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Abstract The mammalian target of rapamycin (mTOR) critically regulates several essential biological functions,
such as cell growth, metabolism, survival, and immune response by forming two important complexes, namely,
mTOR complex 1 (mTORC1) and complex 2 (mTORC2). mTOR signaling is often dysregulated in cancers and
has been considered an attractive cancer therapeutic target. Great efforts have been made to develop efficacious
mTOR inhibitors, particularly mTOR kinase inhibitors, which suppress mTORC1 andmTORC2; however, major
success has not been achieved. With the strong scientific rationale, the intriguing question is why cancers are
insensitive or not responsive to mTOR-targeted cancer therapy in clinics. Beyond early findings on induced
activation of PI3K/Akt, MEK/ERK, and Mnk/eIF4E survival signaling pathways that compromise the efficacy of
rapalog-based cancer therapy, recent findings on the essential role of GSK3 in mediating cancer cell response to
mTOR inhibitors and mTORC1 inhibition-induced upregulation of PD-L1 in cancer cells may provide some
explanations. These new findings may also offer us the opportunity to rationally utilize mTOR inhibitors in cancer
therapy. Further elucidation of the biology of complicated mTOR networks may bring us the hope to develop
effective therapeutic strategies with mTOR inhibitors against cancer.
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Background

The mammalian target of rapamycin (mTOR) and its
mediated signaling pathways are critical for maintaining
cell homeostasis through regulation of various biological
functions, such as cell growth, metabolism, survival, and
immune response. These functions are regulated by
mTOR, a serine–threonine kinase, primarily through
forming two distinct complexes, namely, mTOR complex
1 (mTORC1) and mTOR complex 2 (mTORC2) [1–3].
Determination of mTOR kinase substrate specificity is
dependent on which partner protein it interacts with.
mTORC1 is composed of mTOR and four other associated
proteins such as raptor, mLST8, PRAS40, and DEPTOR;
signaling of mTORC1 is crucial for regulating cap-
dependent translation initiation, an essential process for
synthesis of many oncogenic proteins, such as cyclin D1,

c-Myc, Mcl-1, and Snail, through phosphorylating p70
ribosomal protein S6 kinase (p70S6K) and eukaryotic
translation initiation factor 4E (eIF4E) binding protein 1
(4E-BP1). mTORC2 contains mTOR, rictor, mLST8,
DEPTOR, mSin1, and protor and phosphorylates Akt,
serum and glucocorticoid-inducible kinase (SGK), and
protein kinase C (PKC) [2–4] (Fig. 1). The biological
functions of mTORC2, particularly those related to
regulation of oncogenesis other than its regulation of
cytoskeleton and cell survival, have not been fully
understood in comparison with mTORC1 [2], although
mTORC2 is involved in the positive regulation of cancer
development [5–7]. At present, limited information is
known about the upstream regulators of the mTORC2 axis;
meanwhile, mTORC1 serves as a convergence point of
phosphoinositide 3-kinase (PI3K)/Akt and mitogen-acti-
vated protein kinase (MAPK)/MEK/ERK signaling path-
ways, which are often hyperactivated in many types of
cancers [8] (Fig. 1). Nonetheless, the mTOR axis is
dysregulated in cancers and thus has emerged as an
attractive cancer therapeutic target [9].
Rapamycin and its analogs (rapalogs) are specific
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allosteric inhibitors of mTOR and represent first-genera-
tion mTOR inhibitors. Some rapalogs (e.g., everolimus/
RAD001 and temsirolimus/CCI-779) are approved by the
Food and Drug Administration (FDA) for treatment of
certain cancers such as metastatic renal cell carcinoma,
pancreatic neuroendocrine tumors, and postmenopausal
hormone receptor-positive advanced breast cancer, but the
single-agent activity of rapalogs in many other tumor types
has been limited [10]. For the past decades, great efforts
have been made to develop second-generation ATP-
competitive mTOR kinase inhibitors (TORKinibs), such
as INK128, Torin 1, and AZD8055, which suppress
mTORC1 and mTORC2 activity, as potential cancer
therapeutic agents [11,12], and third-generation bivalent
mTOR inhibitors that specifically target mTOR resistance
mutations [13] in hopes of developing more efficacious
mTOR inhibitors based on the rationale that inhibition of
mTORC1 and mTORC2 may achieve better therapeutic
efficacy. As a consequence, some TORKinibs have been
tested in clinical trials [11,12]. TORKinibs not only
represent novel potential anticancer agents but are also
valuable research tools for understanding the biology of
mTOR signaling. However, TORKinibs have not demon-
strated clinical effectiveness against different types of

cancer, although the scientific rationale for targeting
mTORCs is very strong.
Thus, the intriguing question is, despite such a great

target, why are cancer cells insensitive or not responsive to
mTOR-targeted cancer therapy, particularly TORKinib-
based cancer therapy, in clinics? The current review will
focus on discussing possible mechanisms for the resistance
of cancer cells to mTOR-targeted cancer therapy.

Induced activation of survival signaling
pathways during mTOR-targeted cancer
therapy

mTORC1 functions downstream of the PI3K/Akt signaling
pathway. In 2005, we first showed that rapalogs induce Akt
phosphorylation (e.g., Ser473) while inhibiting mTORC1
signaling in cancer cells [14]. This observation was
subsequently confirmed in other studies in different types
of cancer cells [15–17], in xenograft tissues [18] and in
human cancer tissues [15,19,20]. One potential mechanism
underlying rapalog-induced Akt activation is the relief of
mTORC1/p70S6K-mediated feedback inhibition of insulin
receptor substrate-1 (IRS-1)/PI3K as suggested [15,21].
However, other studies do not support this model [17,22].

Fig. 1 mTOR complexes and their regulation by various upstream signaling pathways. The PI3K/Akt survival pathway functions upstream to
positively regulate the activity of mTORC1 by phosphorylating tuberous sclerosis complex 2 (TSC2); PRAS40, ERK1/2, and p90RSK2 (RSK2) also
positively regulate mTORC1 through respective phosphorylation of TSC2 and raptor, thus linking Ras to the positive regulation of mTORC1
signaling. The tumor suppressor, liver kinase B1 (LKB1), inhibits mTORC1 signaling through activation of AMPK and TSC2. Whether the same
upstream signals that regulate mTORC1 also regulate mTORC2 is unclear. mTORC2 is known to phosphorylate Akt, SGK1, and PKCα, whereas
mTORC1 primarily phosphorylates p70S6K and 4EBP1. GF, growth factor; GRs, growth factor receptors; IRS, insulin receptor substrate.
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We have suggested that rapalogs induce protein phospha-
tase 2 (PP2A)-dependent DNA-protein kinase (DNA-PK)
activation, resulting in increased Akt phosphorylation [23].
Although mitogen-activated protein kinase (MAPK)/

extracellular signal-regulated kinase (ERK) positively
regulates mTORC1 activity [9], studies show that
mTORC1 inhibition can also induce feedback activation
of MAPK/ERK signaling in cell culture models, mouse
tumor models, and, most importantly, cancer tissues from
patients [24,25], thereby adding another layer of complex-
ity to the already complicated mTOR signaling network.
Similar to activation of PI3K/Akt signaling, mTORC1
inhibition-induced MAPK/ERK activation is thought to be
a consequence of p70S6K inhibition and subsequent PI3K
activation and in turn activates Ras, causing the activation
of MAPK/ERK signaling [24].
Beyond the activation of Akt and ERK survival

signaling pathways, rapalogs paradoxically increase
eIF4E phosphorylation (Ser209) in various types of cancer
cells while inhibiting mTORC1 signaling as we previously
reported [14]. Similar to Akt phosphorylation, rapalog-
induced eIF4E phosphorylation is rapid and sustained
[14,26]. We have suggested an underlying mechanism
involving PI3K-dependent, MAPK interacting protein
kinase (Mnk)-mediated eIF4E phosphorylation but inde-
pendent of MAPK signaling pathways [14,26].
Given that the blockage of the activation of these

pathways enhanced the therapeutic efficacies of rapalogs
against the growth of cancer [9], induced activation of
PI3K/Akt, MAPK/ERK, and Mnk/eIF4E during rapalog-
based cancer therapy will provide survival advantage for
cancer cells, eventually blunting the therapeutic efficacies
of rapalogs.

Critical role of glycogen synthase kinase-3
(GSK3) in mTOR-targeted cancer therapy

GSK3 is a ubiquitous serine/threonine kinase that is
present in mammals in two isoforms, namely, α and β [27].
GSK3 has a key role in regulating multiple cellular
functions, including glycogen metabolism, cell survival,
and cell death [27]. However, the involvement of GSK3 in
the regulation of oncogenesis is complex: it acts
paradoxically as a tumor suppressor in some cancer types
while potentiating the growth of cancer cells in other types
[28,29]. Phosphorylation at the S21 (α) and S9 (β) of
GSK3 by several kinases, such as Akt, p90 ribosomal S6
kinase (p90RSK), PKC, and p70S6K can cause the
inactivation of GSK3 [30–32].
GSK3 phosphorylates the turn motif of p70S6K and

cooperates with mTORC1 to control the activity of
p70S6K and cell proliferation [33]. This finding may
provide a rationale for co-targeting mTOR and GSK3 to
treat cancer. However, our studies based on this rationale

generated opposed outcomes, that is, GSK3 inhibition
actually antagonizes the ability of mTOR inhibitors
(rapalogs and TORKinibs) to inhibit the growth of non-
small cell lung cancer (NSCLC) cells in vitro and in vivo,
implying that the presence of GSK3 activity is in fact
crucial for mTOR inhibitors to exert their anticancer
activity [34–36]. Using a panel of different NSCLC cell
lines, we reported that the high basal levels of p-GSK3 are
significantly correlated with decreased sensitivity of cancer
cells to rapalogs and TORKinibs [34,35]. These findings
collectively suggest that the presence of activated GSK3 is
critical for cancer cells to respond to mTOR-targeted
cancer therapy. Considering that other studies show that
GSK3 inhibits the mTOR pathway through the phosphor-
ylation of tuberous sclerosis complex 2 (TSC2) in a
manner dependent on AMPK-priming phosphorylation
[37], where GSK3 is a direct target of S6K1 and is
activated upon mTORC1 inhibition [38], however, the real
role of GSK3 in mTOR signaling networks is obviously
unclear. In our own studies, the inhibition of mTOR with
rapalogs and TORKinibs, despite causing strong suppres-
sion of p70S6K, does not alter GSK3 phosphorylation
[34,35,39].
The intriguing question is why GSK3 is so important for

mTOR-targeted cancer therapy. Our initial speculation is
that GSK3 inhibition might interfere with the ability of
mTOR inhibitors to suppress mTORC1 signaling because
it antagonizes the activities of rapalogs and TORKinibs
[34,35]. Interestingly, GSK3 inhibition does not interfere
with the ability of mTOR inhibitors to suppress mTORC1
signaling and cap-dependent binding or eIF4F complex
formation. As such, GSK3 inhibition is unlikely to
antagonize the therapeutic efficacies of mTOR inhibitors
through interfering with their functions in suppressing the
mTORC1 signaling. In an effort to find out the real
underlying mechanisms, we have revealed that mTORC2
positively regulates the stabilization of several oncogenic
proteins, including cyclin D1, Mcl-1, c-Myc, sterol
regulatory element binding protein 1 (SREBP1), and
Snail, through inhibiting GSK3-dependent and Skp,
Cullin, and F-box containing complex (SCF) E3 ubiquitin
E3 ligase-mediated proteasomal degradation [35,36,39,
40]. For the first time, these findings have connected
mTORC2 to the stabilization of these oncogenic proteins
by inhibiting their degradation; this finding represents
another layer of regulation of oncogenic proteins in
addition to mTORC1-mediated regulation of protein
translation (Fig. 2).
One well-known important function of GSK3 is to

phosphorylate these oncogenic proteins mentioned above,
resulting in their degradation through SCF E3 ubiquitin
ligases, including F-box/WD repeat-containing protein 4
(FBXW4), FBXW7, and β-transducin repeats-containing
protein (β-TrCP) [41–46]. Hence, GSK3-mediated phos-
phorylation is a prerequisite for triggering the degradation
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of these oncogenic proteins. As such, inhibition of GSK3
will compromise the ability of mTORC2 inhibition to
induce the degradation of these oncogenic proteins, which
are critical for positive regulation of cell survival, cell cycle
progression, and cell invasion/metastasis, as demonstrated
in our recent publications [35,36,39,40]. As a conse-
quence, the effects of mTOR inhibitors, such as suppres-
sion of growth, epithelial–mesenchymal transition (EMT)
and migration of cancer cells, will be compromised as a
result of GSK3 inactivation. Thus, our findings have
demonstrated the critical role of mTORC2 inhibition in the
response of cancer cells to mTOR inhibitors.
Rapalogs primarily inhibit mTORC1 with weak or

inactive activity against mTORC2. The challenge is that
TORKinibs and rapalogs induce GSK3-dependent and
SCF E3 ligase-mediated degradation of cyclin D1, Mcl-1,
c-Myc, SREBP1, and Snail as consequences of mTORC2
inhibition. Rapalogs inhibit mTORC2 in different systems
in vitro and in vivo; however, this effect is largely due to
chronic or prolonged rapamycin treatment that can
eventually disrupt mTORC2 assembly as reported in
literature [18,47–53]. Our own data showed that acute
treatment with rapamycin (for 1 h) disrupted the assembly
of not only mTORC1 (mTOR with raptor) but also
mTORC2 (mTOR with rictor) in different cancer cell lines
[34]. In fact, a previous study did show that rictor was
dissociated from mTOR at 0.5–2 h post rapamycin
treatment in few cell lines such as PC-3, BJAB, and Jurkat
[47]. Few studies specifically determine the effect of acute
rapamycin treatment on mTORC2 assembly in various
types of cancer cell lines. We believe that rapalogs, such as
rapamycin, have an acute inhibitory effect against the
assembly of mTORC2, at least in some cancer cell lines.
These findings elucidate why GSK3 inhibition also
antagonizes the therapeutic efficacy of rapalogs.
Under the condition of acute treatment with rapamycin,

Akt S473 phosphorylation, a commonly used readout of
mTORC2 activity, clearly increased in the tested cell lines
[34], consistent with what we initially reported [14].
However, we observed the reduced levels of SGK1 (S422)
in every tested cell line under the same conditions [34].
The disruption of the mTORC2 assembly is associated
with the suppression of SGK1 S422 phosphorylation.
Whether SGK1 S422 phosphorylation serves as a better
readout of mTORC2 activity than Akt S473 phosphoryla-
tion needs further investigation.
The mutation of PTEN and PIK3CA activates the PI3K/

Akt signaling pathway, leading to the inactivation of GSK3
by phosphorylation, whereas the mutation of K-Ras can
also inhibit GSK3 activity via ERK/p90RSK-mediated
GSK3 phosphorylation [30]. Given the high frequency of
these gene mutations or pathway activation in many types
of cancers, GSK3 should be highly phosphorylated (i.e.,
inactivated) in these cancers. Indeed, GSK3 phosphoryla-
tion was detected in ≥ 50% of tissue samples of several
human cancers including breast cancer [54], mantle cell
lymphoma [55], gastric cancer [56], hepatocellular carci-
noma [57], and NSCLC [35]. Hence, many cancer types,
particularly those with inactivated GSK3, are insensitive to
mTOR-targeted cancer therapy in clinics.

Potential negative impact of E3 ubiquitin
ligase mutation on cancer response to
mTOR-targeted therapy

An essential process in proteasomal protein degradation is
the ubiquitination of targeted proteins mediated by E3
ubiquitin ligases. In the above-mentioned degradation of
cyclin D1, c-Myc, Mcl-1, and SREBP1 induced by mTOR
inhibitors, we demonstrated that Mcl-1, c-Myc, and
SREBP1 are ubiquitinated by FBXW7 (FBW7) [39,40],
whereas cyclin D1 is ubiquitinated by FBX4 (FBXW4)

Fig. 2 Diagram for different layers of regulation of several oncogenic proteins by mTORC1 and mTORC2 at translational and
posttranslational levels. Currently, how mTORC2 negatively regulates GSK3-dependent and E3 ubiquitin ligase-mediated protein
degradation remains unclear.
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[35]. Therefore, mTOR inhibitors will be unable to induce
the degradation of these proteins in cancers with inactiva-
tion of the E3 ligases due to gene mutations, deletion, or
other mechanisms, resulting in limited therapeutic
efficacies. FBXW7 has the highest mutation frequency
among F-Box and WD repeat domain-containing SCF E3
ubiquitin ligases. The mutation of FBXW7 may reduce the
protein’s ability to form SCF complexes and/or alter the
complex conformation, leading to a non-functional com-
plex [58]. Data from the Catalogue Of Somatic Mutations
In Cancer (COSMIC) database revealed the overall
FBXW7 mutation rate of 2.54 across all human tumors,
among which, endometrium, large intestine, cervix, small
intestine, and stomach are the top five tumor types [58].
The Cancer Genome Atlas (TCGA) database search found
an overall 5% FBXW7 mutation rate across all human
tumor types. Endometrial carcinoma has the highest
FBXW7 mutation rate of up to 20%. Several other types
of cancer, including colorectal adenocarcinoma, cervical
squamous cell carcinoma, cervical adenocarcinoma, eso-
phagogastric adenocarcinoma, bladder urothelial carci-
noma, head and neck squamous cell carcinoma,
undifferentiated stomach adenocarcinoma, esophageal
squamous cell carcinoma, and melanoma, have high
frequencies of FBXW7 mutations, ranging from 15% to
5% (Fig. 3A). FBX4mutations are relatively low in human
cancers with an overall rate of around 0.8% across all
human tumors. Endometrial carcinoma, adrenocortical
carcinoma, pancreatic carcinoma, and melanoma have
the highest frequencies of FBX4 mutations with rates
below 2.5% (Fig. 3B).
In addition to mutations, other mechanisms involving

microRNA, long noncoding RNAs, and specific oncogenic
signaling pathway activation, can inactivate FBXW7
function in cancer cells [58,59]. We assume that these
tumors with inactivated SCF E3 ubiquitin ligases, at least
some if not all, may not be sensitive to mTOR-targeted
cancer therapy. Further study in this regard is warranted.

Upregulation of programmed death-ligand
1 (PD-L1) in cancer cells during
mTOR-targeted therapy

One critical mechanism accounting for immunosuppres-
sion and immune escape of cancer cells is the expression of
PD-L1 on cancer cells, which can avoid elimination by
immune cells, including T cells, natural killer (NK) cells,
and macrophages via interacting with program death-1
(PD-1) [60–62]. Immunotherapy targeting the PD-1/PD-
L1 immune checkpoint has shown promising benefits
against several types of cancer and changed the landscape
of cancer therapy [63–65].
One early report showed that oncogenic activation of the

Akt/mTOR pathway upregulated PD-L1 expression,
thereby promoting immune escape in NSCLC; accord-
ingly, inhibition of this signaling pathway decreased the
PD-L1 expression [66]. However, our recent study failed to
reproduce this finding; rather we generated opposite
results, that is, inhibition of PI3K/Akt or mTORC1/
p70S6K signaling with different corresponding inhibitors
increases the PD-L1 levels in NSCLC and other cancer cell
lines expressing basal levels of PD-L1. These data were
subsequently confirmed using a genetic approach (e.g.,
shRNA) [67]. In agreement with our findings, another
study reported that everolimus increased the cell surface
PD-L1 levels in human and murine renal carcinoma cells
[68]. In a recent study with renal cell carcinoma cells,
inhibition of mTOR with rapamycin and Torin 1 (a
TORKinib) increased PD-L1 expression, conferring resis-
tance of renal cell carcinoma to mTOR inhibition [69].
Hence, we believe that inhibition of the PI3K/mTOR
pathway actually elevates PD-L1 levels at least in some
cancer cells.
Given that PD-L1 expression in cancer cells is a critical

mechanism that contributes to immunosuppression and
immune escape through its interactions with PD-1, it is
highly likely that elevated PD-L1 levels on the cancer cell
surface may protect cancer cells from being eliminated by
immune cells by promoting the immune escape of cancer
cells during mTOR-targeted cancer therapy. Therefore,
whether PD-L1 induction by mTORC1 inhibition con-
tributes to the modest anticancer activity of rapalogs or
limited anticancer activity of TORKinibs is a logical and
interesting question to address. This process may represent
another important mechanism accounting for the limited
success in targeting mTOR for cancer therapy, particularly
in vivo or in human. Further study in this direction is
warranted.

Other factors that may potentially affect the
response of cancer cells to mTOR-targeted
cancer therapy

In addition to the mechanisms discussed above that may
specifically account for the limited efficacy of mTOR-
targeted cancer therapy in clinics, other intrinsic features of
cancer cells, such as EMT, cancer stem cell (CSC)
phenotype, ATP binding cassette (ABC) transporter
expression, and mTOR mutations, may affect the response
of cancer cells to mTOR inhibitors (see review by Hua
et al. [70]).
Some of these factors, such as EMT, CSC, and ABC

transporters, may not be mechanisms specific to mTOR
inhibitors; they can also be cell type- and inhibitor-
dependent. For example, while breast cancer cell lines with
high EMT feature are relatively insensitive to rapamycin
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and modulation of EMT accordingly alters cell sensitivity
to rapamycin [71], TORKinibs and rapalogs effectively
inhibit EMT and migration of NSCLC cells through
facilitation of Snail degradation and in vivo metastasis, as
evaluated in a genetically engineered murine breast cancer
model [36]. Patient-derived glioblastoma stem-like cell
cultures (GSCs) harboring wild-type p53 are insensitive to
the mTORKinib, AZD8055, whereas GSCs with mutant
p53 are sensitive to the inhibitor [72]. In colon cancer cells,
PDK1-Polo-like kinase 1 (PLK1)-MYC signaling func-
tions as a new oncogenic pathway driving oncogenic

transformation and CSC self-renewal and is associated
with resistance to mTOR inhibitors [73]. However, total
breast cancer cells and sorted stem cells are sensitive to
everolimus in vitro and in vivo [74]. Given that rapamycin,
AZD8055, and WYE-354 are substrates of ATP binding
cassette sub-family B member 1 (ABCB1)/P-glycoprotein
or multidrug resistance protein 1 (MDR1) [75,76], the
efficacies of these mTOR inhibitors may be compromised
in cancer cells with highly expressed ABCB1. Interest-
ingly, Palomid 529, a novel TORKinib, lacks affinity for
ABCB1 with good brain penetration [77].

Fig. 3 TCGA analyses for FBXW7 (A) and FBX4 (B) mutations in human cancers. These data were generated from the website of
https://www.cbioportal.org/.
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Opportunities for enhancing mTOR-
targeted cancer therapy

Strategies toward induced induction of survival signaling
pathways, including PI3K/Akt, MEK/ERK, and Mnk/
eIF4E, for enhancing mTOR-targeted cancer therapy have
been discussed in detail in our previous review [9].
As discussed above, GSK3 activity is required for

mTOR inhibitors, including rapalogs and TORKinibs, to
induce the degradation of certain oncogenic proteins, such
as cyclin D1, Mcl-1, and SREBP1, and to inhibit tumor cell
growth [34,35,39,40]. Moreover, basal p-GSK3 levels are
inversely correlated to cell sensitivity to mTOR inhibitors
in human NSCLC cells [34,35]. Hence, the activation of
GSK3 is speculated to enhance the anticancer efficacy of
mTOR inhibitors, particularly in tumors with low GSK3
activity (or highly phosphorylated GSK3). However,
directly targeting GSK3 activation in cancer therapy is
difficult considering the complex roles of GSK3 in
regulation of cancer development [28,29]. Moreover,
GSK3 activation may cause other issues related to
neurodegenerative diseases [78,79].
PI3K/Akt and MEK/ERK/p90RSK signaling pathways

positively regulate GSK3 phosphorylation [30–32]. Tar-
geting these signaling pathways may indirectly activate
GSK3, thereby achieving enhanced therapeutic effects
when combined with mTOR-targeted therapy. Some
published studies reported the enhanced antitumor effects
of mTOR inhibition in vitro and in vivo when combined
with PI3K/Akt inhibition [25,80–83] or with MEK/ERK
inhibition [84–87] despite having different rationales and
mechanisms. Whether GSK3 activation contributes to
these enhanced antitumor effects needs further investiga-
tion.
Although rapalogs have long been regarded as immu-

nosuppressants and are used in organ transplantation,
many recent studies suggest that the effects of rapamycin
on immune function, particularly T cell activation, are
highly dose dependent [88–91]. Low doses of rapamycin
stimulate memory CD8+ T cell generation and enhance the
memory T cell response to viral infection or cancer in mice
[92]. Similarly, everolimus at low doses improves immune
function in elderly volunteers, as assessed by their
response to influenza vaccination [93]. A human study in
patients with renal cancer showed that the therapeutic
efficacy of rapalogs is associated with modulation of
antitumor T cell immunity. Patients treated with rapalogs
showed better clinical responses if they presented a shift
toward decreased Treg levels and high expansion of
antitumor Th1 or activated CD8+ T cells [94]. Several
works have shown that rapalogs enhance response to
various modalities of immunotherapy, including adoptive
cell therapy and cancer vaccines [95–98].
In theory, the elevation of PD-L1 in cancer cells might

increase the availability of epitopes for anti-PD-L1 anti-
body to bind, which could enhance the efficacy of anti-PD-
L1 therapy. Therefore, the positive impact of mTOR
inhibition on generation and activation of memory CD8+ T
cells and on elevation of PD-L1 in cancer cells may
constitute a strong scientific rationale for combining
mTOR inhibition with PD-1 or PD-L1 blockade immu-
notherapy as an effective strategy to enhance therapeutic
efficacy. The combination of everolimus or rapamycin with
PD-L1 blockade significantly enhanced antitumor activity
compared with each single agent treatment against renal
and oral cavity cancers [68,99]. The combination of
rapamycin with anti-PD-1 antibody also enhanced the
reduction of lung tumor burden in a mutant KRAS-driven
mouse lung cancer model [66]. Another recent study
showed that simultaneous inhibition of mTOR with
temsirolimus and blockade of PD-L1 enhanced CD8+

cytolytic function and tumor suppression in a xenografted
mouse model of renal cell carcinoma based on the rationale
of mTOR inhibition-induced upregulation of PD-L1
expression [69].

Summary and conclusions

On top of the early findings on induced activation of PI3K/
Akt, MEK/ERK, and Mnk/eIF4E survival signaling path-
ways that blunt the efficacy of mTOR-targeted cancer
therapy, recent studies have further shown the essential
role of GSK3 in mediating cancer cell response to mTOR
inhibitors and the potential negative effect of induced
upregulation of PD-L1 in cancer cells on mTOR-targeted
cancer therapy. These findings not only suggest the
complexity of mTOR networks but also have complicated
the story of mTOR-targeted therapy. Full elucidation of the
biology of mTOR networks and potential resistance
mechanisms in mTOR-targeted cancer therapy will
eventually help us to better utilize mTOR inhibitors in a
rational manner for effective treatment of cancer. The hope
is there, but there is a long way ahead of us.
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