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Abstract Major depressive disorder (MDD) causes great decrements in health and quality of life with increments
in healthcare costs, but the causes and pathogenesis of depression remain largely unknown, which greatly prevent
its early detection and effective treatment. With the advancement of neuroimaging approaches, numerous
functional and structural alterations in the brain have been detected in MDD and more recently attempts have
been made to apply these findings to clinical practice. In this review, we provide an updated summary of the
progress in translational application of psychoradiological findings in MDD with a specified focus on potential
clinical usage. The foreseeable clinical applications for different MRI modalities were introduced according to
their role in disorder classification, subtyping, and prediction. While evidence of cerebral structural and functional
changes associated with MDD classification and subtyping was heterogeneous and/or sparse, the ACC and
hippocampus have been consistently suggested to be important biomarkers in predicting treatment selection and
treatment response. These findings underlined the potential utility of brain biomarkers for clinical practice.
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Introduction

Characterized by a persistent low mood and a feeling of
sadness and loss of interest, major depressive disorder
(MDD) causes great decrements in health and quality of
life and increments in healthcare costs [1]. The causes of
MDDmay be associated with several risk factors, such as a
family history of mood disorders, gender, major life events
or stress, trauma, and low socioeconomic status [2].
However, the causes and pathogenesis of depression
remain largely unknown. Furthermore, there are several
issues needed to be solved in the clinical practice in MDD.
First of all, the clinical diagnosis of psychiatric disorders

has been criticized for years due to its symptom-based
diagnostic pattern. The clinicians make a diagnosis of
MDD depending on the appearance of a number of

symptoms that greatly affect the emotional, cognitive, and
social functioning in patients for a period lasting at least
two weeks [3]. Detection of subtle clinical abnormalities in
the early phase of this disorder requires skilled doctors who
are highly specialized in mental health services. MDD and
other mood disorders, share several symptoms and
treatment responses similarities that could be explained
by a common etiology [4–6]. Moreover, MDD is a
heterogeneous clinical syndrome that has multiple integra-
tions of alterations in emotion, appetite, sleep, cognition,
motor activity, and social function [7]. This complexity has
increased the challenges in delivering accurate diagnosis
and effective treatment of MDD. As a result, new strategies
and nosologies are required to guide the classification and
subtyping using objective biomarkers with high sensitivity
and specificity.
Second, despite advances in pharmacology, approxi-

mately 50% of MDD patients will not have full remission
of symptoms despite first-line treatments [8,9]. For the
patients who do not respond to standard antidepressant
treatment, i.e., refractory depression [10], selecting the
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most effective treatment or combination of several kinds of
treatments will shorten the duration and reduce the number
of ineffective treatment trials [11]. To develop personalized
treatments and improve patient outcomes, there is an
urgent need of discovering biomarkers for the assessment
of treatment outcome and the selection of subjects who are
most likely to benefit from treatment.
With the development of neuroimaging techniques,

there is an emerging research field, i.e., psychoradiology
which results from the integration between the fields of
psychiatry and radiology [12]. Psychoradiology has been
recognized as a new research subfield of radiology where
the traditional neuroimaging techniques, such as magnetic
resonance imaging (MRI) combined with new computa-
tional science to play important roles in the research and
clinical practice of psychiatric disorders [13]. The term,
psychoradiology was selected to parallel that of the field of
neuroradiology and there were main discrepancies between
these two fields (Table 1). Neuroradiology mainly focuses
on diagnosis and characterization of abnormalities in
central and peripheral nervous system using traditional
imaging methods, and the abnormalities are usually visible
to the naked eye. Nevertheless, psychoradiology focuses
on the emotion, behavior, and advanced cognitive function
of subjects. The abnormalities are usually invisible using
traditional imaging methods which needed to be further
analyzed with the help of computer science. Psychoradiol-
ogy also aims to explore the association or causal
relationship between the cerebral changes and alterations
in emotion, behavior, and advanced cognitive function.
Psychoradiological researches on MDD had revealed both
cerebral structural and functional alterations at cortical and
subcortical level [14–17].
In recent years, there is a move toward the translational

application of psychoradiology in clinical practice, which
means applying psychoradiological findings with a
specified focus on its translational potentiality such as
selecting the most informative biomarkers or predictors
that could be used in disorder classification, subtyping,
prediction, and treatment monitoring [18]. In this review,
we provide an updated summary of the progress in this
foreseeable translational applications achieved for different
MRI modalities in disorder classification, subtyping, and
prediction in MDD. We emphasize the importance of
clinical validation of those results with some suggestions
on how future studies could help to shift the research
findings from bench to bed.

Structural findings and potential clinical
utility in MDD

MRI can provide structural information of brain, including
gray matter volume and cortical thickness, white matter
integrity and density. Gray matter volume can be measured
using voxel-based morphometry (VBM), which involves a
voxel-by-voxel comparison of gray matter partitions in the
brain [18,19]. Many neuroimaging studies have reported
group level anatomical brain volume changes in MDD
patients in the frontal lobe, parietal lobe, thalamus,
caudate, pallidum, putamen, temporal lobe, hippocampus,
and amygdala [20–22]. Recently, a meta-analysis reported
thinning of cortical thickness in the bilateral orbitofrontal
gyrus, left pars opercularis, and left calcarine fissure/
lingual gyrus, as well as thickened cortical thickness in the
left supramarginal gyrus in the MDD patients compared to
healthy subjects [23]. The white matter integrity can be
evaluated with diffusion tensor imaging (DTI) by either
directly assessing the fractional anisotropy (FA) of water
molecule diffusion along axonal fibers, or measuring
connectivity using multiple forms of white matter
tractography [24,25]. Previous meta-analysis had found
that MDD patients showed reduced FA in right inferior
longitudinal fasciculus, right inferior fronto-occipital
fasciculus, right posterior thalamic radiation, and inter-
hemispheric fibers running through the genu and body of
the corpus callosum [26].

Structural biomarker for MDD classification

To identify useful structural biomarkers for the classifica-
tion of MDD, many studies have utilized the machine
learning methods [27,28], such as the support vector
machine (SVM) and the relevance vector machine (RVM)
which train classifiers that can distinguish patients group
from healthy controls group at an individual subject level
[29–31].
Mwangi et al. [32] combined machine learning with

features selection and description, to differentiate between
MDD patients and controls based on a multi-center data set
of T1-weighted structural scans. The RVM analysis
showed a good performance with 90.3% accuracy, 87.5%
specificity, and 93.3% sensitivity. The SVM analysis
achieved almost as good performance as the RVM
analysis. Similarly, Qiu et al. [33] reported that first-
episode, medication-naïve MDD patients and healthy

Table 1 Difference between research by psychoradiology and traditional neuroradiology
Psychoradiology Neuroradiology

Aim Association or causal relationship Diagnosis

Subject Behavior and cognitive function Central nerve system and neural function

Methodology Objective results from algorithm computation Subjective decision with naked eyes

Ziqi Chen et al. 529



subjects could be distinguished by both volumetric and
geometric parameters, in which the cortical thickness in the
right hemisphere showed the best performance with 78%
accuracy. This classification was achieved by a bilateral
network mainly comprising the frontal, temporal, and
parietal regions. However, more recent work by Yang et al.
[34] based on a multicenter, multimodal imaging data set
of diffusion and structural MRI reported that the binary
classification achieved 87.95% sensitivity and 32.00%
specificity in the validation analysis of 83 MDD patients
and 25 healthy controls. The mean FA in the left medial
orbitofrontal cortex and right cuneus highly contributed to
the prediction of MDD. The classification performance
was not sufficiently good for clinical application, and the
poor accuracy of the results may reflect the current
equivocal findings. Future studies could utilize the study
features (large sample size, multimodality, robust methods,
and additional validation analyses) and other potential
neurobiomarkers from additional imaging modalities or
behavioral data to identify more clinically relevant MDD
biomarker.

Structural biomarker for MDD subtyping

Due to the heterogeneous clinical symptoms of MDD and
the increasing need for personalized medicines, there is a
tendency toward subtyping and expanding the psychiatric
nosology in this disorder. In early days, researchers have
proposed vascular depression (VD) as a unique subtype of
late-life depression [35–37]. The hallmark of MRI findings
of VD is the white matter hyperintensities (WMHs)
identified in T2-weighted or fluid attenuated inversion
recovery sequences. MRI hyperintensities were found to
be over-represented in the late-life depression patients [38–
41]. Increased WMHs severity may serve as a risk factor
for future depression and it may reach as high as 8.1 times
greater risk [42]. WMHs have also been associated with
poor response to antidepressant treatment [43–47]. Except
for the white matter lesions, structural abnormalities in
vascular depression mainly included gray matter reduction
within the fronto–striato–limbic network and orbitomedial
prefrontal limbic network [48]. However, the causal
relationship between brain structural alterations, cerebral
vascular diseases, and depression in advanced age remains
controversial.

Structural biomarker for prognosis prediction

Using SVM, Foland-Ross et al. [49] tested whether the
baseline cortical thickness could reliably predict the onset
of depression at the individual level. Using the cortical
thickness data from 33 never-disordered adolescents, the
authors found that the baseline cortical thickness of the
participants predicted the future onset of depression with
an overall accuracy of 70% (69% sensitivity, 70%

specificity). Compared to those participants who did not
develop depression, the participants who subsequently
developed depression exhibited decreased cortical thick-
ness in the right medial orbitofrontal, right precentral, left
anterior cingulate, and bilateral insular cortex, therefore
mostly contributing to this classification. Consistently, in a
prospective study the authors conducted two MRI scans on
38 MDD patients, at base line and 3 years later [50]. They
found that adult participants who developed at least one
episode of depression, during the three-year follow-up,
showed more gray matter decrease between the baseline
and the follow-up scans when compared to the adults who
remitted from depression.
More than half of all MDD patients develop a relapse

within 2 years after recovery [51]. It is important to
investigate the correlation between relapse and brain
changes during the course of MDD. Soriano-Mas et al.
[52] examined the cerebral structural changes in MDD
patients with melancholic features and healthy controls
lasting for over a 7-year period. The results showed that the
number of relapses between scans were correlated with
reductions in gray matter volume in the right middle
occipital gyrus and the bilateral insular cortex. The number
of relapses were also positively associated with the white
matter volume in the arcuate fasciculus. However, most
MDD patients were on medication during two MRI scans,
which may have affected the interpretations of the results.
In a longitudinal study, Zaremba et al. [53] assessed the
whole-brain gray matter volume, the cortical thickness of
the anterior cingulate cortex, orbitofrontal cortex, middle
frontal gyrus, and insula in 60 MDD patients and 54
healthy controls over 2 years. The MDD patients with
relapse exhibited significant decreases in the insular and
dorsolateral prefrontal volumes, which are important for
the emotional regulation from baseline to follow-up.
Furthermore, these volume changes did not correlate
with medication or symptom severity at the follow-up
stage. These cerebral structural findings are preliminary
potential biomarkers which showed promising utility in
predicting the onset and relapse of depression. However,
more studies are needed to validate these findings in a
different large sample and elucidate the pathophysiological
processes by which these structural anomalies increase the
risk of developing MDD.

Structural biomarker for treatment response
prediction

It has been suggested that decreased volume in the
hippocampus was a highly repetitive finding in MDD
patients compared to healthy controls [54,55]. This was
particularly prominent in recurrent MDD patients and
patients with more severe symptoms or chronic depression
[56,57]. One study reported that larger hippocampal tail
volume was positively correlated to clinical remission
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following antidepressant medication treatment of MDD
patients, independent of total hippocampal volume, total
brain volume, and age [58]. Smaller hippocampal volume
was also correlated with poorer treatment outcomes that
was measured by a follow-up to 2 or 3 years [59,60].
Similarly, a neuroimaging meta-analysis found that smaller
hippocampal volumes were related to lower response/
remission rates in depressed patients that were treated with
antidepressant drugs [61]. One recent study used measure-
ments of the hippocampal subfield volumes to predict an
early response to first-time use of antidepressants in drug-
naïve MDD patients [62]. Inconsistent with the previous
results, this study showed that nonresponding patients had
significantly increased volumes than early responding
patients and healthy controls in specific hippocampal
subfields. These included the bilateral subiculum, cornu
ammonis (CA) 1 and left CA2/3, CA4/dentate gyrus.
Furthermore, the left subiculum showed the highest
accuracy in differentiating between nonresponding
patients and early responding patients. A sensitivity of
76.9% and specificity of 80% was observed. These
inconsistent results may be due to the different clinical
features of MDD patients, the subdivision strategy of the
hippocampus, and the analysis approaches which merit
further investigation.
By applying a multivariate pattern analysis, one MRI

study [63] found that prior to the initiation of antidepres-
sant medication fluoxetine, increased gray matter density
in the rostral anterior cingulate and posterior cingulate
cortices increased the probability of a full clinical response.
In contrast, greater gray matter density in the orbitofrontal
cortex increased the risk of persistent residual symptoms
after pharmacological treatment.

Functional findings and potential clinical
utility in MDD

Functional measurement of brain include nuclear imaging
and MRI. The cerebral blood flow can be measured using
positron emission tomography (PET), single photon
emission computed tomography (SPECT), and MR
perfusion [64–66]. The cerebral metabolic characteristics
can be evaluated with 18-fluordeoxyglucose (FDG) PET
[67]. Furthermore, PET and SPECT can provide data on
the location and density of neurotransmitter receptors or
transporters, such as serotonin and g-aminobutyric acid
(GABA) radioligands in depression [65,68]. Functional
MRI (fMRI) is an important method which can measure
the brain activity at rest or during a certain challenge or
task [69]. Furthermore, fMRI could also provide the
information of neural activity correlations, i.e., functional
connectivity among multiple brain regions or networks
[70,71].

Functional biomarker for MDD classification

Craddock et al. [72] first conducted a multivariate pattern
analysis to distinguish MDD patients from healthy controls
based on resting-state functional connectivity (RSFC) data
in 2009. The authors used feature selection and SVM
approach and reported classification accuracy of 83.33%
(hold-out validation). In recent years, using the similar
methods, many studies also investigated the resting-state
fMRI data of brain to discriminate MDD from healthy
controls and achieved accuracy from 45% to 99% [73–85].
It is noteworthy that there were huge differences of
acquisition parameters, analytical methods, sample size,
and clinical characteristics of participants among these
studies. Thus, the low classification accuracy should not be
considered as an objection against the current work, while
the high classification accuracy should be interpreted with
caution, especially in studies with small sample size.
In a SVM data-driven neural pattern classification

analysis based on RSFC, Cáceda et al. [86] reported that
the binary classifier discriminated between depressed
suicide attempters and depressed suicidal ideators (mean
accuracy = 0.788). This was determined by the different
functional connectivity pattern between the default mode
and the limbic, salience, and central executive networks.
These findings indicated that measurements of intrinsic
brain functional connections may have clinical applica-
tions if used as objective biomarkers of suicide risk.
However, the results should be interpreted with caution,
due to a limited sample size, and should be further
validated in future prospective studies.

Functional biomarker for MDD subtyping

Using resting state fMRI data from a large multicenter
sample of 1188 subjects, Drysdale et al. [7] conducted a
canonical correlation analysis (CCA) to explore a two-
dimensional mapping between functional connectivity
changes and MDD symptoms. The authors conducted a
hierarchical clustering analysis on two components that
were derived from CCA. They found four neurophysiolo-
gical subtypes (“biotypes”), that differed in the altered
functional connectivity in the limbic and frontostriatal
networks. Moreover, these biotypes had the potential to
predict the treatment response of the transcranial magnetic
stimulation (TMS). These potential diagnostic classifiers
were validated as having high sensitivity and specificity
(82%–93%) in a multicenter validation and out-of-sample
replication analyses.
Recently, one study [87] tried to replicate the procedures

used in Drysdale et al.’s study [7] using a different and
more heterogeneous sample of 187 individuals with MDD
and anxiety disorder. Similar to the original study, the
authors conducted a canonical correlation analysis and
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hierarchical clustering analyses. They performed addi-
tional tests which were not conducted in the original study,
by selecting RSFC features based on their correlation with
clinical characteristics before performing CCA. However,
the results showed that the high canonical correlations that
were observed in this validation study were not statistically
significant, nor were replicated outside of the training set.
Although the authors found an optimal three cluster
solution, further investigation found that this cluster
classification would also emerge in a data set which
came from a single Gaussian distribution, and with no
underlying clusters. It is worth noting that the latter study
was not an exact replication of the original study. The
differences were in some of the pre-processing steps, the
measurements of depressive symptoms and in the clinical
features of the participants. Thus, it is difficult to determine
whether this failure to replicate the original results was due
to discrepancies between the studies, or due to false
positive findings in the original study. Future studies are
required to discriminate between the accurate biologically
and clinically meaningful MDD subgroups and the random
fluctuation of the neuroimaging data.

Functional biomarker for prognosis prediction

Pan et al. [88] examined the RSFC in the reward network
at baseline to predict the onset of depression in a total of
637 adolescents. The results showed that the increased left
ventral striatum node FC in the reward network predicted
an increased risk for future depression. Meanwhile, this
striatal node FC strength did not predict the onset of other
common adolescent psychiatric disorders, including anxi-
ety disorder, attention deficit hyperactivity disorder and
substance use. Shapero et al. [89] investigated whether
baseline brain imaging data (including an emotional face
match task fMRI and resting-state fMRI) predicted the
onset of depression in non-symptomatic children. The
results showed that RSFC alterations in the default mode
network (DMN) and cognitive control network that
differentiated high-risk and low-risk group predicted the
onset of depression during adolescence. Increased func-
tional activation to both happy and fearful faces was
correlated with greater decreases in self-reported depres-
sion symptoms at follow-up. However, the results should
be interpreted with caution as the sample size was
relatively small (28 high-risk and 16 low-risk participants).
Recently one study demonstrated that the classification
between never-depressed children with familial risk for
MDD who converted to MDD and those who did not
convert to MDD based on baseline RSFC showed better
performance (92% accuracy, 90% sensitivity, and 93%
specificity) than classification based on baseline clinical
rating scales [90].
Langenecker et al. [91] found that the group with future

recurrence of MDD showed decreased baseline activation

in bilateral middle frontal gyrus during commission errors
compared to those without future recurrence of MDD and
healthy controls. MDD patients with recurrence also
exhibited greater resting-state connectivity of the sub-
genual anterior cingulate to the right middle frontal gyrus
and brain regions in the cognitive control network. In
another task fMRI study, the depression relapses was
predicted by brain activation in the medial prefrontal
cortical (mPFC) and contraindicated by visual cortical
activation when viewing sad and neutral film clips in the
remitted MDD group [92]. The results indicated that the
mPFC reactivity predicted rumination, while visual
cortical reactivity predicted distress tolerance.

Functional biomarker for treatment response
prediction

Using RSFC analyses, Lui et al. [93] discovered that the
refractory depression was associated with altered func-
tional connectivity, mainly in the thalamo-cortical circuits.
The non-refractory depression was associated with more
distributed decreased connectivity in the limbic-striatal-
pallidal-thalamic circuit. These results suggested that
nonrefractory and refractory depression had distinct
functional deficits in distributed brain networks.
Repetitive transcranial magnetic stimulation (rTMS) is a

promising somatic treatment that depends on changing
local and distant neural circuits within the brain [94]. It has
been widely applied to improve cognitive and emotional
dysfunctions, the restoration of neural activity and network
connectivity in neuropsychiatric disorders [95–98]. In a
resting-state fMRI study, 47 unipolar or bipolar patients
with a medication-resistant depressive episode received 20
sessions of rTMS to the dorsomedial prefrontal cortex after
MRI scan [99]. The non-responders had higher baseline
anhedonia symptomatology when compared to responders.
Meanwhile, the non-responders showed a decreased
baseline functional connectivity in the reward neurocir-
cuitry when compared to responders. The results suggested
that the anhedonia symptom and the changes in reward-
circuit functional connectivity may have the potential to
differentiate non-responders from responders to dorsome-
dial prefrontal rTMS in major depression before the
initiation of treatments. In another resting-state fMRI
study, Liston et al. [100] examined the functional
connectivity within and between the DMN and the central
executive network (CEN) before and after a 5-week course
of TMS. The results showed that TMS normalized
depression-related subgenual hyperconnectivity in the
DMN but not in the CEN. TMS also tended to induce
anticorrelations between the dorsolateral prefrontal cortex
and the medial prefrontal DMN nodes. Additionally, the
baseline resting-state subgenual cingulate hyperconnectiv-
ity predicted the subsequent improvement of depressive
symptom in patients.
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There is a consensus that the combination of different
treatments generally improves therapeutic effects in
depression [101]. However, approximatively one third of
all patients still fail to recover following several kinds of
treatments [102,103]. To identify potential predictors of
MDD patients who are unlikely to respond to the first-line
treatments, McGrath et al. [104] included 82 MDD
patients that were not receiving treatments in a two-
phase treatment study. After fluorodeoxyglucose PET
scanning, these patients were randomly distributed to
receive 12 weeks of treatment with either escitalopram, or
a cognitive behavioral therapy (CBT). The patients without
remission after 12 weeks of first phase treatment were
treated with an additional escitalopram and CBT for 12
weeks. The results showed significantly higher metabolism
in the subcallosal cingulate of non-responders when
compared to responders. Similarly, another study also
reported the correlation between the increased subcallosal
cingulate metabolism and poorer treatment outcomes
following CBT or venlafaxine therapy [105]. These
findings were supported by the studies that reported
remissions from depressive symptoms in MDD patients
after anterior cingulotomy [106] and those patients that
received deep brain stimulation to the subcallosal cingulate
[107]. With these potential predictors of failure to standard
antidepressant treatments, clinicians could anticipate
alternative treatments for those patients, by partially
avoiding the trial-and-error process in current clinical
practice.

Functional biomarker for guiding treatment selection

Though previous neuroimaging studies have indicated that
brain activity patterns before treatment have the potential
to predict the treatment outcome, but these studies have
generally focused on a specific treatment [108,109]. To
develop clinical meaningful biomarkers, we should find
those biomarkers which are able to predict the patients’
response to a specific treatment and predict non-response
to an alternative treatment. To achieve this goal, many
studies have examined the MDD patients’ response to 2 or
more different treatments, including medication, CBT,
TMS, and electroconvulsive therapy (ECT).
The anterior cingulate cortex (ACC) was consistently

suggested to be associated with outcomes to various types
of treatments of depression [110–113]. One randomized
controlled trial investigated the cerebral metabolic changes
in MDD responders to CBT and venlafaxine during
fluorine-18-fluorodeoxyglucose PET scan [112]. The
results showed that the CBT and venlafaxine responders
could be differentiated by altered metabolism in the
anterior and posterior parts of the subgenual cingulate
cortex and the caudate. Similarly, another study using
resting state fMRI identified that functional connectivity
patterns in the subcallosal cingulate cortex and three other

brain regions, including the left anterior ventrolateral/
insula prefrontal cortex, dorsal midbrain, and left ven-
tromedial prefrontal cortex distinguished between respon-
ders and non-responders to antidepressant medications
(escitalopram or duloxetine) and to CBT [113]. Specifi-
cally, positive summed functional connectivity for these
three regions was associated with CBT associated remis-
sion and medication-related treatment failure, while
negative summed functional connectivity scores were
correlated with remission to medication and CBT treat-
ment failure. Regarding TMS treatment, Salomons et al.
[99] reported that a successful treatment was associated
with decreased subgenual ACC-caudate connectivity and
increased dmPFC-thalamus connectivity in treatment-
refractory MDD following a 4-week course of dmPFC-
repetitive TMS.
Using fluorodeoxyglucose-PET, one RCT study found

that the remitters and non-responders to treatments with the
antidepressant escitalopram and CBT could be differen-
tiated by the resting metabolism of the right anterior insula
[114]. Specifically, relative to whole-brain mean metabo-
lism, the insula hypo-metabolism was related to the
remission to CBT but poor response to escitalopram,
while the insula hypermetabolism was related to remission
to escitalopram but poor response to CBT.
These findings showed promising evidence that psy-

choradiological biomarkers may provide clinically mean-
ingful information in monitoring and predicting treatment
responses and selection of treatments. Guided by these
imaging biomarkers, clinicians may choose the most
effective treatment or the combination of different
treatments for MDD patients before the initiation of
treatment. The interventions such as TMS and ECT could
be started early for treatment-refractory MDD patients to
optimize the timing, the intensity, and the form of
therapeutic interventions. In the future, these biomarkers
need to be further validated through prospective examina-
tions and as a component of multivariate treatment
prediction models.

Challenges and future directions

Although psychoradiology has shed some light in
classification, subtyping and prediction of illness onset,
relapse, and treatment response in MDD patients [115],
there are still many practical challenges in this emerging
field which need to be solved before implementation in
clinical practice.
First, among various neuroimaging findings in the

depressed brain, only a few were replicable. One possible
reason may be the discrepancies of acquisition parameters
and the analytical methods that were used in previous
studies. For example, MRI-based brain measurements can
be affected by various factors, such as the number of head
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coil channels [116], inconsistent subject positioning [117],
inconsistent image contrast [118], difference in MR
scanner vendors and the field strength. In addition,
physiologic factors including heart beating, cardiopulmon-
ary function, age and sex are all biological confounds that
can influence the quality of MR images [119]. As the
number of multicenter studies using multiple MRI
scanners is growing, it is important to establish standar-
dized data acquisition and image quality control solutions.
Recently, the MR group in the Chinese Society of

Radiology published the first expert consensus report on
the clinical psychoradiological MR examination of
schizophrenia patients in China [120]. This consensus
report proposed that MR examination for patients with
schizophrenia or with suspected diagnosis of this disease
should include high spatial resolution (1 mm at least)
structural imaging and quantitative analyses of gray matter
volume and cortical thickness to explore the cerebral
structural changes. This report also proposed requirements
for the safety of patients and additional environmental
considerations before and during MR examinations. Based
on the current expert consensus report for schizophrenia, it
is imperative to establish a specific guideline for clinical
psychoradiological MR examination and imaging analyses
in MDD.
Another possible reason for the inconsistency in

neuroimaging findings may be due to the heterogeneity
in the inclusion criteria of patients, demographic features
or study protocols among studies. To solve these issues,
one possible solution is to conduct larger-scale multicenter
and multimodal studies in which heterogeneity of
participants could be leveraged to identify more biologi-
cally homogeneous subgroups of patients. Multimodal
imaging, which combine structural MRI, DTI, fMRI, and
even PET data could provide cerebral structural, func-
tional, and metabolic information at the same time
[121,122]. Investigating the imaging data acquired from
different imaging modalities and methodologies in a
relatively large and homogeneous sample of MDD patients
would help to elucidate the underlying neuropathological
mechanism of depression.
Second, the psychoradiological biomarkers reviewed are

not with sufficient clinical utility in diagnosis at the
individual level. Under the conventional psychiatric
pattern of diagnoses, MDD, bipolar depression, anxiety
disorder, and other psychiatric disorders may share similar
neurocognitive alterations and overlapped emotional
dysfunctions [123]. A previous study has shown that
these psychiatric disorders also share similar anatomic and
functional changes in some brain networks [124].
Considering the clinical and imaging heterogeneity that
overlap across diagnoses, future studies need to establish
neurobiologically distinct subgroups and new clinically
meaningful nosological categories that are based on
objective biomarkers. Collecting large samples from

multiple sites with dense phenotyping (including but not
restricted to MRI) to identify biologically distinct patient
groups may be the next step. Additionally, the examination
should not only focus on the confound-free MDD patients,
but should also consider more complex MDD samples
with at least one comorbidity that coincides with the real
clinical situation.
Third, the clinical value of the current biomarkers that

predict treatment outcome and guiding treatment selection
studies were limited by heterogenous study design [125],
including type, dosage, and duration of treatment, timing
for clinical and imaging measurements, clinical features of
patients, criteria for secondary psychiatric diagnoses or
adjunctive treatments, and statistical methods for data
interpretation. For example, without the placebo group,
some studies were not able to accurately distinguish the
effects on symptom change between treatment-dependent
and treatment-independent patients. Although some stu-
dies included patients with a wash-out period of medica-
tion, it is difficult to conclude that the observed treatment
outcomes were not related to the residual effects of
previous treatments. Furthermore, there may be other
biological mediators and processes which could regulate
the treatment response. However, there are some encoura-
ging findings with high potential for the translation in
clinical practice even if still in a proof-of-concept stage.
Consistent with our discussion about the role of ACC and
hippocampus in treatment selection and treatment response
prediction, one recent systematic review reported that
higher pre-treatment gray matter volume of the ACC and
hippocampus is associated with response to antidepressant
treatment [126]. A selection of these biomarkers could
enhance the accuracies of the predictions at the individual
level using machine learning approaches. These potential
treatment biomarkers need to be replicated and validated in
large, independent samples with more homogeneous study
design and the correlations between biomarkers and
mechanism of response procedure need to be further
investigated.
Fourth, to advance a data-driven perspective, but still

realize clinically meaningful goals, we may need to
consider which measures could serve as the most relevant
anchors for analysis [127]. Using features derived from
structural MRI data, such as gray matter volume, white
matter volume, cortical thickness, FA and surface area,
classification accuracies between MDD and healthy
controls ranged from 54.6% [128] to 90.3% [129] in the
current literature. While using features derived from
functional MRI data, including both resting-state fMRI
and task fMRI, classification accuracies varied from 45.0%
[84] to 99.0% [85]. It seems that the classification
performance of functional imaging was slightly better
than that of structural imaging when it is judged only from
these figures. It is worth noting that these studies differ
greatly in the sample size, demographic and clinical
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features. Thus, it is not easy to draw definite conclusions
about the classification value of structural and functional
imaging on MDD.
In regard to the retest reliability of neuroimaging

measures, the reliability of structural imaging is high,
that of resting-state fMRI is low to moderate, and that of
task-based neuroimaging can be highly variable [127]. As
the assessment of cerebral structure of psychiatric
disorders is already part of the clinical routine in some
inpatient services, the application of structural MRI data
for individual-level classification, subtyping, and predic-
tion may be more easily implementable in the clinical
context.

Conclusions

In summary, using psychoradiological methods, the
structural and functional cerebral alterations have been
identified in MDD. These findings showed promise as
neuroimaging biomarkers for classification, subtyping, and
prediction. While evidence of cerebral structural and
functional changes associated with MDD classification
and subtyping was heterogeneous and/or sparse, the ACC
and hippocampus have been consistently suggested to be
important biomarkers in treatment selection and treatment
response prediction. With the emerging multicenter studies
and the development of advanced statistical integration
techniques, considerable interdisciplinary collaboration
that involves radiologists, psychiatrists, psychologists,
and computer scientists should foster an optimized
psychoradiological examinations flow for MDD patients
and set up prospective clinical study to identify and
validate the accuracy and reliability of previous findings.
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