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Abstract Proper cell-cell and cell-matrix contacts mediated by integrin adhesion receptors are important for
development, immune response, hemostasis and wound healing. Integrins pass trans-membrane signals
bidirectionally through their regulated affinities for extracellular ligands and intracellular signaling molecules.
Such bidirectional signaling by integrins is enabled by the conformational changes that are often linked among
extracellular, transmembrane and cytoplasmic domains. Here, we review how talin-integrin and kindlin-integrin
interactions, in cooperation with talin-lipid and kindlin-lipid interactions, regulate integrin affinities and how the
progress in these areas helps us understand integrin-related diseases.
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Introduction

Evolution from single cells to multicellular organisms
necessitates cell-matrix and cell-cell adhesion mechanisms
to organize cells into tissue and organs. Integrins, hetero-
dimeric type I transmembrane proteins consisting of α and β
subunits, are a major class of adhesion receptors involved in
such adhesive events. Each integrin subunit contains a
relatively large extracellular domain, a single transmembrane
domain (TMD) and a short cytoplasmic tail. 18 α subunits and
8 β subunits dimerize noncovalently to form 24 different
integrins [1]. Each integrin exhibits distinct binding affinities
to particular ligands. When combined with various integrin
expression profiles of different cell types, the ligand
specificity results in cells adhering in or migrating toward
specific regions where ligands of the particular set of integrins
are present [2].

Besides mediating cell adhesions, integrins also transmit
signals bidirectionally. In outside-in signaling, they can
transmit information on the chemical identity and physical
property of their ligands into cells to regulate cell migration,
cell survival and growth [3]. Integrins have no enzymatic
activities in their cytoplasmic tails, but ligation of integrins
with their extracellular ligands can induce conformational
changes [4] that result in the separation of the α and β TMD
and cytoplasmic tails. These changes may make the
cytoplasmic tails of integrins more accessible and favor

recruitment of cytoplasmic proteins, such as kinases,
phosphotases and scaffold proteins that link integrins to
signaling molecules or cytoskeletons [3,5–12]. Furthermore,
integrins cluster upon ligation with extracellular matrices
which usually present multiple integrin binding sites [13]. At
the site of ligand-bound integrins, kinases auto-phosphorylate
and phosphorylate other signaling proteins, adaptors and
phosphoinositides [3,6,14–25]. This triggers further recruit-
ment of signaling molecules and subsequent signaling events
[3,6,14–25]. Integrins can also signal through other trans-
membrane receptors such as those containing immunorecep-
tor tyrosine-based activation motifs (ITAMs) [26–28].
Integrin outside-in signaling may also be involved in
registering mechanical forces. For example, when talin, one
adaptor protein that links integrin to the cytoskeleton, is
placed under strain, it undergoes conformational changes that
expose binding sites for other adaptors, such as vinculin, to
reinforce the integrin-actin linkage [29–32]. Thus, integrin
outside-in signaling influences cell behaviors such as
adhesion, shape changes and migration following integrin-
ECM ligation, and persistent integrin outside-in signaling,
specified by different mechanical properties of the ECM, may
result in signaling profile and gene expression changes that
determine the cell survival and cell fate [33,34].

In integrin inside-out signaling (integrin activation),
binding affinity of integrins for specific ligands is swiftly
increased in response to intracellular signaling events.
Integrin activation, sometimes referred to as integrin affinity
modulation, encompasses both affinity increase of individual
integrins due to conformational changes and avidity increase
due to integrin clustering [6,35,36]. Precise regulation of
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integrins’ adhesive capacity and ligand specificity is espe-
cially important in a cardiovascular system not only for a
swift and local response at the site of injury or inflammation
but also for the prevention of unwanted consequences such as
thrombosis or autoimmunity. Such paradigm of tight affinity
control is demonstrated in αIIbβ3 and β2 integrins. αIIbβ3,
the most abundant membrane protein on the platelet surface
[37], is normally in a resting (inactive) state with low affinity
for its physiological ligands, such as fibrinogen. As a result,
platelets exhibit low adhesiveness to each other or the blood
vessel wall to prevent occlusion of the blood vessel. A range
of agonists present at the site of a wound can lead to an
increase in αIIbβ3 binding to fibrinogen (i.e., integrin
activation), resulting in platelet aggregation, thrombus
formation and hemostasis [38]. Similarly, β2 integrins are in
an inactive state on circulating leukocytes. At the site of
inflammation, agonists induce the activation of β2 integrins,
which leads to their binding to intercellular adhesion
molecule (ICAM) and/or vascular cell adhesion molecule
(VCAM) on the endothelium and thus the arrest of the
leukocytes [39]. As molecules important in a number of
physiological responses, integrins also contribute to the
pathogenesis of many diseases such as thrombosis, cancer,
and autoimmunity. Recent years have seen some tremendous
progress in understanding the control mechanisms of integrin
activation and offer the potential of translating this basic
knowledge into therapeutics. In this review, we will
summarize the most recent progress in understanding integrin
regulation by activators such as talin and kindlins. The
readers are referred to an excellent recent review on the
negative regulators of integrins [40].

Conformational equilibrium balanced by
the phospholipid bilayer and the integrin
TMDs

The structural changes in the integrin extracellular domain
accompanying its affinity changes have been reviewed in
several excellent reviews [35,41–45]. Briefly, the extracel-
lular domain in its inactive form is folded into a V shape with
a genu in the middle [46,47]. One view is that upon
activation, it adopts an extended conformation with the
hybrid domain swung out to form an open head piece [48–
50]. However, some groups argued that the bent conformation
can be active and fully occupied by physiological ligands
[51–53].

Integrin TMDs play an essential role in transmitting signals
across the plasma membrane. Truncation of the integrins at
the C-termini of extracellular domains results in constitutively
active integrins [54], indicating that TMDs and cytoplasmic
tails are critical in controlling the activation state of integrins.
Furthermore, many activating mutations, from rational
mutagenesis studies or genetic screens, map to the α or β
TMD [55–58], again showing that the TMDs are critical for
integrin regulation. Heterodimeric interactions between α and

β TMDs and cytoplasmic tails can be detected in a cellular
membrane by co-immunoprecipitations [59], cysteine cross-
linking [60,61] and in a reconstituted phospholipid bilayer by
NMR [62], but not in detergent micelles [63]. Importantly,
mutations in TMDs that activate integrins invariably inhibit α
and β TMD-tail interactions [59], and activating integrins
alters the relationship of the α and β tails in cellular
membranes [7]. Therefore, understanding the structure and
interactions of integrin TMDs in a membrane environment is
essential for the comprehension of the mechanism of integrin
signal transmission.

Integrin TMDs are usually about 20 hydrophobic amino
acids in length and proceeded by Trp and charged residues at
the C-termini. Two structures of α and β TMD complexes in
phospholipid bilayers are available: one determined by NMR
with α and β TMDs embedded in a phospholipid bilayer [62]
and the other by inter-residue distance restraints inferred from
cysteine crosslinking efficiency in a cellular membrane [60].
The two approaches yielded similar structures and revealed
two interaction interfaces [60,62]. In both structures, the αIIb
TMD helix is short, straight and broken at Gly991, the first
residue of the highly-conserved Gly-Phe-Phe-Lys-Arg
(GFFKR) motif in the membrane proximal region of the α
subunits. The two Phe residues of the αIIb GFFKR motif do
not form a continuous helix but instead make a sharp turn
toward β3 (Fig. 1). In this way, the hydrophobic side chains of
those residues can reside in the hydrophobic core of the lipid
bilayer and stack against hydrophobic residues in the β3
TMD, particularly Trp715 and Ile719. The turning of the
membrane-proximal region of αIIb also enables the electro-
static interaction between αIIb Arg995 and β3 Asp723 by
placing those residues in proximity (Fig. 1). These sets of
interactions at the inner membrane interface are termed the
inner membrane clasp (IMC). The second interface involves
helical packing centered on β3 Gly708 and αIIb
G972XXXG976 motif at the outer membrane region and is
termed the outer membrane clasp (OMC) (Fig. 1). Integrin β3
TMD makes a long and continuous helix with a 25° tilting
angle to enable the multipoint interactions with αIIb and
accommodate the extra hydrophobic residues in the β3 TMD.

These landmark structural studies provided good explana-
tions for all the previous mutational studies. The mutations,
deletions or truncations to either subunit that result in active
integrin in cells interfere with OMC, IMC or both. For
example, mutating β3 Gly708, or either Gly in the αIIb
G972XXXG976 motif into bulky amino acids disrupts the
OMC, resulting in loss of α-β TMD interactions and
constitutively active integrins [55–58]. Similarly, mutations
in the two Phe residues of αIIb GFFKR motif or in the αIIb
Arg995 and β3 Asp723 electrostatic pair destabilize the IMC,
also resulting in active integrins [64]. Since the optimal tilting
angle of the β subunit is critical to maintain simultaneous
OMC and IMC interactions with a short and straight α TMD,
one would expect some mechanism to maintain the 25° β3
tilting angle (Figs. 1 and 2). Indeed, Cα of β3 Lys716 resides
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in the hydrophobic region of the lipid bilayer but its positively
charged ε-NH3

+ group snorkels into the negatively charged
phosphate head group region (Fig. 2). By doing so, it helps
control the tilting angle of β3 TMD [65]. When Lys716 is
mutated to negatively charged Glu, it shifts from the
hydrophobic core into the aqueous region to avoid the
unfavorable placement of negatively charged Glu in nega-
tively charged phosphate head region (Fig. 2). As a result,

K716E reduces the embedded length of β3 TMD and the β3
tilting angle, which in turn abolishes α-β TMD interactions
and dramatically increases integrin activation (Fig. 2) [65].
Interestingly, integrin activation caused by Lys716 mutation
can be reversed by introducing a Pro mutation (A711P) in the
middle of β3 TMD. The Pro mutation breaks the continuous β
TMD helix into two halves, enables the two helices to adopt
different tilting angles to compensate the reduced embedding
of β3 TMD, restores simultaneous formation of OMC and
IMC and thus reverts integrin activation [65].

Talin “tilts” integrin β TMD and the integrin
activation equilibrium

Talin, a cytoplasmic protein, regulates integrin affinity and
provides a mechanical link between integrins and the actin
cytoskeleton. Talin consists of a 50-kDa N-terminal non-
canonical FERM domain (talin head domain or THD) that
contains a high-affinity binding site for integrin β subunit and
a 220-kDa rod domain that contains multiple binding sites for
actin and vinculin [66]. The THD is further divided into F0,
F1, F2 and F3 subdomains [66,67]. F3 subdomain, a
phosphotyrosine binding domain, binds to the first NPxY
motif in integrin β tails [68,69]. The important role of talin in
regulating integrin affinity has been well documented in
model cells [69–72], transgenic mice [73,74] and reconsti-
tuted systems with purified proteins [75]. Overexpression of
THD strongly activates αIIbβ3 in nucleated cells [72].

Fig. 1 Structure of integrin αIIbβ3 TMD (ribbon view; αIIb in red and
β3 in blue. From PDB 2K9J) showing the two interaction interfaces. Left,
outer membrane clasp (OMC). Right, inner membrane clasp (IMC). The
important residues for the two interfaces are indicated.

Fig. 2 Snorkeling Lys716 fixes the tilting angle of the β3 TMD. On the left, the Cα of Lys716 resides in the hydrophobic core but its ε-NH3
+ group

snorkels into the negatively charged phosphate head group region. On the right, when Lys716 is mutated to Glu, the residue shifts away from
hydrophobic core to place the side chain –COO– group in the aqueous region. This shift causes reduced embedding of β3 TMD and decreased β3
TMD tilting angle.
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Silencing talin in megakaryocytes inhibits agonist-induced
integrin activation [76], and disruption of talin-β tail
interactions with mutations in either THD or β tail abolishes
the capacity of THD to activate integrins [75,77,78]. In in
vitro systems, recombinant THD alone is sufficient to activate
αIIbβ3 reconstituted in both liposomes and phospholipid
nanodiscs, and shift the αIIbβ3 toward an extended
conformation [75]. Studies in animal models confirmed the
role of talin in integrin regulation. Knocking in a mutant talin
defective in binding to β tail substantially reduces the ability
of talin to strengthen integrin adhesion to the ECM in
Drosophila [79]. In mouse platelets, genetic ablation of talin
severely impairs agonist-induced integrin activation and
platelet aggregation [73,74]. Furthermore, a point mutation
in β3 integrin (L746A) that selectively disrupts the talin-
integrin interaction, or one in talin (L325R) that selectively
inhibits the capacity of talin to activate integrins, blocks
integrin activation and platelet aggregation [80,81]. Thus,
talin binding to the integrin β cytoplasmic tail is a final
common step for integrin activation [76].

Recent work from multiple laboratories has elucidated the
mechanisms of talin-induced integrin activation at molecular
details. Talin binds to two sites on integrin β tails: a strong
binding site centered around the first NPxY motif that
contributes most of the binding free energy and a weak
membrane proximal (MP) binding site that is dependent on
the interaction with the NPxY motif [77]. In addition, talin
also binds to negatively charged phospholipids through the
positively-charged residues on the surface of THD
[77,82,83]. The weak interaction at the MP region is a
critical differentiating factor for the unique integrin-activating
capacity of talin for two reasons: (1) it brings talin Lys324
close to Asp723 of the β tail, thus neutralizing some charge of
Asp723, weakening the Arg995-Asp723 electrostatic inter-
actions at IMC and favoring integrin activation [83]; (2) it
stabilizes α-helix formation of the β MP region and extends a
continuous β TMD-tail helix into the MP region [77,83]. As
talin binds to integrin tails and phospholipids, it tilts the rigid
continuous β TMD-tail helix further into the membrane,
increasing the tilting angle of β TMD (Fig. 3) [84]. Such talin-
induced motion was shown by increased fluorescence of
solvatochromic dyes attached to the N- or C-terminal of β
TMD in the presence of THD [84] and is further supported by
molecular dynamics simulations [85]. As described earlier,
non-optimal tilting angle destabilizes α-β TMD interactions
and shifts the equilibrium toward an activated integrin
conformation. The talin-lipid interaction is another critical
factor for talin to function as a direct integrin activator, as
mutations blocking these interactions or solubilization of
integrin in detergent micelle abolishes talin’s capacity to
activate integrins [75,77,83]. As expected, introducing a
flexible proline kink in the middle of the β TMD decouples
the TMD C-terminal tilting motion from the N-terminal one,
and blocks THD-induced integrin activation [84] (Fig. 3).

Kindlins further tip the balance of integrin
activation

Kindlins, a family of cytoplasmic proteins that bind to
integrin β tails, are another group of important regulators for
integrin activation [36,86]. A kindlin ortholog, UNC-112, co-
localizes with integrins and is required for the organization of
integrins at muscle body wall junctions in C. elegans [87].
There are three mammalian kindlin orthologs: kindlin-1 (also
known as URP1 for UNC-112-related protein), kindlin-2
(Mig-2), and kindlin-3 (URP2) [88]. Mutations in and
depletion of kindlin-1 result in impaired β1 integrin function
and defective epithelial cell attachment to the extracellular
matrix [89,90]. Genetic ablation of kindlin-2 in mice inhibits
β1 integrin activation and results in embryonic lethality due to
severe detachment of the endoderm and epiblast from the
basement membrane, phenotypes similar to that of β1 null
mice [91]. Paradoxically, overexpression of kindlin-1 or
kindlin-2 dramatically inhibits THD-induced β1 integrin
activation, and Harburger et al. suggested that kindlin
might function as a scaffold in β1 regulation [92]. In contrast,
overexpressed kindlin-1 and kindlin-2 strongly enhance
THD-induced αIIbβ3 activation, although they have little
effect by themselves [92,93]. The mechanism for these

Fig. 3 Talin activates integrin by causing a topology change in β3
TMD. (A) Talin stabilizes the helix in the membrane proximal region of
β3 and increases the tilting angle of the continuous β3 TMD. (B) A711P
mutation introduces a flexible kink that breaks the continuous β3 TMD,
decouples the tilting motion of the two helices, and blocks integrin
activation.
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integrin specific effects of kindlin is still unknown. Loss of
kindlin-3 causes defects in the activation of multiple integrin
classes in a number of hematopoietic cell types [94–99]. Thus
kindlins regulate integrin activation.

There has been progress in understanding the requirement
of kindlin interacting motifs and partners for its integrin-
regulating function. Kindlins bind to the second NxxY/F
motif on integrin β tails that is distinctive from the talin
binding site, and this interaction is required for kindlin to
regulate integrin activation and for kindlin localization to
focal adhesions [92,93,99,100]. Kindlins are FERM domain
proteins based on sequence homology. The kindlin FERM
domain is divided into F0, F1, F2, and F3 subdomains; the F2
subdomain is separated into two halves by a pleckstrin
homology (PH) domain [36,86]. The PH domain is required
for kindlin to promote integrin activation as deletion of PH
domain inhibits kindlin-2-induced activation of β1 integrins
in podocytes [101] and αIIbβ3 in CHO cells [93,102,103].
Three groups independently reported that the kindlin-2 PH
domain preferentially binds to PIP3 and suggested that this
PIP3-PH domain interaction is important for proper kindlin
function [101,103,104]. Another group reported substantially
lower affinities between kindlin PH domains and phosphoi-
nositides and the affinities are further reduced in a phosphate
buffer [102]. The authors instead suggested that it is not an
inositol phosphate but another phosphorylated species that
might be the interaction partner of kindlin-1 PH domain
[102]. Kindlin F0 is also required for kindlin to function as an
integrin activator, because deletion of this region strongly
inhibits the capacity of kindlin-1 to enhance THD-induced
αIIbβ3 activation [105]. A more recent report suggested that
kindlin F0 domain functions by mediating kindlin binding to
PIP2 [106]. In addition, kindlin function depends on a
conserved lipid binding loop in kindlin F1 [107]. Thus the
emerging picture is that the lipid-kindlin interactions,
mediated by multiple kindlin subdomains and specific lipid
species, are critical for kindlin function.

In cells, kindlins alone have little effect and can only
synergize with talin to activate integrins [92,93]. A number of
recent reviews have attempted to explain this phenomenon
[36,86,108]. One attractive idea is that kindlin can promote
recruitment of talin to integrins. However, recent studies
found that kindlin does not increase bi-molecular fluores-
cence complementation between talin and integrin in CHO
cells, nor does it increase binding between talin and β3 tails in
vitro [109,110]. Furthermore, recombinant kindlin-3 does not
alter the β3 TMD tilting angle, the mechanism by which talin
activates integrins, nor does it enhance the tilting angle
changes induced by talin [84]. Thus kindlins may function by
a mechanism distinct from that of talin.

There has been progress in understanding the different
regulatory mechanisms by talin and kindlin. Talin is required
for integrin-mediated slow rolling of neutrophils on blood
vessels, which measures the initial activation of integrins;
whereas, kindlin-3 is dispensable for such slow rolling [111].

Both talin and kindlin-3 are required for neutrophil arrest,
which correlates with integrins in a high affinity state [111].
Similarly, in T cells, integrin-kindlin-3 interaction is dis-
pensable for initial integrin-ligand binding but is necessary
for the strengthening of the integrin-ligand bonds into firm
adhesion [112]. Margadant et al. reported that the talin-
integrin interaction, but not the kindlin-integrin interaction,
regulates α5β1 activation; whereas kindlin-integrin interac-
tion plays a separate and distinct role in regulating α5β1
degradation and recycling [113]. A recent work showed that
kindlins have little primary effect on affinity of individual
αIIbβ3 but increase multivalent ligand binding by promoting
the clustering of talin-activated αIIbβ3 (Fig. 4) [114].
Furthermore, kindlin-3 induces integrin αLβ2 clustering in a
T cell line [115]. This model, that kindlins promote clustering
of talin-activated integrins (Fig. 4) [114], explains why
kindlins have little effect in the absence of talin [92,93],
why kindlins can synergize with talin to activate integrins
[92,93] and why kindlins are required for firm adhesions but
not for initial talin-dependent ligand binding [111,112]. It will
be interesting to see if this mechanism of kindlin function can
be generalized to other integrins.

Another unexplained but interesting phenomenon is the
integrin- and cell- specific effects of kindlins. Loss of kindlin-
3 in LAD-III eliminates LFA-1 but not VLA-4 adhesiveness
developed under shear flow conditions [116]. Kindlin-1 or
kindlin-2 synergize with THD in promoting αIIbβ3 activation
but dramatically inhibit THD-induced activation of α5β1 in
CHO cells [92]. Kindlin-3 neither localizes to nor activates
αIIbβ3 in CHO cells, but activates α5β1 in a macrophage cell
line [99]. In β1 null keratinocytes, kindlin-1, but not kindlin-
2, localizes to the integrin-β6-rich adhesions, and kindlin-1
cannot compensate the defects resulted from kindlin-2
depletion, despite the high homology of the two kindlin
isoforms [100]. What cause the kindlins to associate
differently with integrins in the same cell is still unknown.

Kindlins have functions other than regulating integrin

Fig. 4 Model for talin and kindlin function. Talin promotes affinity
increase of individual integrin molecules. Kindlins have little primary
effect on affinity of individual integrin but increase multivalent ligand
binding by promoting the clustering of talin-activated αIIbβ3.
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activation. For example, kindlins also affect integrin surface
expression. Overexpression of kindlin-1 or kindlin-2
increases αIIbβ3 expression levels in CHO cells [92]. Genetic
ablation of kindlin-3 reduces surface αIIbβ3 in platelets by
25% [99]. This may be due to altered integrin mRNA levels as
recently shown by Bottcher et al. in the kindlin-2 null cell
[117]. Kindlin and sorting nexin 17 (SNX17), an integrin
binding protein that controls the recycling of integrins, have
overlapping binding sites on integrin β1 tail [113,117]. Thus
mutations to the kindlin binding sites also affect integrin-
SNX17 interactions and therefore interfere with the integrin
recycling pathway [113,117]. Furthermore, kindlin binds
integrin linked kinase (ILK), an important adaptor protein in
integrin outside-in signaling [91,118,119]. In kindlin-2 null
cells, ILK is not targeted properly to focal adhesions,
suggesting loss of kindlin may also affect integrin outside-
in signaling through ILK [91]. A recent study in C. elegans
suggests that PAT-4 (ILK ortholog) enables UNC-112
(kindlin-3 ortholog) binding to PAT-3 (β integrin ortholog)
by changing the conformation of UNC-112 [120]. Thus the
functions of ILK and kindlins may be mutually dependent.
Migfilin, a kindlin binding protein that also binds to filamin,
was initially proposed as a likely switch for kindlin function
[121]. The hypothesis was that kindlins recruit migfilin to the
integrin β cytoplasmic tail, where migfilin displaces the
integrin inhibitor, filamin. However, migfilin null mice do not
show similar phenotypes to kindlin deficient mice, disfavor-
ing the hypothesis [122].

Integrin activation is a dynamic equilibrium

It is worth emphasizing here that the inactive and active
integrins exist in a shifting equilibrium. The measured
average integrin affinity reflects the net effects of all the
relevant factors on the activation equilibrium. For example,
integrins with weakened α-β TMD interactions can be further
activated by THD [83] and can also be reverted by silencing
endogenous talin or by mutations blocking talin-integrin or
kindlin-integrin interactions [76,93]. β3 integrin activation
induced by a K716E mutation, which alters β TMD tilting
angle, can also be partially reverted by mutations blocking
talin-integrin interactions [65]. Integrin clustering and con-

formational changes can synergistically enhance multivalent
ligand binding to cellular integrins [123]. Therefore, THD,
which increases the affinity of individual integrins, and
kindlins, which promote integrin clustering, can synergize
with each other in activating integrins [92,93,114]. Moreover,
agents that act via the extracellular domain can synergize with
ones acting via the cytoplasmic domain in shifting the
conformational equilibrium toward the high affinity state
[114,124,125]. On the other hand, cytoplasmic integrin
activators can be antagonized by negative cellular regulators
[40]. Thus, integrin activation is a dynamic process in which
factors with opposing effects can cancel each other and
factors with the same effects can add to or synergize with each
other (Fig. 5).

Integrins in disease

Given the important roles of integrins in multiple physiolo-
gical processes, it is not surprising to find diseases involving
genetic mutations in integrins or integrin regulators. There are
well known diseases due to integrin mutations, Glanzmann
thrombasthenia (GT) and leukocyte adhesion deficiency I
(LAD I), and to kindlin mutations, LAD III (kindlin-3) and
Kindler syndrome (kindlin-1).

Glanzmann thrombasthenia is a hereditary hemorrhagic
disorder caused by loss of αIIbβ3 expression or function.
There are three subsets of genotypes for this disease. The first
subset completely loses either αIIb or β3 expression due to
nonsense genetic mutations [126,127], or has much reduced
αIIbβ3 surface expression due to mutations disrupting
folding, post-translational processing, or transportation of
either αIIb or β3 [128]. The second subset of GT patients has
normal αIIbβ3 surface expression but carries mutations in the
αIIbβ3 extracellular ligand binding pockets or in the β3
cytoplasmic domain. The former mutations, such as R214W
or D119Y, directly block ligand binding [129,130] and the
latter ones, such as S752P or R724Ter [131,132], block
integrin activation by preventing the binding of integrin
regulators such as talin and kindlin. The third subset of
patients carries mutations that lock αIIbβ3 in an activated
conformation, including C560R and C598Y in β3 cysteine
rich domains [133,134]. The activated platelet αIIbβ3 is

Fig. 5 The dynamic equilibrium of integrin activation functions as signal integrator. The factors that shift the equilibrium to the same direction can
add to or synergize with each other. Opposing factors can cancel each other.
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constitutively occupied by ligand and thus not available to
bridge αIIbβ3 receptors from other platelets at the site of a
wound. Therefore, these platelets with constitutively active
αIIbβ3 fail to aggregate, resulting in prolonged bleeding.

Leukocyte adhesion deficiency I and III are hereditary
immune deficiencies characterized by leukocytosis and
repeated infections (LAD II is caused by loss of selectin
ligands and thus not integrin-related). LAD I is caused by
mutations that cause loss of integrin β2 expression or
function. Consequently, leukocytes from LAD I patients fail
to firmly adhere to the endothelium near the inflammation site
or interact with antigen presenting cells, both of which are
critical for mounting an effective immune response [135].
LAD III patients carry mutations in kindlin-3, resulting in
non-functional kindlin-3 fragment or absence of kindlin-3
[95,97,98]. In the immune cells of LAD III patients, integrin
activation in response to agonist stimulation is defective.
Consequently, patients’ leukocytes fail to arrest on the
vascular endothelium and are incapable of extravasation to
the site of infection. Since kindlin-3 also plays a role in
regulating αIIbβ3 activation, LAD III patients exhibit GT-like
symptoms [135].

Kindler syndrome is a hereditary skin disease caused by
nonsense mutations in kindlin-1. The disease is characterized
by skin blistering, increased skin sensitivity to light, patchy
discoloration of the skin and widespread skin breakdown
[136,137]. Knockout of kindlin-1 in mice caused skin atrophy
that resembles human Kindler syndrome [89]. Reduced β1
integrin activation has been suggested to play a role in this
disease because of defective β1-mediated keratinocytes
adhesion to laminin, collagen or fibronectin matrix [89].
Recent work suggested that kindlin-1-deficient keratinocytes
respond to cell stress by upregulating the expression of
cytokines, which activate fibroblasts and induce their
differentiation into myofibroblasts, leading to matrix protein
deposition and mucocutaneous fibrosis in patients [138].
Thus, there may also be integrin-independent mechanisms
contributing to this disease.

Concluding remarks

The regulation of integrins is important for development and
many physiological and pathological events. Thus, this
continues to be an area of intense interest. Exciting progress
has been made in identifying the key players and under-
standing their mechanisms of action. Nevertheless, important
unanswered questions, such as the mechanism of integrin-
and cell-specific effects of kindlins, remain. The remarkable
progress in the basic understanding of integrin activation may
enable the development of new therapies in the future.
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