis technology and big-data professionals fostering and training.

  • COMMENTARY
    Jiuyang Xu, Yijun Chen, Hao Chen, Bin Cao
    Frontiers of Medicine, 2020, 14(2): 225-228. https://doi.org/10.1007/s11684-020-0753-1

    The 2019 novel coronavirus (2019-nCoV) is an emerging pathogen and is threatening the global health. Strikingly, more than 28 000 cases and 550 deaths have been reported within two months from disease emergence. Armed with experience from previous epidemics in the last two decades, clinicians, scientists, officials, and citizens in China are all contributing to the prevention of further 2019-nCoV transmission. Efficient preliminary work has enabled us to understand the basic characteristics of 2019-nCoV, but there are still many unanswered questions. It is too early now to judge our performance in this outbreak. Continuous and strengthened efforts should be made not only during the epidemic, but also afterwards in order to prepare for any incoming challenges.

  • REVIEW
    Min Zhou, Xinxin Zhang, Jieming Qu
    Frontiers of Medicine, 2020, 14(2): 126-135. https://doi.org/10.1007/s11684-020-0767-8

    Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has posed a significant threat to global health. It caused a total of 80 868 confirmed cases and 3101 deaths in Chinese mainland until March 8, 2020. This novel virus spread mainly through respiratory droplets and close contact. As disease progressed, a series of complications tend to develop, especially in critically ill patients. Pathological findings showed representative features of acute respiratory distress syndrome and involvement of multiple organs. Apart from supportive care, no specific treatment has been established for COVID-19. The efficacy of some promising antivirals, convalescent plasma transfusion, and tocilizumab needs to be investigated by ongoing clinical trials.

  • REVIEW
    Yang Gao, Wen Tian, Xiaoxu Han, Feng Gao
    Frontiers of Medicine, 2017, 11(4): 480-489. https://doi.org/10.1007/s11684-017-0594-8

    Superinfection is frequently detected among individuals infected by human immunodeficiency virus type I (HIV-1). Superinfection occurs at similar frequencies at acute and chronic infection stages but less frequently than primary infection. This observation indicates that the immune responses elicited by natural HIV-1 infection may play a role in curb of superinfection; however, these responses are not sufficiently strong to completely prevent superinfection. Thus, a successful HIV-1 vaccine likely needs to induce more potent and broader immune responses than those elicited by primary infection. On the other hand, potent and broad neutralization responses are more often detected after superinfection than during monoinfection. This suggests that broadly neutralizing antibodies are more likely induced by sequential immunization of multiple different immunogens than with only one form of envelope glycoprotein immunogens. Understanding why the protection from superinfection by immunity induced by primary infection is insufficient and if superinfection can lead to cross-reactive immune responses will be highly informative for HIV-1 vaccine design.

  • RESEARCH ARTICLE
    Na Qin, Yuancheng Li, Cheng Wang, Meng Zhu, Juncheng Dai, Tongtong Hong, Demetrius Albanes, Stephen Lam, Adonina Tardon, Chu Chen, Gary Goodman, Stig E. Bojesen, Maria Teresa Landi, Mattias Johansson, Angela Risch, H-Erich Wichmann, Heike Bickeboller, Gadi Rennert, Susanne Arnold, Paul Brennan, John K. Field, Sanjay Shete, Loic Le Marchand, Olle Melander, Hans Brunnstrom, Geoffrey Liu, Rayjean J. Hung, Angeline Andrew, Lambertus A. Kiemeney, Shan Zienolddiny, Kjell Grankvist, Mikael Johansson, Neil Caporaso, Penella Woll, Philip Lazarus, Matthew B. Schabath, Melinda C. Aldrich, Victoria L. Stevens, Guangfu Jin, David C. Christiani, Zhibin Hu, Christopher I. Amos, Hongxia Ma, Hongbing Shen
    Frontiers of Medicine, 2021, 15(2): 275-291. https://doi.org/10.1007/s11684-020-0779-4

    Although genome-wide association studies have identified more than eighty genetic variants associated with non-small cell lung cancer (NSCLC) risk, biological mechanisms of these variants remain largely unknown. By integrating a large-scale genotype data of 15 581 lung adenocarcinoma (AD) cases, 8350 squamous cell carcinoma (SqCC) cases, and 27 355 controls, as well as multiple transcriptome and epigenomic databases, we conducted histology-specific meta-analyses and functional annotations of both reported and novel susceptibility variants. We identified 3064 credible risk variants for NSCLC, which were overrepresented in enhancer-like and promoter-like histone modification peaks as well as DNase I hypersensitive sites. Transcription factor enrichment analysis revealed that USF1 was AD-specific while CREB1 was SqCC-specific. Functional annotation and gene-based analysis implicated 894 target genes, including 274 specifics for AD and 123 for SqCC, which were overrepresented in somatic driver genes (ER=1.95, P=0.005). Pathway enrichment analysis and Gene-Set Enrichment Analysis revealed that AD genes were primarily involved in immune-related pathways, while SqCC genes were homologous recombination deficiency related. Our results illustrate the molecular basis of both well-studied and new susceptibility loci of NSCLC, providing not only novel insights into the genetic heterogeneity between AD and SqCC but also a set of plausible gene targets for post-GWAS functional experiments.

  • REVIEW
    Jiping Li, Yuying Liu, Yidong Yuan, Bo Huang
    Frontiers of Medicine, 2021, 15(1): 43-52. https://doi.org/10.1007/s11684-020-0769-6

    Cellular mechanics, a major regulating factor of cellular architecture and biological functions, responds to intrinsic stresses and extrinsic forces exerted by other cells and the extracellular matrix in the microenvironment. Cellular mechanics also acts as a fundamental mediator in complicated immune responses, such as cell migration, immune cell activation, and pathogen clearance. The principle of atomic force microscopy (AFM) and its three running modes are introduced for the mechanical characterization of living cells. The peak force tapping mode provides the most delicate and desirable virtues to collect high-resolution images of morphology and force curves. For a concrete description of AFM capabilities, three AFM applications are discussed. These applications include the dynamic progress of a neutrophil-extracellular-trap release by neutrophils, the immunological functions of macrophages, and the membrane pore formation mediated by perforin, streptolysin O, gasdermin D, or membrane attack complex.

  • REVIEW
    Hao Qu, Yu Zhao
    Frontiers of Medicine, 2021, 15(4): 575-584. https://doi.org/10.1007/s11684-020-0816-3

    Spinal disease is an important cause of cervical discomfort, low back pain, radiating pain in the limbs, and neurogenic intermittent claudication, and its incidence is increasing annually. From the etiological viewpoint, these symptoms are directly caused by the compression of the spinal cord, nerve roots, and blood vessels and are most effectively treated with surgery. Spinal surgeries are primarily performed using two different techniques: spinal canal decompression and internal fixation. In the past, tactile sensation was the primary method used by surgeons to understand the state of the tissue within the operating area. However, this method has several disadvantages because of its subjectivity. Therefore, it has become the focus of spinal surgery research so as to strengthen the objectivity of tissue state recognition, improve the accuracy of safe area location, and avoid surgical injury to tissues. Aside from traditional imaging methods, surgical sensing techniques based on force, bioelectrical impedance, and other methods have been gradually developed and tested in the clinical setting. This article reviews the progress of different tissue state recognition methods in spinal surgery and summarizes their advantages and disadvantages.

  • RESEARCH ARTICLE
    Yao Yao, Rui Zhou, Rui Bai, Jing Wang, Mengjiao Tu, Jingjing Shi, Xiao He, Jinyun Zhou, Liu Feng, Yuanxue Gao, Fahuan Song, Feng Lan, Xingguo Liu, Mei Tian, Hong Zhang
    Frontiers of Medicine, 2021, 15(3): 472-485. https://doi.org/10.1007/s11684-021-0832-y

    Hypoxia conditioning could increase the survival of transplanted neuronal progenitor cells (NPCs) in rats with cerebral ischemia but could also hinder neuronal differentiation partly by suppressing mitochondrial metabolism. In this work, the mitochondrial metabolism of hypoxia-conditioned NPCs (hcNPCs) was upregulated via the additional administration of resveratrol, an herbal compound, to resolve the limitation of hypoxia conditioning on neuronal differentiation. Resveratrol was first applied during the in vitro neuronal differentiation of hcNPCs and concurrently promoted the differentiation, synaptogenesis, and functional development of neurons derived from hcNPCs and restored the mitochondrial metabolism. Furthermore, this herbal compound was used as an adjuvant during hcNPC transplantation in a photothrombotic stroke rat model. Resveratrol promoted neuronal differentiation and increased the long-term survival of transplanted hcNPCs. 18-fluorine fluorodeoxyglucose positron emission tomography and rotarod test showed that resveratrol and hcNPC transplantation synergistically improved the neurological and metabolic recovery of stroke rats. In conclusion, resveratrol promoted the neuronal differentiation and therapeutic efficiency of hcNPCs in stroke rats via restoring mitochondrial metabolism. This work suggested a novel approach to promote the clinical translation of NPC transplantation therapy.

  • CASE REPORT
    Li Ni, Ling Zhou, Min Zhou, Jianping Zhao, Dao Wen Wang
    Frontiers of Medicine, 2020, 14(2): 210-214. https://doi.org/10.1007/s11684-020-0757-x

    In December 2019, an outbreak of novel coronavirus (2019-nCoV) occurred in Wuhan, Hubei Province, China. By February 14, 2020, it has led to 66 492 confirmed patients in China and high mortality up to ~2.96% (1123/37 914) in Wuhan. Here we report the first family case of coronavirus disease 2019 (COVID-19) confirmed in Wuhan and treated using the combination of western medicine and Chinese traditional patent medicine Shuanghuanglian oral liquid (SHL). This report describes the identification, diagnosis, clinical course, and management of three cases from a family, suggests the expected therapeutic effects of SHL on COVID-19, and warrants further clinical trials.

  • RESEARCH ARTICLE
    Wenjing Zhang,Fei Gao,Donghe Lu,Na Sun,Xiaoxue Yin,Meili Jin,Yanhong Liu
    Frontiers of Medicine, 2016, 10(1): 76-84. https://doi.org/10.1007/s11684-015-0426-7

    Anti-β2 glycoprotein I (anti-β2GP I ) antibodies are important contributors to thrombosis, especially in patients with antiphospholipid syndrome (APS). However, the mechanism by which anti-β2GP I antibodies are involved in the pathogenesis of thrombosis is not fully understood. In this report, we investigated the role of anti-β2GP I antibodies in complexes with β2GP I as mediators of platelet activation, which can serve as a potential source contributing to thrombosis. We examined the involvement of the apolipoprotein E receptor 2' (apoER2') and glycoprotein I ba (GP I bα) in platelet activation induced by the anti-β2GP I /β2GP I complex. The interaction between the anti-β2GP I /β2GP I complex and platelets was examined using in vitro methods, in which the Fc portion of the antibody was immobilized using protein A coated onto a microtiter plate. Platelet activation was assessed by measuring GP II b/ III a activation and P-selectin expression and thromboxane B2 production as well as p38 mitogen-activated protein kinase phosphorylation. Our results revealed that the anti-β2GP I /β2GP I complex was able to activate platelets, and this activation was inhibited by either the anti-GP I bα antibody or the apoER2' inhibitor. Results showed that the anti-β2GP I /β2GP I complex induced platelet activation via GP I bα and apoER2', which may then contribute to the prothrombotic tendency in APS patients.

  • ZHANG Wenwen, ZHANG Jianfu, ZHANG Yongmei, XU Ming
    Frontiers of Medicine, 2007, 1(4): 433-437. https://doi.org/10.1007/s11684-007-0085-4
    The effect of peripherally administered oxytocin (OT) on gastric ischemia-reperfusion injury (GI-RI) and its possible mechanism were investigated. The Sprague-Dawley (SD) rats were randomly divided into different treatment groups (n = 6). The animal GI-RI model was established by clamping the celiac artery for 30 min to induce ischemia and then released to allow reperfusion for 1 h, and the degree of GI-RI was assessed by scoring the gastric mucosal damage index (GMDI), the gastric fluid output, gastric fluid output, gastric acidity were measured and the surgical preparations of vagotomy and sympathectomy were used to investigate the possible mechanism of OT on GI-RI. The results were as follows. Compared with the control group (NS plus GI-R only, GMDI 121.33±10.40, n = 6), the intra peritoneal (ip) administration of oxytocin (20, 100 μg/0.5 mL) obviously attenuated GI-RI (P<0.05), GMDI were 82.33±14.26, 53.5±5.58 respectively (n = 6); the gastric fluid output and the gastric acidity (evaluated by pH) of the control group were (430.17±87.36) μL, 1.55±0.25 (n = 6), and those of the OT group were (102.45±48.00) μL, 2.65±0.40 (n = 6) res pectively; differences had statistical significance (P<0.01). The effect of oxytocin was reversed by atosiban, a selective oxytocin receptor antagonist. The GMDI of the group given atosiban 10 min before OT was 138.17±24.06 (n = 6), which had no significant difference with the control group. Oxytocin further attenuated GI-RI after vagotomy and sympathectomy (GMDI 6.83±8.89, 29.67±5.54, n = 6), compared with the GI-R group and the oxytocin group (P<0.01). These results indicated that the oxytocin could significantly protect gastric mucosal against injury induced by ischemia-reperfusion, and the oxytocin receptor was involved. This effect of oxytocin may be mediated through the vagus and sympathetic nerve, and then lead to the reduction of gastric juice output and the depression of gastric acidity.
  • LI Zhizhen, LI Fangping, YAN Li, LI Feng, LI Yan, CHENG Hua, FU Zuzhi
    Frontiers of Medicine, 2007, 1(2): 196-199. https://doi.org/10.1007/s11684-007-0037-z
    The aim of this paper was to investigate the effects of resistin on human umbilical vein endothelial cells (HUVECs), and to explore its role and mechanism of action in atherosclerosis. HUVECs were incubated with recombinant human resistin (0, 50, 100 ng/mL) for 24 h. ICAM-1, VCAM-1 and reactive oxygen species (ROS) were assayed by flow cytometer. ET-1, eNOS and iNOS mRNA expression were measured by semi-quantitative RT-PCR. Incubation of HUVECs with resistin resulted in an increase in ICAM-1 expression and ET-1 mRNA expression. However, resistin had no effect on VCAM-1 expression and ROS release. eNOS and iNOS mRNA expression were not altered by resistin stimulation. Adipokine resistin exerted a direct effect in promoting HUVEC dysfunction by promoting ICAM-1 and ET-1 expression. These data suggest that adipocyteendothelium cross-talk might play an important role in the pathogenesis of cardiovascular disease in diabetes mellitus.
  • RESEARCH ARTICLE
    Yang Jiao, Zhan Zhang, Ting Zhang, Wen Shi, Yan Zhu, Jie Hu, Qin Zhang
    Frontiers of Medicine, 2020, 14(4): 488-497. https://doi.org/10.1007/s11684-020-0762-0

    Dyspnea is one of the most common manifestations of patients with pulmonary disease, myocardial dysfunction, and neuromuscular disorder, among other conditions. Identifying the causes of dyspnea in clinical practice, especially for the general practitioner, remains a challenge. This pilot study aimed to develop a computer-aided tool for improving the efficiency of differential diagnosis. The disease set with dyspnea as the chief complaint was established on the basis of clinical experience and epidemiological data. Differential diagnosis approaches were established and optimized by clinical experts. The artificial intelligence (AI) diagnosis model was constructed according to the dynamic uncertain causality graph knowledge-based editor. Twenty-eight diseases and syndromes were included in the disease set. The model contained 132 variables of symptoms, signs, and serological and imaging parameters. Medical records from the electronic hospital records of Suining Central Hospital were randomly selected. A total of 202 discharged patients with dyspnea as the chief complaint were included for verification, in which the diagnoses of 195 cases were coincident with the record certified as correct. The overall diagnostic accuracy rate of the model was 96.5%. In conclusion, the diagnostic accuracy of the AI model is promising and may compensate for the limitation of medical experience.

  • RESEARCH ARTICLE
    Jingming Li, Wen Jin, Yun Tan, Beichen Wang, Xiaoling Wang, Ming Zhao, Kankan Wang
    Frontiers of Medicine, 2022, 16(4): 627-636. https://doi.org/10.1007/s11684-020-0815-4

    Runt-related transcription factor 1 (RUNX1) is an essential regulator of normal hematopoiesis. Its dysfunction, caused by either fusions or mutations, is frequently reported in acute myeloid leukemia (AML). However, RUNX1 mutations have been largely under-explored compared with RUNX1 fusions mainly due to their elusive genetic characteristics. Here, based on 1741 patients with AML, we report a unique expression pattern associated with RUNX1 mutations in AML. This expression pattern was coordinated by target repression and promoter hypermethylation. We first reanalyzed a joint AML cohort that consisted of three public cohorts and found that RUNX1 mutations were mainly distributed in the Runt domain and almost mutually exclusive with NPM1 mutations. Then, based on RNA-seq data from The Cancer Genome Atlas AML cohort, we developed a 300-gene signature that significantly distinguished the patients with RUNX1 mutations from those with other AML subtypes. Furthermore, we explored the mechanisms underlying this signature from the transcriptional and epigenetic levels. Using chromatin immunoprecipitation sequencing data, we found that RUNX1 target genes tended to be repressed in patients with RUNX1 mutations. Through the integration of DNA methylation array data, we illustrated that hypermethylation on the promoter regions of RUNX1-regulated genes also contributed to dysregulation in RUNX1-mutated AML. This study revealed the distinct gene expression pattern of RUNX1 mutations and the underlying mechanisms in AML development.

  • RESEARCH ARTICLE
    Zhihang Peng, Wenyu Song, Zhongxing Ding, Quanquan Guan, Xu Yang, Qiaoqiao Xu, Xu Wang, Yankai Xia
    Frontiers of Medicine, 2020, 14(5): 623-629. https://doi.org/10.1007/s11684-020-0788-3

    Coronavirus disease 2019 (COVID-19) is currently under a global pandemic trend. The efficiency of containment measures and epidemic tendency of typical countries should be assessed. In this study, the efficiency of prevention and control measures in China, Italy, Iran, South Korea, and Japan was assessed, and the COVID-19 epidemic tendency among these countries was compared. Results showed that the effective reproduction number(Re) in Wuhan, China increased almost exponentially, reaching a maximum of 3.98 before a lockdown and rapidly decreased to below 1 due to containment and mitigation strategies of the Chinese government. The Re in Italy declined at a slower pace than that in China after the implementation of prevention and control measures. The Re in Iran showed a certain decline after the establishment of a national epidemic control command, and an evident stationary phase occurred because the best window period for the prevention and control of the epidemic was missed. The epidemic in Japan and South Korea reoccurred several times with the Re fluctuating greatly. The epidemic has hardly rebounded in China due to the implementation of prevention and control strategies and the effective enforcement of policies. Other countries suffering from the epidemic could learn from the Chinese experience in containing COVID-19.

  • REVIEW
    Wenjie Zhu, Binghe Xu
    Frontiers of Medicine, 2021, 15(2): 208-220. https://doi.org/10.1007/s11684-020-0795-4

    New targeted therapies have been developed to overcome resistance to endocrine therapy (ET) and improve the outcome of HR+/HER2-- advanced breast cancer (ABC). We conducted a meta-analysis and systemic review on randomized controlled trials evaluating various targeted therapies in combination with ET in HR+/HER2-- ABC. PUBMED and EMBASE databases were searched for eligible trials. Hazard ratios (HRs) for progression-free survival (PFS), odds ratios (ORs) for objective response rate (ORR), clinical benefit rate (CBR), and toxicity were meta-analyzed. Twenty-six studies with data on 10 347 patients were included and pooled. The addition of cyclin-dependent kinase 4/6 inhibitors to ET significantly improved median PFS (pooled HR= 0.547, P<0.001), overall survival (pooled HR= 0.755, P<0.001), and tumor response rates (ORR, pooled OR= 1.478, P<0.001; CBR, pooled OR= 1.201, P<0.001) with manageable toxicities (pooled OR= 3.280, P<0.001). The mammalian targets of rapamycin inhibitors and exemestane were not clinically beneficial for this pooled population including ET-naïve and ET-resistant patients. Moderate improvement in PFS (pooled HR= 0.686, P<0.001) yet pronounced toxicities (pooled OR=2.154, P<0.001) were noted in the combination of phosphatidylinositol-4,5-bisphosphate 3-kinase inhibitors with fulvestrant. Future studies are warranted to optimize the population and the dosing sequence of these available options.

  • Research articles
    Junfang JI, Kun WU, Min WU, Qimin ZHAN,
    Frontiers of Medicine, 2010, 4(4): 412-418. https://doi.org/10.1007/s11684-010-0260-x
    p53 mutations have been found in many esophageal squamous cell carcinoma (ESCC) clinical specimens and cell lines. We reasoned that functional inactivation of wild-type p53 or the functional activation of mutant-type p53 might exist in these specimens and cell lines. In this study, we identified the correlation between p53 functional activation and its genotype in five different ESCC cell lines. To examine the potential p53 activation in a certain ESCC cell line, DNA damage methods including X-ray exposure and cisplatin treatment were employed to treat cells. Further, the expression of p53 protein and four transcripts of well-known p53 target genes were investigated using Western blot and reverse transcription-polymerase chain reaction (RT-PCR) after cell exposure to DNA damage. The results showed that in KYSE 30 cell line with mutant p53 and KYSE 150 with wild-type p53, p53 could be activated by DNA damages. However, p53 could not be activated following the DNA damages in YES 2 with wild-type p53, KYSE 70 with mutant p53, and EC9706 with unknown p53 genotype. All our data indicated that p53 function in certain cells is not closely correlated with its genotype. To judge p53 function in a particular cell line, it is important to examine the p53 functional activation, but not to simply rely on the p53 genotype.
  • REVIEW
    Yong Fan, Yan Geng, Lin Shen, Zhuoli Zhang
    Frontiers of Medicine, 2021, 15(1): 33-42. https://doi.org/10.1007/s11684-019-0735-3

    Immunotherapy has recently led to a paradigm shift in cancer therapy, in which immune checkpoint inhibitors (ICIs) are the most successful agents approved for multiple advanced malignancies. However, given the nature of the non-specific activation of effector T cells, ICIs are remarkably associated with a substantial risk of immune-related adverse events (irAEs) in almost all organs or systems. Up to 90% of patients who received ICIs combination therapy experienced irAEs, of which majority were low-grade toxicity. Cytotoxic lymphocyte antigen-4 and programmed cell death protein-1/programmed cell death ligand 1 inhibitors usually display distinct features of irAEs. In this review, the mechanisms of action of ICIs and how they may cause irAEs are described. Some unsolved challenges, however really engrossing issues, such as the association between irAEs and cancer treatment response, tumor response to irAEs therapy, and ICIs in challenging populations, are comprehensively summarized.

  • REVIEW
    Zhichen Jiang, Xiaohao Zheng, Min Li, Mingyang Liu
    Frontiers of Medicine, 2023, 17(6): 1135-1169. https://doi.org/10.1007/s11684-023-1050-6

    Pancreatic cancer, notorious for its late diagnosis and aggressive progression, poses a substantial challenge owing to scarce treatment alternatives. This review endeavors to furnish a holistic insight into pancreatic cancer, encompassing its epidemiology, genomic characterization, risk factors, diagnosis, therapeutic strategies, and treatment resistance mechanisms. We delve into identifying risk factors, including genetic predisposition and environmental exposures, and explore recent research advancements in precursor lesions and molecular subtypes of pancreatic cancer. Additionally, we highlight the development and application of multi-omics approaches in pancreatic cancer research and discuss the latest combinations of pancreatic cancer biomarkers and their efficacy. We also dissect the primary mechanisms underlying treatment resistance in this malignancy, illustrating the latest therapeutic options and advancements in the field. Conclusively, we accentuate the urgent demand for more extensive research to enhance the prognosis for pancreatic cancer patients.

  • REVIEW
    Jia Zhong, Hua Bai, Zhijie Wang, Jianchun Duan, Wei Zhuang, Di Wang, Rui Wan, Jiachen Xu, Kailun Fei, Zixiao Ma, Xue Zhang, Jie Wang
    Frontiers of Medicine, 2023, 17(1): 18-42. https://doi.org/10.1007/s11684-022-0976-4

    With the improved understanding of driver mutations in non-small cell lung cancer (NSCLC), expanding the targeted therapeutic options improved the survival and safety. However, responses to these agents are commonly temporary and incomplete. Moreover, even patients with the same oncogenic driver gene can respond diversely to the same agent. Furthermore, the therapeutic role of immune-checkpoint inhibitors (ICIs) in oncogene-driven NSCLC remains unclear. Therefore, this review aimed to classify the management of NSCLC with driver mutations based on the gene subtype, concomitant mutation, and dynamic alternation. Then, we provide an overview of the resistant mechanism of target therapy occurring in targeted alternations (“target-dependent resistance”) and in the parallel and downstream pathways (“target-independent resistance”). Thirdly, we discuss the effectiveness of ICIs for NSCLC with driver mutations and the combined therapeutic approaches that might reverse the immunosuppressive tumor immune microenvironment. Finally, we listed the emerging treatment strategies for the new oncogenic alternations, and proposed the perspective of NSCLC with driver mutations. This review will guide clinicians to design tailored treatments for NSCLC with driver mutations.

  • RESEARCH ARTICLE
    Jiajia Hu, Wenbin Shen, Qian Qu, Xiaochun Fei, Ying Miao, Xinyun Huang, Jiajun Liu, Yingli Wu, Biao Li
    Frontiers of Medicine, 2019, 13(6): 646-657. https://doi.org/10.1007/s11684-018-0643-y

    NES1 gene is thought to be a tumor-suppressor gene. Our previous study found that overexpression of NES1 gene in PC3 cell line could slow down the tumor proliferation rate, associated with a mild decrease in BCL-2 expression. The BCL-2 decrease could increase the sensitivity of radiotherapy to tumors. Thus, we supposed to have an “enhanced firepower” effect by combining overexpressed NES1 gene therapy and 131I radiation therapy uptake by overexpressed hNIS protein. We found a weak endogenous expression of hNIS protein in PC3 cells and demonstrated that the low expression of hNIS protein in PC3 cells might be the reason for the low iodine uptake. By overexpressing hNIS in PC3, the radioactive iodine uptake ability was significantly increased. Results of in vitro and in vivo tumor proliferation experiments and 18F-fluorothymidine (18F-FLT) micro-positron emission tomography/computed tomography (micro-PET/CT) imaging showed that the combined NES1 gene therapy and 131I radiation therapy mediated by overexpressed hNIS protein had the best tumor proliferative inhibition effect. Immunohistochemistry showed an obvious decrease of Ki-67 expression and the lowest BCL-2 expression. These data suggest that via inhibition of BCL-2 expression, overexpressed NES1 might enhance the effect of radiation therapy of 131I uptake in hNIS overexpressed PC3 cells.

  • PERSPECTIVE
    Tangchun Wu
    Frontiers of Medicine, 2020, 14(6): 816-819. https://doi.org/10.1007/s11684-020-0823-4
  • WANG Chunxu, WANG Hanxing
    Frontiers of Medicine, 2007, 1(4): 418-422. https://doi.org/10.1007/s11684-007-0082-7
    The effects of heat stress on the neurons in hippocampal CA1 region of brain ischemia/reperfusion were explored. The mice were pretreated with heat stress followed by ischemia/reperfusion by clipping bilateral cervical commo n arteries for 7 min. Mice were divided randomly into four groups as follows: (1) normal control group; (2) heat stress pretreated subsequent to ischemia/reperfusion group (HS/IR); (3) ischemia/reperfusion group (IR); and (4) heat stress group (HS). Animals in the last three groups were subdivided into three subgroups: 1 d, 4 d, 14 d respectively. The Morris water maze was used to test the ability of learning and memorizing, Nissl staining was used to count the average number of survived neurons in hippocampal CA1 region, and immunohistochemistry combined with image analysis system to detect the changes of Microtubule associated protein 2 (MAP-2) expression. The results showed that mice in IR group exhibited increased escape latency when compared with that of normal, HS and HS/IR groups (P<0.01), and the mice in IR group adopted an inefficient search strategy, major in circling and restricted searching manners. Nissl staining results showed a significant reduction in the number of pyramidal neurons in hippocampal CA1 regions in HS/IR and IR groups, with a decrease in IR group (P<0.01). Compared with normal group, the expression of MAP-2 in hippocampal CA1 region obviously decreased in IR group (P<0.05). The present results indicate that heat stress pretreatment can improve the spatial learning and memorizing function through protection to hippocampal neurons.
  • RESEARCH ARTICLE
    Jun Wang, Wenshuai Xu, Xinlun Tian, Yanli Yang, Shao-Ting Wang, Kai-Feng Xu
    Frontiers of Medicine, 2022, 16(4): 574-583. https://doi.org/10.1007/s11684-021-0882-1

    The effect of air pollution on the lung function of adults with asthma remains unclear to date. This study followed 112 patients with asthma at 3-month intervals for 2 years. The pollutant exposure of the participants was estimated using the inverse distance weight method. The participants were divided into three groups according to their lung function level at every visit. A linear mixed-effect model was applied to predict the change in lung function with each unit change in pollution concentration. Exposure to carbon monoxide (CO) and particles less than 2.5 micrometers in diameter (PM2.5) was negatively associated with large airway function in participants. In the severe group, exposure to chronic sulfur dioxide (SO2) was negatively associated with post-bronchodilator forced expiratory flow at 50%, between 25% and 75% of vital capacity % predicted (change of 95% CI per unit: –0.34 (–0.55, –0.12), –0.24 (–0.44, –0.03), respectively). In the mild group, the effect of SO2 on the small airways was similar to that in the severe group, and it was negatively associated with large airway function. Exposure to CO and PM2.5 was negatively associated with the large airway function of adults with asthma. The negative effects of SO2 were more evident and widely observed in adults with severe and mild asthma than in adults with moderate asthma. Patients with asthma react differently to air pollutants as evidenced by their lung function levels.

  • REVIEW
    Xiaoxin Wu, Lanlan Xiao, Lanjuan Li
    Frontiers of Medicine, 2020, 14(1): 8-20. https://doi.org/10.1007/s11684-020-0739-z

    Since the first case of novel H7N9 infection was reported, China has experienced five epidemics of H7N9. During the fifth wave, a highly pathogenic H7N9 strain emerged. Meanwhile, the H7N9 virus continues to accumulate mutations, and its affinity for the human respiratory epithelial sialic acid 2-6 receptor has increased. Therefore, a pandemic is still possible. In the past 6 years, we have accumulated rich experience in dealing with H7N9, especially in terms of virus tracing, epidemiological research, key site mutation monitoring, critical disease mechanisms, clinical treatment, and vaccine development. In the research fields above, significant progress has been made to effectively control the spread of the epidemic and reduce the fatality rate. To fully document the research progress concerning H7N9, we reviewed the clinical and epidemiological characteristics of H7N9, the key gene mutations of the virus, and H7N9 vaccine, thus providing a scientific basis for further monitoring and prevention of H7N9 influenza epidemics.

  • RESEARCH ARTICLE
    Lili Zhou, Ping Li, Shiguang Ye, Xiaochen Tang, Junbang Wang, Jie Liu, Aibin Liang
    Frontiers of Medicine, 2020, 14(6): 786-791. https://doi.org/10.1007/s11684-020-0751-3

    Factors associated with complete and durable remissions after anti-CD19 chimeric antigen receptor T (CAR-T) cell immunotherapy for relapsed or refractory non-Hodgkin lymphoma (r/r NHL) have not been well characterized. In this study, we found that the different sites of extranodal involvement may affect response, overall survival (OS), and progression-free survival (PFS) in patients with r/r NHL treated with anti-CD19 CAR-T cells. In a cohort of 32 treated patients, 12 (37.5%) and 8 (25%) patients exhibited soft tissue lymphoma and bone marrow (BM) infiltrations, respectively, and 13 (41%) patients exhibited infiltration at other sites. The factors that may affect prognosis were identified through multivariable analysis. As an independent risk factor, soft tissue infiltration was the only factor significantly correlated with adverse prognosis (P<0.05), whereas other factors did not reach statistical significance. Furthermore, the site of extranodal tumor infiltration significantly and negatively affected OS and PFS in patients with r/r NHL treated with anti-CD19 CAR-T cell therapy. PFS and OS in patients with BM involvement were not significantly different from those of patients with lymph node involvement alone. Thus, anti-CD19 CAR-T cell therapy may improve the prognosis of patients with BM infiltration.

  • RESEARCH ARTICLE
    Hui Wang, Yang Zhang, Zhujun Shen, Ligang Fang, Zhenyu Liu, Shuyang Zhang
    Frontiers of Medicine, 2021, 15(1): 70-78. https://doi.org/10.1007/s11684-020-0749-x

    Recent studies have shown that acute blood glucose elevation in patients with ST-segment elevation myocardial infarction (STEMI) suggests a poor prognosis. To investigate the effect of fasting blood glucose (FBG) on the risk of heart failure (HF) and left ventricular systolic dysfunction (LVSD) in non-diabetic patients undergoing primary percutaneous coronary intervention (PCI) for acute STEMI, we retrospectively recruited consecutive non-diabetic patients who underwent primary PCI for STEMI in our hospital from February 2003 to March 2015. The patients were divided into two groups according to the FBG level. A total of 623 patients were recruited with an age of 61.3±12.9 years, of whom 514 (82.5%) were male. The HF risk (odds ratio 3.401, 95% confidence interval (CI) 2.144–5.395, P <0.001) was significantly increased in patients with elevated FBG than those with normal FBG. Elevated FBG was also independently related to LVSD (β 1.513, 95%CI 1.282–1.785, P <0.001) in a multiple logistics regression analysis. In conclusion, elevated FBG was independently associated with 30-day HF and LVSD risk in non-diabetic patients undergoing primary PCI for STEMI.

  • REVIEW
    Pengju Zhang, Tao Li, Xingyun Wu, Edouard C. Nice, Canhua Huang, Yuanyuan Zhang
    Frontiers of Medicine, 2020, 14(5): 583-600. https://doi.org/10.1007/s11684-019-0729-1

    Diabetes mellitus is one of the major public health problems worldwide. Considerable recent evidence suggests that the cellular reduction–oxidation (redox) imbalance leads to oxidative stress and subsequent occurrence and development of diabetes and related complications by regulating certain signaling pathways involved in β-cell dysfunction and insulin resistance. Reactive oxide species (ROS) can also directly oxidize certain proteins (defined as redox modification) involved in the diabetes process. There are a number of potential problems in the clinical application of antioxidant therapies including poor solubility, storage instability and non-selectivity of antioxidants. Novel antioxidant delivery systems may overcome pharmacokinetic and stability problem and improve the selectivity of scavenging ROS. We have therefore focused on the role of oxidative stress and antioxidative therapies in the pathogenesis of diabetes mellitus. Precise therapeutic interventions against ROS and downstream targets are now possible and provide important new insights into the treatment of diabetes.

  • RESEARCH ARTICLE
    Xueling Suo, Du Lei, Wenbin Li, Lei Li, Jing Dai, Song Wang, Nannan Li, Lan Cheng, Rong Peng, Graham J Kemp, Qiyong Gong
    Frontiers of Medicine, 2021, 15(1): 125-138. https://doi.org/10.1007/s11684-019-0725-5

    This study aimed to define the most consistent white matter microarchitecture pattern in Parkinson’s disease (PD) reflected by fractional anisotropy (FA), addressing clinical profiles and methodology-related heterogeneity. Web-based publication databases were searched to conduct a meta-analysis of whole-brain diffusion tensor imaging studies comparing PD with healthy controls (HC) using the anisotropic effect size–signed differential mapping. A total of 808 patients with PD and 760 HC coming from 27 databases were finally included. Subgroup analyses were conducted considering heterogeneity with respect to medication status, disease stage, analysis methods, and the number of diffusion directions in acquisition. Compared with HC, patients with PD had decreased FA in the left middle cerebellar peduncle, corpus callosum (CC), left inferior fronto-occipital fasciculus, and right inferior longitudinal fasciculus. Most of the main results remained unchanged in subgroup meta-analyses of medicated patients, early stage patients, voxel-based analysis, and acquisition with ˂30 diffusion directions. The subgroup meta-analysis of medication-free patients showed FA decrease in the right olfactory cortex. The cerebellum and CC, associated with typical motor impairment, showed the most consistent FA decreases in PD. Medication status, analysis approaches, and the number of diffusion directions have an important impact on the findings, needing careful evaluation in future meta-analyses.

  • REVIEW
    Xiaowei Zhu, Houfeng Zheng
    Frontiers of Medicine, 2021, 15(1): 53-69. https://doi.org/10.1007/s11684-020-0748-y

    Bone mass is a key determinant of osteoporosis and fragility fractures. Epidemiologic studies have shown that a 10% increase in peak bone mass (PBM) at the population level reduces the risk of fracture later in life by 50%. Low PBM is possibly due to the bone loss caused by various conditions or processes that occur during adolescence and young adulthood. Race, gender, and family history (genetics) are responsible for the majority of PBM, but other factors, such as physical activity, calcium and vitamin D intake, weight, smoking and alcohol consumption, socioeconomic status, age at menarche, and other secondary causes (diseases and medications), play important roles in PBM gain during childhood and adolescence. Hence, the optimization of lifestyle factors that affect PBM and bone strength is an important strategy to maximize PBM among adolescents and young people, and thus to reduce the low bone mass or osteoporosis risk in later life. This review aims to summarize the available evidence for the common but important factors that influence bone mass gain during growth and development and discuss the advances of developing high PBM.

  • RESEARCH ARTICLE
    Yixin Zhong,Baoyan Liu,Hua Qu,Qi Xie
    Frontiers of Medicine, 2014, 8(3): 328-336. https://doi.org/10.1007/s11684-014-0359-6

    With the transformation of modern medicinal pattern, medical studies are confronted with methodological challenges. By analyzing two methodologies existing in the study of physical matter system and information system, the article points out that traditional Chinese medicine (TCM), especially the treatment based on syndrome differentiation, embodies information conception of methodological positions, while western medicine represents matter conception of methodological positions. It proposes a new way of thinking about combination of TCM and western medicine by combinating two kinds of methodological methods.

  • REVIEW
    Zeng Zhang, Changqing Zhang, Zhenlin Zhang
    Frontiers of Medicine, 2013, 7(1): 60-64. https://doi.org/10.1007/s11684-013-0246-6

    Digital clubbing, which has been recognized as a sign of systemic disease, is one of the most ancient diseases. However, the pathogenesis of clubbing and hypertrophic osteoarthropathy has hitherto been poorly understood. The study of a clinically indistinguishable idiopathic form (primary hypertrophic osteoarthropathy, PHO) provides an opportunity to understand the pathogenesis of hypertrophic osteoarthropathy. Current advances in the study of PHO are discussed. The impaired metabolism of prostaglandin E2 (PGE2) plays a central role in its pathogenesis.

  • Research articles
    Dai-Hai YU PhD, Jian-Feng HUANG MD, Ji-Chun CHEN MS, Jie CAO MS, Shu-Feng CHEN PhD, Dong-Feng GU MD, PhD, for the GenSalt Collaborative Research Group, De-Pei LIU PhD, Lai-Yuan WANG PhD, Jing CHEN MD, MSc, Jiang HE MD, PhD, Cashell E. JAQUISH PhD, Dabeeru C. RAO PhD, Charles GU PhD, James E. HIXSON PhD, Chung-Shiuan CHEN MS8, Paul K. WHELTON MD, MSc9,
    Frontiers of Medicine, 2010, 4(1): 59-66. https://doi.org/10.1007/s11684-010-0015-8
    Dietary potassium-supplementation has been associated with a decreased risk of hypertension and other cardiovascular outcomes. However, blood pressure (BP) responses to potassium supplementation vary among individuals. This study was designed to examine the association between 12 single nucleotide polymorphisms (SNPs) in the adducin 1 alpha (ADD1) and guanine nucleotide binding protein (G protein) beta polypeptide 3 (GNB3) genes and systolic BP (SBP), diastolic BP (DBP), and mean arterial pressure (MAP) responses to potassium-supplementation. We conducted a 7-day high-sodium intervention (307.8&#8201;mmol sodium/day) followed by a 7-day high-sodium with potassium-supplementation (60&#8201;mmol potassium/day) among 1906 Han Chinese participants from rural north China. BP measurements were obtained at the end of each intervention period using a random-zero sphygmomanometer. We identified significant associations between ADD1 variant rs17833172 and SBP, DBP, and MAP responses to potassium-supplementation (all P&lt;0.0001) that remained significant after adjustment for multiple comparisons. In participants that were heterozygous or homozygous for the G allele of this marker, SBP, DBP, and MAP response to potassium-supplementation were &#8722;3.52 (&#8722;3.82, &#8722;3.21), &#8722;1.41 (&#8722;1.66, &#8722;1.15) and &#8722;2.12 (&#8722;2.37, &#8722;1.87), respectively, as compared to the corresponding responses of 1.99 (0.25, 3.73), &#8722;0.65 (&#8722;0.10, &#8722;0.21), and &#8722;0.23 (&#8722;0.37, 0.83), respectively, for those who were homozygous for A allele. In addition, participants with at least one copy of the G allele of rs12503220 of the ADD1 gene had significantly increased DBP and MAP response to potassium-supplementation (P = 0.0041 and 0.01, respectively), which was also significant after correction for multiple testing. DBP and MAP responses to potassium-supplementation were &#8722;1.36 (&#8722;1.63, &#8722;1.10) and &#8722;2.07 (&#8722;2.32, &#8722;1.82) for those with at least G allele compared to corresponding responses of 0.86 (&#8722;0.68, 2.40) and &#8722;0.45 (&#8722;1.74, 0.84) for those who were homozygous for A allele. In summary, our study identified novel associations between genetic variants of the ADD1 gene and BP response to potassium-supplementation, which could have important clinical and public health implications. Future studies aimed at replicating these novel findings are warranted.
  • REVIEW
    Wenjun Xia,Fei Liu,Duan Ma
    Frontiers of Medicine, 2016, 10(2): 137-142. https://doi.org/10.1007/s11684-016-0449-8

    Hearing impairment is considered as the most prevalent impairment worldwide. Almost 600 million people in the world suffer from mild or moderate hearing impairment, an estimated 10% of the human population. Genetic factors play an important role in the pathogenesis of this disorder. Hereditary hearing loss is divided into syndromic hearing loss (associated with other anomalies) and non-syndromic hearing loss (not associated with other anomalies). Approximately 80% of genetic deafness is non-syndromic. On the basis of the frequency of hearing loss, hereditary non-syndromic hearing loss can be divided into high-, mid-, low-, and total-frequency hearing loss. An audiometric finding of mid-frequency sensorineural hearing loss, or a “bowl-shaped” audiogram, is uncommon. Up to now, merely 7 loci have been linked to mid-frequency hearing loss. Only four genetic mid-frequency deafness genes, namely, DFNA10 (EYA4), DFNA8/12 (TECTA), DFNA13 (COL11A2), DFNA44 (CCDC50), have been reported to date. This review summarizes the research progress of the four genes to draw attention to mid-frequency deafness genes.

  • RESEARCH ARTICLE
    Fang Huang, Yanwen Cui, He Yan, Hui Liu, Xiangrui Guo, Guangze Wang, Shuisen Zhou, Zhigui Xia
    Frontiers of Medicine, 2022, 16(1): 83-92. https://doi.org/10.1007/s11684-021-0894-x

    The dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes of Plasmodium vivax, as antifolate resistance-associated genes were used for drug resistance surveillance. A total of 375 P. vivax isolates collected from different geographical locations in China in 2009–2019 were used to sequence Pvdhfr and Pvdhps. The majority of the isolates harbored a mutant type allele for Pvdhfr (94.5%) and Pvdhps (68.2%). The most predominant point mutations were S117T/N (77.7%) in Pvdhfr and A383G (66.8%) in Pvdhps. Amino acid changes were identified at nine residues in Pvdhfr. A quadruple-mutant haplotype at 57, 58, 61, and 117 was the most frequent (57.4%) among 16 distinct Pvdhfr haplotypes. Mutations in Pvdhps were detected at six codons, and the double-mutant A383G/A553G was the most prevalent (39.3%). Pvdhfr exhibited a higher mutation prevalence and greater diversity than Pvdhps in China. Most isolates from Yunnan carried multiple mutant haplotypes, while the majority of samples from temperate regions and Hainan Island harbored the wild type or single mutant type. This study indicated that the antifolate resistance levels of P. vivax parasites were different across China and molecular markers could be used to rapidly monitor drug resistance. Results provided evidence for updating national drug policy and treatment guidelines.

  • CONSENSUS
    Suning Chen, Weili Zhao, Jianyong Li, Depei Wu, on behalf of Lymphoid Disease Group, Chinese Society of Hematology, Chinese Medical Association
    Frontiers of Medicine, 2022, 16(5): 815-826. https://doi.org/10.1007/s11684-021-0891-0

    Oral drugs such as ibrutinib play an important role in the treatment of mature B-cell lymphoma (BCL) due to their reliable efficacy, manageable safety, high accessibility, and convenience for use. Still, no guidelines or consensus focusing on oral drug therapies for BCL is available. To provide a reference of oral agent-based treatment for mature BCL, a panel of experts from the Lymphocyte Disease Group, Chinese Society of Hematology, Chinese Medical Association conducted an extensive discussion and reached a consensus on oral drugs for Chinese BCL patients on the basis of the current application status of oral drugs in China, combined with the latest authoritative guidelines in the world and current research reports. This consensus reviewed the application of oral drugs in the treatment of BCL and the latest research and provided appropriate recommendations on the use of oral drugs for indolent or aggressive BCL patients. With the deepening of research and the development of standardized clinical applications, oral medications will bring better treatment to BCL patients, enabling more patients to benefit from them.

  • REVIEW
    Linhua Zhao, Chuanxi Tian, Yingying Yang, Huifang Guan, Yu Wei, Yuxin Zhang, Xiaomin Kang, Ling Zhou, Qingwei Li, Jing Ma, Li Wan, Yujiao Zheng, Xiaolin Tong
    Frontiers of Medicine, 2023, 17(6): 1014-1029. https://doi.org/10.1007/s11684-023-1040-8

    Traditional Chinese medicine (TCM) has played an important role in the prevention and treatment of coronavirus disease 2019 (COVID-19) epidemic in China. The integration of Chinese and Western medicine is an important feature of Chinese COVID-19 prevention and treatment. According to a series of evidence-based studies, TCM can reduce the infection rate of severe acute respiratory syndrome coronavirus 2 in high-risk groups. For patients with mild and moderate forms of COVID-19, TCM can relieve the related signs and symptoms, shorten the period of nucleic-acid negative conversion, and reduce conversion rate to the severe form of the disease. For COVID-19 patients with severe and critical illnesses, TCM can improve inflammatory indicators and blood oxygen saturation, shorten the hospital stay, and reduce the mortality rate. During recovery, TCM can improve patients’ symptoms, promote organ function recovery, boost the quality of patients’ life, and reduce the nucleic-acid repositive conversion rate. A series of mechanism research studies revealed that capability of TCM to treat COVID-19 through antiviral and anti-inflammatory effects, immune regulation, and protection of organ function via a multicomponent, multitarget, and multipathway approach.

  • RESEARCH ARTICLE
    Wei Rao, Yutao Liu, Yan Li, Lei Guo, Tian Qiu, Lin Dong, Jianming Ying, Weihua Li
    Frontiers of Medicine, 2023, 17(3): 493-502. https://doi.org/10.1007/s11684-022-0946-x

    Anaplastic lymphoma kinase (ALK) is the most common fusion gene involved in non-small cell lung cancer (NSCLC), and remarkable response has been achieved with the use of ALK tyrosine kinase inhibitors (ALK-TKIs). However, the clinical efficacy is highly variable. Pre-existing intratumoral heterogeneity (ITH) has been proven to contribute to the poor treatment response and the resistance to targeted therapies. In this work, we investigated whether the variant allele frequencies (VAFs) of ALK fusions can help assess ITH and predict targeted therapy efficacy. Through the application of next-generation sequencing (NGS), 7.2% (326/4548) of patients were detected to be ALK positive. On the basis of the adjusted VAF (adjVAF, VAF normalization for tumor purity) of four different threshold values (adjVAF < 50%, 40%, 30%, or 20%), the association of ALK subclonality with crizotinib efficacy was assessed. Nonetheless, no statistical association was observed between median progression-free survival (PFS) and ALK subclonality assessed by adjVAF, and a poor correlation of adjVAF with PFS was found among the 85 patients who received first-line crizotinib. Results suggest that the ALK VAF determined by hybrid capture-based NGS is probably unreliable for ITH assessment and targeted therapy efficacy prediction in NSCLC.

  • EDITORIAL
    Jianqing Xu, Jianguo Xu
    Frontiers of Medicine, 2018, 12(1): 1-2. https://doi.org/10.1007/s11684-018-0619-y
  • REVIEW
    Nikolay V. Tsygan, Alexandr P. Trashkov, Igor V. Litvinenko, Viktoriya A. Yakovleva, Alexandr V. Ryabtsev, Andrey G. Vasiliev, Leonid P. Churilov
    Frontiers of Medicine, 2019, 13(4): 420-426. https://doi.org/10.1007/s11684-019-0688-6

    This article presents a synopsis of the current data on the mechanisms of blood--brain barrier (BBB) alteration and autoimmune response in acute ischemic stroke. Most researchers confirm the relationship between the severity of immunobiochemical changes and clinical outcome of acute ischemic stroke. Ischemic stroke is accompanied by aseptic inflammation, which alters the brain tissue and exposes the co-stimulatory molecules of the immune system and the neuronal antigens. To date, BBB is not considered the border between the immune system and central nervous system, and the local immune subsystems are found within and behind the BBB. BBB disruption contributes to the leakage of brain autoantigens and induction of secondary autoimmune response to neuronal antigens and long-term inflammation. Glymphatic system function is altered and jeopardized both in hemorrhagic and ischemic stroke types. The receptors of innate immunity (toll-like receptor-2 and toll-like receptor-4) are also involved in acute ischemia--reperfusion injury. Immune response is related to the key processes of blood clotting and fibrinolysis. At the same time, the stroke-induced immune activation may promote reparation phenomena in the brain. Subsequent research on the reduction of the acute ischemic brain injury through the target regulation of the immune response is promising.

  • Research articles
    Shilin DENG MD ,
    Frontiers of Medicine, 2009, 3(3): 323-329. https://doi.org/10.1007/s11684-009-0061-2
    The purpose of this article is to determine the effect of a well-designed combined aerobic, resistance, and extension exercise program on bone mineral density (BMD) in postmenopausal women. The population comprised 45 postmenopausal women, who exercised over 12&#59976;months (exercise group), and 36 women who served as a non-training control group. BMD of the hip, and lumbar spine was measured at the baseline and 12th month. Repeated measurement analysis of variance and nonparametric test were utilized to compare differences between the exercise group and controls. Thirty-six out of 45 persons in the exercise group and 36 controls completed the study. Average compliance was 82.2% for the whole exercise group at the 12th month. All the subjects had decreased BMD, but the rate of bone loss was lower in the exercise group than in the control group at the L4 and hip. Although the exercise program in this study may probably reduce the rate of bone loss in weight-bearing skeletal sites, we do not suggest the exercise by itself be viewed as prevention or treatment for osteoporosis. Further, the exact dose-response relationship of exercise and bone mass in early postmenopause is not clear.
  • RESEARCH ARTICLE
    Lanping Xu, Huanling Zhu, Jianda Hu, Depei Wu, Hao Jiang, Qian Jiang, Xiaojun Huang
    Frontiers of Medicine, 2015, 9(3): 304-311. https://doi.org/10.1007/s11684-015-0400-4

    In the tyrosine kinase inhibitor (TKI) era, imatinib is the first-line therapy for patients with chronic myeloid leukemia (CML) in chronic or accelerated phase. Although second-generation TKIs (TKI2), including dasatinib and nilotinib, are appropriate treatment regimens for patients with disease that progressed to accelerated phase following imatinib therapy, allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only curative therapy. This study retrospectively analyzed the efficacy of TKI2 and HSCT for treatment of CML in accelerated phase. Ninety-three patients with CML registered in the Chinese CML alliance database from February 2001 to February 2014 were enrolled and divided into the TKI2 (n = 33) and allo-HSCT (n = 60) groups. In the TKI2 group, 26 and 7 patients received nilotinib and dasatinib, respectively, as initial TKI2 and 11 patients transferred to the alternative TKI2 after failure to one TKI2. In the allo-HSCT group, 22 (36.7%), 35 (58.3%), and 3 (10%) patients underwent allo-HSCT from an HLA-matched sibling donor, HLA mismatched/haploidentical donor, and unrelated donor, respectively. All patients in the HSCT group were engrafted. Overall, 69.7%, 48.5%, and 45.5% of patients presented hematological, cytogenetic, and major molecular responses, respectively, to at least one of TKI2. All 60 patients (100%) achieved CHR and cytogenetic response in the HSCT group. Patients in the TKI2 group exhibited lower 5-year overall survival rate (42.9% vs. 86.4%, P = 0.002), 5-year event-free survival rate (14.3% vs. 76.1%, P<0.001), and 5-year progression-free survival (28.6% vs. 78.1%, P<0.001) than those in the allo-HSCT group. Multivariate analysis showed that male sex and TKI2 therapy were predictors of poor overall survival, whereas hemoglobin<100 g/L and TKI2 therapy were predictors of poor event-free survival and progression-free survival. These results indicated that allo-HSCT may be superior to nilotinib and dasatinib for adult patients with CML in accelerated phase.

  • REVIEW
    Xin Qin, Ping Zhang
    Frontiers of Medicine, 2019, 13(5): 540-546. https://doi.org/10.1007/s11684-018-0637-9

    Given the rapid development in precision medicine, tremendous efforts have been devoted to discovering new biomarkers for disease diagnosis and treatment. Esophageal cancer-related gene-4 (ECRG4), which is initially known as a new candidate tumor suppressor gene, is emerging as a sentinel molecule for gauging tissue homeostasis. ECRG4 is unique in its cytokine-like functional pattern and epigenetically-regulated gene expression pattern. The gene can be released from the cell membrane upon activation and detected in liquid biopsy, thus offering considerable potential in precision medicine. This review provides an updated summary on the biology of ECRG4, with emphasis on its important roles in cancer diagnosis and therapy. The future perspectives of ECRG4 as a potential molecular marker in precision medicine are also discussed in detail.

  • RESEARCH ARTICLE
    Hao Wang, Yu Yuan, Bihao Wu, Mingzhong Xiao, Zhen Wang, Tingyue Diao, Rui Zeng, Li Chen, Yanshou Lei, Pinpin Long, Yi Guo, Xuefeng Lai, Yuying Wen, Wenhui Li, Hao Cai, Lulu Song, Wei Ni, Youyun Zhao, Kani Ouyang, Jingzhi Wang, Qi Wang, Li Liu, Chaolong Wang, An Pan, Xiaodong Li, Rui Gong, Tangchun Wu
    Frontiers of Medicine, 2023, 17(4): 747-757. https://doi.org/10.1007/s11684-022-0954-x

    Emerging SARS-CoV-2 variants have made COVID-19 convalescents susceptible to re-infection and have raised concern about the efficacy of inactivated vaccination in neutralization against emerging variants and antigen-specific B cell response. To this end, a study on a long-term cohort of 208 participants who have recovered from COVID-19 was conducted, and the participants were followed up at 3.3 (Visit 1), 9.2 (Visit 2), and 18.5 (Visit 3) months after SARS-CoV-2 infection. They were classified into three groups (no-vaccination (n = 54), one-dose (n = 62), and two-dose (n = 92) groups) on the basis of the administration of inactivated vaccination. The neutralizing antibody (NAb) titers against the wild-type virus continued to decrease in the no-vaccination group, but they rose significantly in the one-dose and two-dose groups, with the highest NAb titers being observed in the two-dose group at Visit 3. The NAb titers against the Delta variant for the no-vaccination, one-dose, and two-dose groups decreased by 3.3, 1.9, and 2.3 folds relative to the wild-type virus, respectively, and those against the Omicron variant decreased by 7.0, 4.0, and 3.8 folds, respectively. Similarly, the responses of SARS-CoV-2 RBD-specific B cells and memory B cells were boosted by the second vaccine dose. Results showed that the convalescents benefited from the administration of the inactivated vaccine (one or two doses), which enhanced neutralization against highly mutated SARS-CoV-2 variants and memory B cell responses. Two doses of inactivated vaccine among COVID-19 convalescents are therefore recommended for the prevention of the COVID-19 pandemic, and vaccination guidelines and policies need to be updated.

  • RESEARCH ARTICLE
    Jing Ma, Shiyu Chen, Lili Hao, Wei Sheng, Weicheng Chen, Xiaojing Ma, Bowen Zhang, Duan Ma, Guoying Huang
    Frontiers of Medicine, 2021, 15(1): 91-100. https://doi.org/10.1007/s11684-020-0778-5

    Congenital heart disease (CHD) is the most common birth defect worldwide. Long non-coding RNAs (lncRNAs) have been implicated in many diseases. However, their involvement in CHD is not well understood. This study aimed to investigate the role of dysregulated lncRNAs in CHD. We used Gene Expression Omnibus data mining, bioinformatics analysis, and analysis of clinical tissue samples and observed that the novel lncRNA SAP30-2:1 with unknown function was significantly downregulated in damaged cardiac tissues from patients with CHD. Knockdown of lncRNA SAP30-2:1 inhibited the proliferation of human embryonic kidney and AC16 cells and decreased the expression of heart and neural crest derivatives expressed 2 (HAND2). Moreover, lncRNA SAP30-2:1 was associated with HAND2 by RNA immunoprecipitation. Overall, these results suggest that lncRNA SAP30-2:1 may be involved in heart development through affecting cell proliferation via targeting HAND2 and may thus represent a novel therapeutic target for CHD.

  • RESEARCH ARTICLE
    Ying Huo, Peng Yuan, Qingyuan Qin, Zhiqiang Yan, Liying Yan, Ping Liu, Rong Li, Jie Yan, Jie Qiao
    Frontiers of Medicine, 2021, 15(1): 144-154. https://doi.org/10.1007/s11684-020-0792-7

    Oocyte cryopreservation is widely used for clinical and social reasons. Previous studies have demonstrated that conventional slow-freezing cryopreservation procedures, but not storage time, can alter the gene expression profiles of frozen oocytes. Whether vitrification procedures and the related frozen storage durations have any effects on the transcriptomes of human metaphase II oocytes remain unknown. Four women (30–32 years old) who had undergone IVF treatment were recruited for this study. RNA-Seq profiles of 3 fresh oocytes and 13 surviving vitrified-thawed oocytes (3, 3, 4, and 3 oocytes were cryostored for 1, 2, 3, and 12 months) were analyzed at a single-cell resolution. A total of 1987 genes were differentially expressed in the 13 vitrified-thawed oocytes. However, no differentially expressed genes were found between any two groups among the 1-, 2-, 3-, and 12-month storage groups. Further analysis revealed that the aberrant genes in the vitrified oocytes were closely related to oogenesis and development. Our findings indicated that the effects of vitrification on the transcriptomes of mature human oocytes are induced by the procedure itself, suggesting that long-term cryostorage of human oocytes is safe.

  • REVIEW
    Yi Zhang, Haocheng Zhang, Wenhong Zhang
    Frontiers of Medicine, 2022, 16(2): 196-207. https://doi.org/10.1007/s11684-021-0906-x

    Coronavirus disease 2019 (COVID-19) has become a global pandemic disease. SARS-CoV-2 variants have aroused great concern and are expected to continue spreading. Although many countries have promoted roll-out vaccination, the immune barrier has not yet been fully established, indicating that populations remain susceptible to infection. In this review, we summarize the literature on variants of concern and focus on the changes in their transmissibility, pathogenicity, and resistance to the immunity constructed by current vaccines. Furthermore, we analyzed relationships between variants and breakthrough infections, as well as the paradigm of new variants in countries with high vaccination rates. Terminating transmission, continuing to strengthen variant surveillance, and combining nonpharmaceutical intervention measures and vaccines are necessary to control these variants.

  • REVIEW
    Yuyang Chen, Shu’an Zhang, Zhonghao Wu, Bo Yang, Qingquan Luo, Kai Xu
    Frontiers of Medicine, 2020, 14(4): 382-403. https://doi.org/10.1007/s11684-020-0781-x

    Minimally invasive surgery, including laparoscopic and thoracoscopic procedures, benefits patients in terms of improved postoperative outcomes and short recovery time. The challenges in hand–eye coordination and manipulation dexterity during the aforementioned procedures have inspired an enormous wave of developments on surgical robotic systems to assist keyhole and endoscopic procedures in the past decades. This paper presents a systematic review of the state-of-the-art systems, picturing a detailed landscape of the system configurations, actuation schemes, and control approaches of the existing surgical robotic systems for keyhole and endoscopic procedures. The development challenges and future perspectives are discussed in depth to point out the need for new enabling technologies and inspire future researches.