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Abstract The combination of the immunotherapy (i.e., the use of monoclonal antibodies) and the conventional
chemotherapy increases the long-term survival of patients with lymphoma. However, for patients with relapsed or
treatment-resistant lymphoma, a novel treatment approach is urgently needed. Chimeric antigen receptor T
(CAR-T) cells were introduced as a treatment for these patients. Based on recent clinical data, approximately 50%
of patients with relapsed or refractory B-cell lymphoma achieved complete remission after receiving the CD19
CAR-T cell therapy. Moreover, clinical data revealed that some patients remained in remission for more than two
years after the CAR-Tcell therapy. Other than the CD19-targeted CAR-T, the novel target antigens, such as CD20,
CD22, CD30, and CD37, which were greatly expressed on lymphoma cells, were studied under preclinical and
clinical evaluations for use in the treatment of lymphoma. Nonetheless, the CAR-T therapy was usually associated
with potentially lethal adverse effects, such as the cytokine release syndrome and the neurotoxicity. Therefore,
optimizing the structure of CAR, creating new drugs, and combining CAR-T cell therapy with stem cell
transplantation are potential solutions to increase the effectiveness of treatment and reduce the toxicity in patients
with lymphoma after the CAR-T cell therapy.

Keywords chimeric antigen receptor T (CAR-T) cell; lymphoma; cytokine release syndrome (CRS); immune effector cell-
associated neurotoxicity syndrome (ICANS)

Introduction

The lymphoma comprises a heterogeneous group of
lymphoid neoplasms, which originate from lymphocytes,
and arises in the context of immune dysregulation.
Generally, the lymphoma is divided into two subtypes,
namely, Hodgkin lymphomas (HL) and non-Hodgkin
lymphomas (NHL) in accordance with the morphology
of tumor cells. The HL is characterized using the Reed–
Sternberg cells, which are derived from B cells [1]. The
NHL is derived from diverse cell types, including B, T, or
natural killer (NK) cells. In 2019, newly diagnosed HL and
NHL account for 0.46% and 4.21% of cases, respectively,
in the United States [2]. In China, the incidence rate of

malignant lymphoma is 6.68/100 000 [3]. Furthermore,
with the aid of a conventional first-line chemotherapy
regimen (ABVD), the 5-year overall survival (OS) rate
reaches 73% in patients with HL after 6–8 courses of
treatment [4]. Moreover, 90.1% of young patients (aged 18
to 60 years) with good prognostic factors and 43.5% of
elderly patients (aged 60 to 80 years) with newly
diagnosed diffuse large B cell lymphoma (DLBCL) can
obtain a long-term survival of 6 and 10 years after 6–8
courses of first-line chemotherapy, respectively [5,6].
However, 25% of patients with HL and 50% of patients
with DLBCL fail to respond or relapse after the
administration of the first-line chemotherapy. The majority
of patients with relapsed or refractory (R/R) lymphoma
eventually die due to the disease progression.
The conventional chemotherapy is proven useful in

treating patients with lymphoma, but the addition of
rituximab to the conventional chemotherapy regimen has
increased the long-term survival by 20% and has the
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potential to cure about half of the patients with DLBCL
[5,6]. About 85%–90% of NHL is derived from B cells [7],
and the CD20 antigen presents on the surface of lymphoma
cells. The rituximab is a milestone immunotherapy for
cancer, representing the first monoclonal antibody able to
target tumor cells. The rituximab binds with the CD20 on
B lymphoma cells and activates antibody-dependent cell-
mediated cytotoxicity to kill tumor cells. In short, rather
than eliminating rapidly dividing cells by using cytotoxic
drugs, the aim of immunotherapy is to utilize our own
immune system for the elimination of cancerous cells from
the body.
Recently, the chimeric antigen receptor T (CAR-T) cell,

a genetically engineered immune cell product, has made
remarkable progress in the treatment of hematological
malignancies. The complete remission (CR) rate of R/R
acute lymphocyte leukemia (ALL) and DLBCL can reach
90% [8,9] and 50% [10–12], respectively, by using the
CD19 CAR-T cell therapy. Given their effectiveness in
combating hematological malignancies, two commercial
CD19-targeted CAR-T cell products are approved by the
Food and Drug Administration (FDA) in 2017. As of
November 2019, 887 CAR-T therapy-associated clinical
trials are registered at ClinicalTrial.gov, and 268 trials are
for lymphoma. Since then, the CAR-T therapy has become
a popular topic in scientific research and clinical applica-
tions. In this study, we review the most recent data on
CAR-T cell therapy and document the progress of research
and clinical trials using this therapy.

Chimeric antigen receptors (CARs)

CARs are genetically engineered transmembrane protein
that can recognize specific tumor antigens and activate

immune effector cells. CAR structures are made up of
antigen-recognizing, transmembrane, costimulatory, and T
cell-activating domains. The antigen-recognizing domain
is frequently derived from a single-chain variable fragment
(scFv) region, which can bind to a specific tumor antigen
(Fig. 1B). The antigen-recognizing domain is fused to
intracellular domains (including the costimulatory and T
cell activation domains) via a transmembrane domain
mainly derived from CD8α or CD28. Researchers have
designed different antigen-recognizing domains in accor-
dance with specific tumor antigens to target different types
of tumor cells. Until now, the FMC63 has been the most
widely used CD19-specific monoclonal antibody in CAR-
T cells and targets CD19-positive B cell malignancies.
Notably, the only two FDA-approved CAR-T cell products
are based on FMC63 [11,12]. Additionally, costimulatory
domains, such as CD28 and 4-1BB, have replaced antigen-
presenting cells (APC) in providing second signal in the T
cell activation signaling pathway, with the T cell activation
domain CD3z providing the first signal in the T cell
activation signaling pathway. When CARs bind to specific
tumor antigens, the intracellular domain provides dual
signals to activate CAR-T cells, leading to a tumor-killing
effect and the proliferation of CAR-T cells [13].

Generation of CAR-T cells

The first attempts to generate a chimeric T cell receptor
(TCR) composed of the TCR constant region and the V-
region domain derived from the immunoglobulin are
performed in the late 1980s [14,15]. In 1993, Eshhar et al.
have developed the first-generation CAR, consisting of the
scFv and the CD3z to overcome the low efficiency of
single cell transduction with two separate retroviral vectors

Fig. 1 Generation of CAR structures. (A) First-generation CARs contain antigen-recognizing (scFv), transmembrane, and T cell
activation (CD3z) domains. (B) Second-generation CARs, to which the costimulatory domains (CD28 or 4-1BB) are added with respect to
the first-generation CAR, show high levels of antitumor activity. (C) Third-generation CARs include two costimulatory domains (CD28
and 4-1BB).
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[16] (Fig. 1A). However, the first-generation CAR-T cells
have failed to eliminate NALM-6 tumor cells (human pre-
B ALL cell line) in vivo [17,18]. Subsequently, Sadelain
et al. and Campana et al. have introduced the costimula-
tory domains CD28 or 4-1BB into the first generation of
CAR-T cells (Fig. 1B) [18,19]. With the addition of the
costimulatory domain into the CARs, this second genera-
tion of CAR-T cells show high treatment efficacy in B cell
hematological malignancies. In 2010, Rosenberg et al.
have reported the treatment of a patient with advanced
follicular lymphoma (FL) through the CAR-T cellular
therapy. Astonishingly, this patient has obtained partial
remission (PR) status for 32 weeks [20] and is the first
patient with lymphoma who has been treated successfully
with the CAR-T therapy. Costimulatory domains (e.g.,
CD28, 4-1BB, and OX40) are introduced to the third
generation of CAR-Tcells, and the preclinical data actually
show that third-generation CARs have higher cytolytic
efficacy than second-generation CARs (Fig. 1C) [21–28].
For instance, Till et al. have reported that a patient with FL
and two patients with mantle cell lymphoma (MCL) have
received anti-CD20 CAR-T cells containing CD28 and 4-
1BB costimulatory domains and achieved objected
response (OR) [29]. At present, many researchers are
focused on designing effective and safe CAR-T cells via
the addition of genes encoding cytokines [30], costimula-
tory ligands [31], a “safety switch” [32,33], or universal
CAR [34–38].

Process of the CAR-T cell therapy in clinics

First, lymphocytes are collected from patients or donors
via the leukapheresis. T cells are harvested and activated by
antibody-coated beads. Usually, the CAR gene is trans-
ferred into T cells via the transgenic technology or the
electroporation [39–41] by lentivirus [8,11] or retrovirus
[12]. CAR-T cells are sufficiently expanded ex vivo for
clinical use. Generally, patients receive the lymphodeplet-
ing chemotherapy (fludarabine and cyclophosphamide)
before the CAR-T cell infusion (Fig. 2). Compared with
administering cyclophosphamide alone, the combined
lymphodepleting regimen of fludarabine and cyclopho-
sphamide can effectively increase the expansion of CAR-T
cells [42]. The lymphocyte depletion is a crucial step in
establishing a favorable cytokine profile, eliminating
immunosuppressor cells, and destroying the tumor micro-
environment (TME) for improved CAR-T expansion
in vivo [43–45]. Until now, only two CD19-targeted
CAR-T cell products, namely, tisagenlecleucel and axi-
cabtagene ciloleucel, have been approved worldwide by
respective regulatory state health departments. However,
no available commercial CAR-T cell product exists for HL
and NHL derived from NK and T cells. The discovery of a
new tumor-specific antigen is indispensable to broaden
CAR-T therapy indications in different types of lymphoma
and other solid tumors, such as anti-CD30 CAR-T cells for
HL. The CAR-T therapy has shown an incredibly high CR

Fig. 2 Process of CAR-T cell therapy in clinics. Lymphocytes were collected from patients or donors via the leukapheresis. After T cell
enrichment and activation, the CAR gene was transduced into T cells. The CAR-T cells were expanded adequately ex vivo for clinical use.
Patients normally received the lymphodepleting chemotherapy prior to the CAR-T cell infusion.
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rate (about 90%) in R/R ALL, but a CR rate of only 50% in
the R/R large B cell lymphoma. This phenomenon is likely
to be because of the presence of the TME that limits the
infiltration and the expansion of CAR-T cells in lymphoma
tissues. However, many new solutions, such as the
modification of the CAR structure, the combination of
novel medications, and the optimization of treatment
strategies (bridging CAR-T to allogenic hematopoietic
stem cell transplantation (HSCT)) have been proposed to
improve the remission rate and prolong the survival period
in preclinical and clinical studies. Thus, in this article, we
will review the clinical progression of the CAR-T cellular
therapy associated with lymphoma.

Data of commercialized CAR-T cell
products from clinical trials

Tisagenlecleucel: JULIET clinical trial

The tisagenlecleucel utilizes the FMC63, 4-1BB, and
CD3z as antigen-recognizing, costimulatory, and T cell-
activating domains, respectively. The tisagenlecleucel is
generated via lentivirus transgenic methods and approved
by the FDA for the treatment of R/R ALL and B-NHL. In
the JULIET clinical trial (NCT02445248), a single-group,
open-label, multicenter, international phase 2 study for
tisagenlecleucel in R/R DLBCL, 93 adult patients have
received the tisagenlecleucel infusion at a median dose of
3 � 108 CAR-T cells after the lymphodepleting condition-
ing regimen. The best objective response rate is 52% (40%
CR rate and 12% PR rate) without any treatment-related
mortality (TRM). In the median follow-up period of 14
months, the median OS and 12-month OS rate among
patients who received an infusion is 12 months and 49%,
respectively. The 12-month progression-free survival
(PFS) rate is estimated at 90% and the median PFS has
not been reached among the patients who show a complete
response (CR) at three months. For patients with a durable
response, the CAR gene can be detected for up to two years
[11].

Axicabtagene ciloleucel: ZUMA-1 clinical trial

The axicabtagene ciloleucel, the first commercialized
CAR-T cell product for R/R B-NHL, is composed of
FMC63, CD28, and CD3z via retrovirus transgenic
methods. In the ZUMA-1 clinical trial, a multicentered
phase 2 clinical study is conducted for the axicabtagene
ciloleucel for the treatment of R/R DLBCL, primary
mediastinal B cell lymphoma, and transformed FL. Among
108 patients who have received the axicabtagene ciloleucel
treatment, 82% have achieved OR, and 54% have achieved
CR. Two cases have TRM. Subsequently, 101 patients are
assessed for survival analysis and followed up for a median

of 27.1 months. For patients who have achieved CR, PR,
and stable disease (SD) at 3 months, the estimated PFS
rates at 24 months are 72%, 75%, and 22%, respectively.
The median OS is not reached, whereas the OS rate at 24
months is estimated at 50.5%. A long PFS is associated
with a high peak concentration of CAR-T cells and a great
area under curve of CAR-T cell concentration within 28
days after infusion. By 24 months, the CAR gene-marked
cells are detected in 21 out of 32 (66%) ongoing response
patients [12].
Commercialized CAR-T cell products display high

efficacy in eradicating lymphoma and achieving long-
term persistence in vivo. Except the transgenic vector, the
main difference between the tisagenlecleucel and the
axicabtagene ciloleucel is the costimulatory domain, which
is 4-1BB and CD28, respectively. The CD28 is a member
of the immunoglobulin family of costimulatory receptors
and regulates the IL-2 production and enhances the
survival and the differentiation of T cells [46]. The 4-
1BB (CD137), a member of the tumor necrosis factor
(TNF) receptor superfamily, upregulates antiapoptotic
molecules and cytokines, enhances the effector cell’s
function, and helps in the proliferation of memory T cells
[47]. In a xenograft model study conducted by Carpenito
et al., CD28- and 4-1BB-based CAR-T cells show the
same antitumor activity, but the 4-1BB-based CAR has
performed better in enhancing the persistence of T cells in
vivo compared with the CD28-based CAR [24]. In
addition, CAR-T cells with CD28 and 4-1BB costimula-
tory domains regulate different metabolism pathways. The
CD28-based CAR-T cells yield a higher proportion of
effector memory T cells and rely more on anaerobic
glycolysis than 4-1BB based CAR-T cells do to fulfill the
metabolic demand of the effector cell proliferation in the
rapid metabolic pathway. By contrast, the 4-1BB-based
CAR-T cells promote the outgrowth of central memory T
cells, depend more on fatty acid oxidation than CD28
based CAR-T cells do, and enhance mitochondrial
biogenesis with long-term persistence [48].

Various types of CAR-T targeting antigens
for lymphoma

Anti-CD20 CAR-T

Undeniably, the CD20 is a classical immunotherapy target
antigen for lymphoma because the CD20 is greatly
expressed on B cells. For instance, rituximab, the
monoclonal antibody against CD20, is a milestone
immunotherapy and the first-line therapy for most of the
B-NHL. Preclinical studies have found that anti-CD20
CAR-T cells show high levels of antitumor activity in vitro
[49] and in vivo [50]. The CD20 antibody is widely used
for B-NHL patients but may be a great challenge for
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patients with R/R lymphoma who have previously under-
gone the CD20-targeting immunotherapy.
Han et al. have conducted a single-center phase I/IIa

clinical trial to assess the efficacy and the safety of anti-
CD20 CAR-T for patients with R/R B-NHL. A total of 14
patients with R/R CD20+ DLBCL and 3 patients with
CD20+ indolent lymphoma are recruited into this study.
Each patient has received the anti-CD20 CAR-T cell
infusion at a median dose of 5 � 106–15 � 106 per kg.
Prior to the anti-CD20 CAR-T cell infusion, 17 patients
have received the rituximab treatment but experience
disease progression. In this study, 8 and 6 out of 17 patients
have achieved CR and PR, respectively. The best overall
OR and CR rates are 82% and 47%, respectively. At a
median follow-up period of 20 months, the median PFS
and the estimated 2-year PFS rate in 12 eligible patients for
survival analysis with response are 10 months and 41.7%,
respectively [51].

Anti-CD22 CAR-T

Similar to the CD19, the CD22 is restrictedly expressed on
the surface of B cells and has shown promising antitumor
activity in preclinical trials [52]. However, clinical data on
the use of anti-CD22 CAR-T for the treatment of
lymphoma have not been published up until now. In a
clinical trial conducted by Shah et al. (NCT02315612),
patients with R/R CD22+ ALL and R/R CD22+ lymphoma
are enrolled. According to their published data, a 14-year
old patient with refractory DLBCL who has received the
anti-CD22 CAR-T cell therapy prior to the anti-CD19
CAR-T treatment has achieved SD [53]. Moreover, 21
patients with R/R ALL, including 15 patients who have
previously received the anti-CD19 CAR-Tcellular therapy,
have received a median dose of 1 � 106 per kg anti-CD22
CAR-T cell infusion. Twelve out of 21 (57%) patients have
achieved CR. Among the 12 patients who have achieved
CR, three patients have maintained ongoing remission at
21, 9, and 6 months after the anti-CD22 CAR-T infusion,
but eight patients have relapsed at a median of 6 months
after receiving the anti-CD22 CAR-T infusion. Further-
more, a patient has died of sepsis immediately after
recovering from the cytokine release syndrome (CRS) and
bone marrow suppression [54]. Until now, 11 anti-CD22
CAR-T cell therapy clinical trials for lymphoma are
registered at clinicaltrial.gov.

Anti-CD30 CAR-T

The CD30, a transmembrane receptor and a member of the
TNF receptor superfamily, is universally expressed on the
surface of HL, anaplastic large cell lymphoma (ALCL),
and lymphomatoid papulosis cells. The CD30 is also
expressed on the surface of other lymphomas derived from
B or T cells, such as DLBCL, primary mediastinal B cell

lymphoma, mycoses fungoides, peripheral T cell lym-
phoma, and adult T cell leukemia/lymphoma [55–58]. The
CD30 is an ideal target antigen because it is restrictedly
expressed on tumor cells and on a small subset of
lymphocytes [59], which may lead to a controllable risk
of on-target off-tumor toxicity. In a preclinical study, anti-
CD30 CAR-T cells exhibit a powerful tumor-killing effect
in in vitro and in vivo settings [60]. A phase 1 dose
escalation clinical trial is conducted on 7 patients with R/R
HL and 2 patients with R/R ALCL. Patients have received
a median dose of 0.2 � 108–2 � 108 per m2 CAR-T cells
without a lymphodepleting conditioning regimen. As a
result, 3 of 5 patients, including one R/R ALCL patient
who has received a dose of 2 � 108 per m2 CAR-T cells,
have successfully achieved CR. The CR status of the
patients with ALCL is maintained for nine months after
four courses of the anti-CD30 CAR-T cell infusion.
Moreover, two other patients with HL have remained CR
for over 24 and 36 months. Patients treated with low doses
have not achieved OR [61]. In another open-label phase 1
clinical trial, 17 patients with R/R HL and 1 patient with
R/R ALCL are enrolled. All patients have received a dose
of 1 � 107–3 � 107 per kg anti-CD30 CAR-Tcells. In this
trial, seven patients have achieved PR, and six patients
have achieved SD with an OR rate of 39%. With a follow-
up of 3–14 months, the median PFS obtained is 6 months
[62]. In these two early-phase clinical trials, anti-CD30
CAR-T cells display promising levels of antitumor activity
for the CD30+ lymphoma.

Anti-CD37 CAR-T

The CD37, a cell surface glycoprotein belonging to the
transmembrane 4 superfamily, is expressed in most B cell
lymphomas and some types of T cell lymphoma, including
DLBCL, FL, MCL, Burkitt’s lymphoma (BL), chronic
lymphocytic leukemia/small lymphocytic lymphoma
(CLL/SLL), cutaneous T cell lymphoma, and peripheral
T cell lymphoma [63,64]. Recently, Maus et al. and
Wälchli et al. have constructed anti-CD37 CAR-T cells
successfully and reported their efficiency in eradicating the
B cell lymphoma in vitro and in vivo, including patient-
derived xenograft model [65,66]. Furthermore, Wälchli
et al. have found that the anti-CD37 CAR-expressing B
cell does not prevent the killing capacity of the anti-CD37
CAR-T, which may show superior safety by avoiding the
risk of CD19 relapse due to accidental CAR transduction
on patient B cells [66,67]. A phase 1 clinical trial of anti-
CD37 CAR T cells is expected to start in February 2020
(NCT04136275).

Anti-Igκ CAR-T

As a component of membrane immunoglobulin, the k or
the l light chain is expressed on the surface of mature B
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lymphocyte and neoplastic counterparts, including BL,
DLBCL, FL, MCL, hairy cell leukemia, marginal zone B
cell lymphoma, prolymphocytic leukemia, and lympho-
plasmacytic lymphoma (LPL). The CLL/SLL is also
derived from mature B lymphocytes, but the expression
of surface light chains on CLL/SLL cells remains limited,
which is most likely due to the deletion of the B cell
receptor complex that contains immunoglobulin, CD79a,
and CD79b. In addition to immature lymphocytes, also
known as lymphoblasts, the thymic B and the plasma cells
lack the surface expression of the light chain and their
neoplastic counterparts, including B lymphoblastic leuke-
mia/lymphoma, primary mediastinal B cell lymphoma, and
plasma cell disorders [68,69]. Considering that each
lymphocyte expresses either the k or the l light chain
but not both, anti-k or anti-l CAR-T cells are able to
eradicate lymphoid malignancies and preserve part of the
mature B lymphocyte to prevent the incidence of
hypogammaglobulinemia. Dotti et al. have first con-
structed anti-k CAR-T cells with CD28 costimulatory
domain and proven their efficiency and safety in a
preclinical study [70]. Dotti et al. have conducted a
phase 1 clinical trial to evaluate the efficiency and the
safety of anti-k CAR-T and recruited 9 patients with NHL
(including 2, 2, 2, 2, and 1 patients with LPL, transformed
FL, DLBCL, CLL/SLL, and MCL, respectively) and 7
patients with MM. Patients without lymphopenia have
received the cyclophosphamide conditioning followed by
anti-k CAR-T infusion. Of 16 patients, 2 patients with
transformed FL and 1 patient with LPL have achieved CR
and PR, respectively, and 1 patient with CLL/SLL and 4
patients with MM have achieved SD. In this study, because
most patients of NHL have the B cell aplasia and the
polyclonal hypogammaglobulinemia at the baseline, the
potential advantage of targeting the k light chain and
avoiding hypogammaglobulinemia requires further inves-
tigation [71].

Toxicity of the CAR-T cell therapy

CRS

The CRS is the most prominent adverse effect after the
CAR-T infusion. Clinically, the CRS is markedly char-
acterized by fever, hypoxemia, hypotension, tachycardia,
coagulation dysfunction, and vital organ dysfunction.
Furthermore, in laboratory findings, the CRS is marked
by elevated cytokine levels, including IL-1, IL-2, IL-6, and
IFN-g. When CAR-T cells recognize tumor-specific
antigens, they release IL-2, soluble IL-2Rα, IFN-g, IL-6,
soluble IL-6R, and GM-CSF and activate the mononuclear
phagocytic system. APCs, which are macrophages, then
secrete abundant levels of IL-1RA, IL-6, IL-8, IL-10,
soluble IL-6R, IFN-α, CXCL9, CXCL10, CCL3, and

CCL4. A high baseline disease burden and elevated
clinical biomarkers, such as CRP and ferritin, are
associated with severe CRS [72–77]. However, specific
biomarkers to measure the severity of CRS are still not
available. Therefore, until now, the management according
to the CRS grading is based on the initial criteria,
consisting of a combination of several clinical symptoms
proposed by Lee et al. [78]. Besides, other clinical centers,
such as the MD Anderson Cancer Center, Memorial Sloan
Kettering Cancer Center, and University of Pennsylvania,
have suggested their own CRS grading system [77,79,80].
The American Society for Transplantation and Cellular
Therapy (ASTCT) has assigned experts from different
clinical centers to agree on a set of consensual criteria for
the CRS grading for the evaluation of different CAR-T cell
toxicity in various clinical centers [81].
The CRS requires careful surveillance and experienced

supportive care, including nonsteroidal anti-inflammatory
drugs for fever, intravenous hydration, vasopressor for
hypotension, and supplemental oxygen for hypoxia.
Furthermore, the IL-6 receptor antagonist, tocilizumab, is
prescribed for the treatment of moderate or severe CRS.
However, no concrete evidence for the prophylactic or
preemptive use of tocilizumab has been found because its
effect on the T cell expansion and persistence remains
unknown. For the treatment of the CRS refractory to
symptomatic management and tocilizumab, steroids are
strongly suggested, even though their lymphotoxicity may
have a negative effect on CAR-T cells. Other cytokine-
modulating agents, such as IL-6 antibody (siltuximab)
[82], IL-1 receptor antagonist (anakinra) [73], and GM-
CSF antibody (lenzilumab) [83] are also under preclinical
and clinical evaluations. Plasmapheresis is another poten-
tial modality for the CRS management that allows the
direct elimination of excessive cytokines [84].
Until today, infection and CRS are difficult to

differentiate on the basis of subjective symptoms and
objective evidence. Therefore, after receiving the CAR-T
treatment, every febrile patient should undergo the broad-
spectrum antibiotic therapy immediately. Moreover, CAR-
T patients commonly experience pancytopenia [85].
However, the mechanism of the pancytopenia after the
CAR-T infusion remains unclear and may be related to the
myelosuppressive effect of the lymphodepleting che-
motherapy and the interaction of CAR-T cells with
immature B cell precursors in the bone marrow. Patients
with a prognosis complicated with CRS and pancytopenia
require G-CSF and transfusion support [86].

Immune effector cell-associated neurotoxicity
syndrome (ICANS)

The neurotoxicity related to the CAR-T therapy is once
termed the CAR-related encephalopathy syndrome
(CRES). With an increasing number of CRES-like
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neurotoxicity cases reported in clinical trials that use
blinatumomab (a bispecific T cell engager (BiTE) anti-
body) [87], the term CRES is no longer suitable for various
immunotherapies, including BiTE, other engineered T
cells, and checkpoint inhibitors. Experts from ASTCT
have unified the neurotoxicity grading system related to
immunotherapy and proposed the term “immune effector
cell-associated neurotoxicity syndrome” to pertain to the
adverse events occurring after immunotherapy.
The ICANS is an adverse event characterized by a

pathologic process involving the central nervous system
(CNS) after immunotherapy, including the CAR-T cell
therapy. The ICANS can be manifested as decreased
attention, changes in mental state, confusion, disorienta-
tion, hallucination, aphasia, ataxia, delirium, coma,
encephalopathy, and cerebral edema [88,89]. The ICANS
is a life-threatening side effect and limits the deployment of
the CAR-T treatment. The JCAR015, a commercialized
CAR-T therapy that is once pending approval from FDA,
is withdrawn from phase 2 clinical trials soon after five
cases of fatal ICANS are reported. In this retrospective
analysis, the early rapid expansion and activation of
JCAR015 with a CD19-recognizing, a CD28 costimula-
tory, and a CD3z-activating domains with high levels of
cytokines may be responsible for the lethal ICANS [90].
The ICANS may be related to cerebral microangiopathy
and the CNS infiltration of targeted cells. A lymphodeplet-
ing condition regimen and a large quantity of inflammatory
cytokines can lead to the damage of microvessels in CNS,
which can eventually lead to the disruption of the blood–
brain barrier (BBB).
Several clinical trials have demonstrated that CAR-T

cells are able to penetrate the BBB and eliminate targeted
cells in the CNS. The presence of severe ICANS is also
correlated to severe CRS [91–94]. When CAR-T cells
recognize CNS-infiltrating targeted cells, such as lym-
phoma and leukemic cells, through the disrupted BBB,
CAR-T cells and bystander immune cells release cytokines
and chemokines to recruit a large number of CAR-T cells
and other immune cells to the site, thus inducing a cascade
reaction. With high levels of cytokines, chemokines, and
immune cells, a focalized cytokine storm in the CNS
develops.
As mentioned previously, an intensive lymphodepleting

condition regimen, prior intrathecal chemotherapy, and
CNS infiltration are potential high-risk factors for the
occurrence of ICANS. Nonetheless, as a type of mono-
clonal antibody, the tocilizumab is unlikely to penetrate the
BBB to inhibit cytokine storms in the CNS. Therefore,
despite the high risk of lymphotoxicity, the dexamethasone
is commonly used for severe ICANS due to its ability to
penetrate the CNS and BBB. Locke et al. have found that
the prophylactic use of tocilizumab in 31 patients with R/R
NHL receiving axicabtagene ciloleucel results in a low
incidence of severe CRS but not ICANS. These data

provide preliminary evidence that the prophylactic or the
preemptive use of tocilizumab may not benefit the
incidence of severe ICANS [95].

Localized CRS and tumor lysis syndrome

Lymphoma involves lymph nodes, bone marrow, CNS,
skin, gastrointestinal tract, cardiovascular system, respira-
tory tracts, liver, spleen, urinary system, and other vital
organs. During the antitumor activity of CAR-T cell, these
cells tend to recruit bystander immune cells and induce an
inflammatory cascade reaction at the tumor site. As a
result, the tumor tissues and the nearby tissues become
swollen. In some cases, when the lymphoma is adjacent to
the respiratory tracts, veins, gastrointestinal tracts, liver, or
urinary system, these tissues may swell after the infusion of
CAR-T cells and may compress the corresponding tracts or
cavities, thereby causing dyspnea, venous reflux disorder,
ileus, jaundice, back pain, and oliguria [96]. Furthermore,
if the tumor cells invade a hollow organ thoroughly,
perforation and bleeding may occur [97]. As mentioned
previously, the pancytopenia commonly occurs after the
CAR-T cell infusion. Furthermore, if the prognosis of a
patient with perforation or bleeding is complicated by the
pancytopenia, this patient is likely to die due to infection or
severe bleeding. Physical evaluations using whole-body
PET-CT scans, brain MRIs, or lumbar punctures are
essential to identify the lymphoma involvement sites
before the CAR-T treatment to prevent unnecessary
adverse events.

B cell aplasia and hypogammaglobulinemia

CAR-T cells eradicate neoplastic cells and normal cells
with target expression on surface, known as the on-target
off-tumor effect. The B cell aplasia is a specific
manifestation of the on-target off-tumor effect for CAR-
T cells targeting the pan-B antigen. As progenitors of
plasma cells, once B cells are eliminated, the regeneration
of plasma cells is interrupted followed by the dysfunction
of immunoglobulin production, leading to hypogamma-
globulinemia [98]. As a consequence of hypogammaglo-
bulinemia, patients may be exposed to infection for a long
time after the CAR-T therapy. The intravenous immuno-
globulin can be used to correct hypogammaglobulinemia
and prevent opportunistic infections. Limited evidence has
shown that some CD19– long-lived plasma cells are able to
evade the CAR-T cell attack and persist in secreting
antibodies in a B cell-independent manner [99]. However,
even if the pre-existing humoral immunity is preserved
after the anti-CD19 CAR-T therapy, patients (especially
children) who have not completed a vaccination program
need to restart vaccination after an appropriate amount of
time. Given the lack of evidence for such special
population, the current best choice consists of vaccination
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until the B cell recovery [100]. The B cell aplasia
represents circumstantial evidence of the persistent
efficiency and existence of CAR-T cells. The persistent B
cell aplasia implies that CAR-T cells in vivo exert immune
surveillance for target antigen-positive lymphoma cells
and are correlated with a durable clinical response [101].

Current challenges and prospects of the
CAR-T therapy

Broadening the therapeutic indications of the CAR-T
therapy for lymphoma

The success of the CAR-T cell therapy in the treatment of
B-NHL is remarkable. However, the clinical results of the
CAR-T therapy for lymphoma have been derived from
several pivotal clinical trials involving DLBCL due to the
high morbidity of DLBCL in B-NHL. Other than CD19-,
CD20-, or CD22-positive R/R B-NHL, diseases, such as
precursor B cell lymphoblastic lymphoma, BL [102],
MCL, FL, and CLL/SLL, should also be considered in
CAR-T clinical trials. The ZUMA-2, a phase II multicenter
global clinical trial, has assessed the efficacy and the safety
of the use of axicabtagene ciloleucel for the treatment of
patients with R/R MCL. A total of 28 patients with R/R
CD19+ MCL are recruited, and each patient has received
the anti-CD19 CAR-T cell infusion at a median dose of
2 � 106 per kg. The OR and the CR rates are 86% and
57%, respectively. With a median follow-up period of 13.2
months, the estimated 1-year duration of response, PFS
rate, and OS rate are 86%, 71%, and 86%, respectively
[103]. Universal CAR-T cells from third-party donors,
allogenic CAR-T from haploidentical donors and HLA-
matched donors, or universal CAR-NK cells from cord
blood [104] represent a potential strategy for patients who
are unable to receive the autologous CAR-T treatment due
to rapid disease progression, failure of CAR-T generation,
or pre-existing immunodeficiency conditions, such as
acquired immune deficiency syndrome (AIDS).
The CAR-T cellular therapy is approved for the third-

line salvage therapy. With a reduction in the cost of the
CAR-T manufacturing and an improvement in the safety of
its clinical use, the CAR-T cell therapy can be upgraded to
a second- or even first-line therapy [105]. In this case,
patients with lymphoma can be cured using the CAR-T
treatment in the early stage and does not have to undergo
conventional chemotherapy regimens. The CD30, a
much-anticipated new target antigen, may broaden the
indications of CAR-T therapy for R/R HL, ALCL,
lymphomatoid papulosis, and other T cell lymphomas.
However, further phase 2 clinical trials should be
performed to evaluate its efficacy and safety. Furthermore,
new target antigens for NK/T cell NHLs, including CD4
(NCT03829540) [106], CD7 (NCT03690011) [107],

CD30 (NCT04083495), and CD37 (NCT04136275) [65],
are suggested.
The main obstacles in the identification of novel target

antigens for NK/T cell NHLs are fratricide between CAR-
T cells due to the presence of pan-T cell antigens [108] and
T cell aplasia, which is also known as the on-target off-
tumor effect. The knockout of pan-T cell antigen genes by
using gene editing techniques after the transduction of anti-
pan-T cell antigen CAR gene may be an effective method to
avoid the CAR-T fratricide. Moreover, the long-term T cell
aplasia may lead to a similar condition to that observed in
the AIDS. This condition may cause undesirable effects,
including opportunistic infection and secondary tumors.
Hence, the use of anti-NK/T cell NHL CAR-T therapy
requires additional considerations because it may result in
long-term T cell aplasia.

Enhancing the efficacy and the persistence of CAR-T
cells and overcoming the tumor-protecting effect for
long-term survival

To date, about half of the patients with R/R B cell
lymphoma who have received the CAR-T cell therapy in
clinical trials have achieved CR. However, the other half of
these patients have either relapsed or become refractory to
the CAR-T cell therapy. An unsatisfactory CR rate related
to the short PFS has become one of the major problems
associated with the use of the CAR-T cell therapy for
lymphoma. Compared with the high CR rate of R/R ALL
and other precursor B cell-derived hematological malig-
nancies, the heterogeneity of lymphoma cells and the TME
may contribute to the low CR rate of patients with
lymphoma after the CAR-T therapy [109]. The expression
of the targeted antigens on lymphoma cells varies from one
cell to another. Some lymphoma cells present low-density
or no targeted antigens. This low affinity to CAR-T cells
results in resistance to the tumor-killing effect of CAR-T
cells [54,110–113]. Although high-density targeted antigen
lymphoma cells are eliminated by CAR-T cells, low-
density targeted antigen lymphoma cells tend to proliferate
again and result in a relapse from short-term response or
progressive diseases. Three strategies have been suggested
under clinical trial evaluations to overcome the hetero-
geneity of antigen expression: (1) optimize the sequence of
extracellular domains to increase the affinity of CARs and
tumor-specific antigen [114]; (2) combine two or more
monospecific CAR-T cells to cover broad-spectrum
lymphoma cells [115,116]; (3) generate multispecific
CAR-T cells that express multiple CARs on a single
CAR-T cell (bicistronic CAR) [117] or a single CAR with
two or more recognizing domains (tandem CAR) [34,118–
121].
In addition, the TME in lymphoma is another important

factor that leads to resistance to the tumor-killing effect of
CAR-T cells. The gene expression in baseline tumor
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samples, such as tumor-associated macrophages (i.e.,
CXCL2 and CXCL8), myeloid-derived suppressor cells
(i.e., CXCL12, CCL3, CCL4, and CCL5), immunosup-
pressive cytokines (i.e., IL10 and TGFβ1), tumor-asso-
ciated dendritic cells (i.e., CD33 and CD14), and tumor-
associated fibroblasts (i.e., FAP, TNC, CSPG4, PDGFRA,
S100A4, ASPN, STC1, and ITGAM) in patients with PR
R/R B-NHL is higher than that in patients with CR R/R B-
NHL after the CAR-T treatment. Compared with those of
patients with CR, the baseline tumor samples of patients
with PR are characterized with low levels of the gene
expression of chemokines (i.e., CCR6, CCR10, CXCR3,
and CXCR4) and adhesion molecules (i.e., CD226,
ITGAE, TNFRSF18). Increased tumor-associated macro-
phage infiltration and decreased tumor-infiltrating T cells
in lymphoma are correlated with negative remission after
the CAR-T therapy [122].
Besides, CD80, CD86, PDL1, PDL2, MHC class II,

Galectin 9, and CEACAM1, which are largely expressed
by antigen presenting cells or target cells, may cause the
CAR-T cell exhaustion, which also results in poor T cell
expansion or short-term T cell persistence [123]. In a
clinical trial for R/R CLL, the preinfusion of CAR-T cells
from the upregulated pathway of nonresponder patients is
associated with apoptosis and exhaustion. The upregula-
tion of coinhibitory molecules, such as PD-1, TIM-3, and
LAG-3, on CAR-T cells indicates that the immune
checkpoint pathway plays an important role in regulating
the inhibitory effect on CAR-T cells [124]. The addition of
an immune checkpoint blockade may reverse the exhaus-
tion of CAR-T cells and maintain the tumor-killing effect
and the persistence of CAR-T cells [125–127].
Other strategies for immune checkpoints, such as

armored CAR-T cells secreting PD-L1 antibody [128],
bispecific CAR-T targeting PD-L1, and tumor-specific
antigen [129], represent potential solutions to counteract
the CAR-T cell exhaustion. Moreover, the modification of
condition regimens, such as intensive chemotherapy with
autologous HSCT [130,131] and radiation [132,133], prior
to the infusion of CAR-T cells may destroy the TME and
improve the clinical outcomes of the CAR-T therapy.

Reducing life-threatening adverse events in the CAR-T
cell therapy

Another limitation of the CAR-T therapy is its adverse
effects. As mentioned previously, the CRS is a major side
effect of the CAR-T therapy. In addition to the application
of cytokine monoclonal antibodies, the use of other small
molecule agents, such as dasatinib [134,135], and the
modification of the CAR-T cell structure, such as the
development of a safety switch, should be explored in
future studies [32,33]. Improving the understanding of the
CAR-Tamong doctors and nurses is the key to decrease the
mortality rate of the CAR-T therapy. With a safe and

effective CAR-T cell therapy, immunotherapy will play an
indispensable role in the treatment of lymphoma in the
future.
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