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Abstract Breast cancer is one of the most common malignancies that seriously threaten women’s health. In the
process of the malignant transformation of breast cancer, metabolic reprogramming and immune evasion
represent the two main fascinating characteristics of cancer and facilitate cancer cell proliferation. Breast cancer
cells generate energy through increased glucose metabolism. Lipid metabolism contributes to biological signal
pathways and forms cell membranes except energy generation. Amino acids act as basic protein units and
metabolic regulators in supporting cell growth. For tumor-associated immunity, poor immunogenicity and
heightened immunosuppression cause breast cancer cells to evade the host’s immune system. For the past few
years, the complex mechanisms of metabolic reprogramming and immune evasion are deeply investigated, and the
genes involved in these processes are used as clinical therapeutic targets for breast cancer. Here, we review the
recent findings related to abnormal metabolism and immune characteristics, regulatory mechanisms, their links,
and relevant therapeutic strategies.
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Introduction

Breast cancer, the second most common malignancy,
accounts for 16.1% of all new cases of female cancer in
China in 2014 [1]. Current therapies, including surgery,
chemotherapy, radiotherapy, and endocrine and target
therapy, have achieved remarkable advances. However,
disadvantages, such as drug resistance and bone marrow
suppression, limit the effectiveness of available therapies.
In addition, these treatments have little effect on the triple
negative breast cancer (TNBC). Therefore, further under-
standing of the mechanisms of breast cancer may
contribute to the treatment of patients with breast cancer.
In recent years, research on the abnormal metabolism of
cancer cells, which is regarded as a promising field for
cancer therapy, has become the focus. The Nobel Prize in
Physiology or Medicine in 2018 is awarded to Tasuku
Honjo and James Allison for their contributions to cancer
immunotherapy. Immunotherapy exhibits great potentials
in cancer treatment. Interestingly, the abnormal metabo-
lism seems to be inextricably linked to a dysfunctional

immune system in cancer cells [2,3]. In this review,
advances in abnormal metabolism and immunity in breast
cancer are provided.

Breast cancer and subtypes

Increasing reports on breast cancer focus on the variations
in metabolism among breast cancer subtypes. The
molecular and metabolism characteristics are also different
between estrogen receptor (ER)-positive and ER-negative
breast cancers [4]. ER-positive breast cancers are divided
into two subtypes, namely, luminal A and luminal B. ER-
negative breast cancers are also divided into HER2-
enriched and basal-like subtypes (i.e., TNBC). Luminal B
tumors mainly depend on lipid metabolism for tumor
growth, but HER2 and basal-like breast cancers (BLBCs)
prefer to alter glucose/glutamine metabolism [5]. The
features of metabolism in various subtypes of breast cancer
are discussed below.

Breast cancer subtypes

ER-positive breast cancers are the most common types of
breast cancer. This subtype is further divided into two
subtypes, namely, luminal A and luminal B. At the DNA
level, luminal A tumors show few mutations across the
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genome, low chromosomal copy-number changes, low
Ki67 expression, and few p53 mutations. Luminal A
tumors tend to decrease the clinical grade, and majority of
these tumors shows good prognosis and low recurrence
score.
Compared with luminal A tumors, luminal B tumors

have higher number of mutations across the genome,
higher number of chromosomal copy-number changes, and
more p53 mutations at the DNA level [6]. Luminal B
tumors have the most methylation frequencies among
breast cancer subtypes [7] and tend to show high clinical
grade and high recurrence and/or survival rate.
The HER2-enriched subtype represents nearly 15%

among breast cancers [8], showing the overexpression of
HER2, a member of the erythroblastic leukemia viral
oncogene homolog receptor family. HER2 is an important
oncodriver that promotes cell proliferation and inhibits cell
apoptosis in breast cancer [9]. At the DNA level, the
HER2-enriched subtype shows the highest rates of
mutations, including PIK3CA and p53 mutations, across
the genome. The HER2-enriched subtype tends to have
high grade and poor prognosis [10]. Interestingly, the
HER2-enriched subtype is found in the tumors uniquely
enriched with high frequency of mutations of the
apolipoprotein B mRNA editing enzyme catalytic subunit
3B (APOBEC3B). The APOBEC3B, a subclass of
APOBEC cytidine deaminases, is mutated in many cancer
types [11]. A growing body of literature suggests that
amplified HER2 plays an important role in regulating
breast cancer stem cells (BCSCs) related to drug resistance
and recurrence [12–14]. The regulation of BCSCs by
HER2 is likely to be found in other breast cancer subtypes.
In other subtypes, the HER2 expression has heterogeneity
in BCSC populations, which may be related to the tumor
microenvironment. According to this phenomenon, tras-
tuzumab, a drug approved to be used for the treatment of
the HER2-enriched subtype, may be effective in some
patients with HER2-negative breast cancer [15].
BLBC, which constitutes at least 10% of breast cancers,

has a unique genomic signature and the greatest intrinsic
diversity [16]. Among breast cancers, BLBC has the
lowest methylation frequencies and the second highest
mutation frequency after the HER2-enriched subtype at the
DNA level. BLBC has a mass of PIK3CA and p53
mutations. Interestingly, BLBCs may be associated with
breast cancer susceptibility gene-1 (BRCA-1) mutations,
which may cause hereditary breast cancer [17]. BLBCs
have the worst prognosis among the breast cancer
subtypes.

Glucose metabolism among breast cancer subtypes

As described above, most mutations of p53 occur in the
basal-like and HER2-enriched tumors [6]. The wild-type
p53 can promote aerobic respiration and inhibit glycolysis

by regulating the expression of cytochrome c oxidase
complex (COX), cytochrome c oxidase 2 (SCO2), p53-
induced glycolysis, and apoptosis regulator (TIGAR) [18].
In breast cancer cells, the mutation of p53 shifts normal
glucose metabolism toward aerobic glycolysis [19,20].
The phosphatidylinositol 3-kinase (PI3K) mutation fre-
quencies are the highest in ER-positive breast cancers and
can stimulate glycolysis through the PI3K/Akt/mTOR
signaling pathway [21]. The expression level of c-Myc is
remarkably elevated in BLBCs, thereby promoting aerobic
glycolysis and lactate production [22]. Simultaneously, c-
Myc also drives glutamine metabolism by enhancing
glutamine transporters and glutaminase (GLS) expression
[23,24].
The accumulation of downstream glycolytic intermedi-

ates varies among the breast cancer subtypes. The levels of
glucose-6-phosphate and fructose-6-phosphate are lowest
in the luminal A subtype and highest in BLBC. The levels
of fructose-1,6-bisphosphate (F1,6BP) vary between ER-
positive and ER-negative breast tumors [5] due to highly
expressed epidermal growth factor (EGF) signaling in the
BLBC, which activates the initial step but blocks the last
step during glycolysis. In turn, F1,6BP enhances the
activity of the EGF receptor (EGFR) by direct binding,
thereby increasing the excretion of lactate in TNBC [25].
Moreover, several intermediates of the pentose phosphate
pathway (PPP), such as ribulose 5-phosphate and xylulose
5-phosphate, are elevated in the HER2-enriched molecular
subtype. Overall, the glucose utilization is drastically
enhanced in ER-negative breast cancers [5].

Amino acid and lipid metabolism among breast cancer
subtypes

Glutamine metabolism, which varies substantially among
breast cancer subtypes, is important and studied well
among amino acid metabolism. The deprivation of
glutamine can inhibit the malignant progression of breast
cancer especially in malignant subtypes. Among breast
cancer subtypes, the HER2-enriched subtype has the
highest glutamine metabolic level because of the elevated
expression of GLS and glutamate dehydrogenase (GLUD)
[26–28]. In addition, in the HER2-enriched subtype,
increased levels of peroxisome proliferator-activated
receptor g (PPARg) and coactivator-1α (PGC-1α) lead to
the overexpression of GLS and GLUD1. High GLS and
GLUD1 expression levels are correlated with poor clinical
outcome in patients with breast cancer [29].
In recent years, increasing investigations show con-

siderably different characteristics of lipid metabolism
among the breast cancer subtypes [30]. A study suggests
that TNBC needs glucose glutamine and requires more
exogenous lipid uptake and storage than receptor-positive
breast cancers [31]. Camarda et al. have performed
metabolomics and shown that fatty acid oxidation (FAO)
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intermediates, such as acyl-carnitines (AC), are drastically
elevated in MYC-driven TNBC [32]. The gene signature
associated with lipid metabolism implicates that FAO is the
critical metabolism pathway for TNBC.

Breast cancer and abnormal metabolism

The breast cancer metabolism has also been investigated
regardless of the breast cancer subtype. The remodeling of
cancer cell metabolism represents an essential hallmark of
cancers, including breast cancer (Table 1) [33,34]. Breast
cancer cells enhance aerobic glycolysis (“Warburg effect”)
to produce lactate for the tumor microenvironment. Breast
cancer cells utilize folate and acetate to accelerate lipid
biosynthesis and need glutamine, which protects cells from
reactive oxygen species (ROS) elevation and apoptosis.
Thus, the abnormal metabolism may act as potential and
effective targets for breast cancer treatment.

Breast cancer and glucose metabolism

Glucose metabolism, a major energy source, is upregulated
and dysfunctional in cancer cells, including breast cancer
cells (Fig. 1). In general, glucose metabolism includes
aerobic glycolysis, PPP, tricarboxylic acid cycle (TCA),
gluconeogenesis, and other approaches. Here, we intro-
duce the first four glucose metabolic pathways in breast
cancer.

Warburg effect

Cancer cells are still metabolized primarily by high
glycolysis even under sufficient oxygen. This phenom-
enon, known as aerobic glycolysis or the Warburg effect,
contributes to cancer cell proliferation and metastasis [43].
Glucose is eventually converted into lactate in the

cytoplasm by the Warburg effect. More than 10 genes
encoding glucose transporters (GLUTs) and glycolytic
enzymes play important roles in the Warburg effect. In the
first step, the effective transport of glucose contributes to
the abundant glucose consumption in cancer cells, the
phenomenon of which is caused by the overexpression of
GLUTs [44]. In breast cancer, high levels of GLUT1
expression is associated with tumor subtypes, high grade,
and poor prognosis [45]. However, the upregulated GLUT
family expression cannot fully explain the increased
effective glucose transport in breast cancer, suggesting
the involvement of another GLUT. Sodium–glucose
cotransporter 1 (SGLT1) can utilize sodium gradients to
maintain intracellular glucose levels independent of
extracellular glucose concentration. The expression of
SGLT1 is upregulated in many cancer types and regulates
EGFR activity to promote cell growth in TNBC [46–49].
In the second step, intracellular glucose is converted into
pyruvate under the catalysis of nine types of glycolytic
enzymes. Three key enzymes act as rate-limiting agents,
including HK2, PFK, and PKM, and have high expression
levels, facilitating the malignant development in breast
cancer cells [50–52]. For example, the expression level of
HK2 determines the malignant degree and the phenotype
of breast cancer in vitro and in vivo models [53]. In the
third step, even in the presence of oxygen, lactate
dehydrogenase (LDH) still converts pyruvate into lactate
in cancer cells. The LDH family includes LDHA, LDHB,
LDHC, and LDHD [54]. LDHA plays an important role in
aerobic glycolysis in breast cancer because of the high
affinity for pyruvate compared with LDHB [55]. In breast
cancer cells, the high levels of LDHA contribute to
promote cancer cell proliferation, invasion, and even
epithelial mesenchymal transition [54]. Overall, the
Warburg effect is essential for the breast cancer cell
malignant development and growth.

Table 1 Abnormal metabolism in breast cancer
Metabolism Specific classification of metabolism Level of metabolism in breast cancer Reference

Glycometabolism Glucose uptake Increase [35]

Warburg effect Increase [1]

TCA cycle Abnormal [1]

Pentose phosphate pathway Increase [36]

Gluconeogenesis Decrease [37]

Lipid metabolism Fatty acid uptake Uncertain but important [38]

De novo fatty acid synthesis Increase [39]

Fatty acid oxidation Increase [40]

Amino acid metabolism Glutamine metabolism Increase [41]

Serine and glycine metabolism Increase [42]

Cysteine metabolism Increase [42]

Arginine metabolism Uncertain [42]
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Fig. 1 Glucose metabolism. HK, PFK, and PK are the three key enzymes in glycolysis. G6PD regulates the rates of the PPP by
catalyzing the oxidation. In general, pyruvate is oxidized into carbon dioxide and water in the mitochondria, which is catalyzed by three
key enzymes, namely, CS, IDH, and KGDHC. Pyruvate is converted to lactate by LDHA in cancer cells, and lactate is expelled from the
cell by MCT4. Gluconeogenesis can influence glycolysis, TCA, PPP, and other processes indirectly via the rates of glucose production.
Three key enzymes control the gluconeogenic flux, including PEPCK, FBP, and G6PC. Abbreviations: G6P, glucose 6-phosphate; F6P,
fructose 6-phoshate; F-1,6-bisP, fructose-1,6-bisphosphate; G3P, glyceraldehyde 3-phosphate; 1,3-PGA, 1,3-disphosphoglycerate; 3-PG,
glyceraldeyde 3-phosphate; 2-PG, glyceraldeyde 2-phosphate; PEP, phosphoenolpyravate; TCA, tricarboxylic acid cycle; α-KG, α-
ketoglutarate; GLUTs, glucose transporters; HK2, hexokinase 2; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PFK, 6-
phosphofructo kinase; ALDO, aldolase; TPI, triose phosphate isomerase; PGK, phosphoglycerate kinase; PGM, phosphoglycerate
mutase; ENO1, enolase; PKM, pyruvate kinase; LDH, lactate dehydrogenase; MCT, monocarboxylate transporter; CS, citrate synthase;
IDH, isocitrate dehydrogenase; KGDHC, α-ketoglutarate dehydrogenase complex; G6PD, glucose 6-phosphate dehydrogenase; PC,
pyruvate carboxylase; PEPCK, phosphoenolpyruvate carboxykinase; FBP, fructose-1,6-bisphosphatase; G6PC, glucose-6-phosphatase.
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PPP

The PPP, a glycolysis branch, produces NADPH and
ribose-5-phosphate. The PPP serves a pivotal role in
supporting nucleic acid and fatty acid (FA) syntheses and
protects cells from stress-induced death [56]. The PPP
follows two biochemical processes in the cytoplasm,
namely, oxidative and nonoxidative processes.
Cancer cells can improve PPP through various channels

and ways, thereby promoting proliferation and survival
[36]. The glucose 6-phosphate dehydrogenase (G6PD)
regulates the rates of the PPP by catalyzing the irreversible
step. The expression levels of G6PD are different in
various breast cancer subtypes and positively correlated
with poor prognosis in patients [57]. In addition to the
function in PPP, the low expression level of G6PD may
activate the AMP-activated protein kinase (AMPK)
signaling pathway and inhibit the breast cancer cell
proliferation and survival [58].

TCA

The TCA cycle is a series of chemical reactions that
generate energy and/or intermediate products through the
oxidation of pyruvate into carbon dioxide and water [59].
The TCA cycle is very important for many biochemical
pathways, such as energy metabolism, macromolecule
synthesis, and redox balance. However, the TCA cycle is
regarded as a process in which enzymes have valueless
mutation and pointless regulatory function. However,
recent reports show that a number of mutations in genes
encoding enzymes, including aconitase, isocitrate dehy-
drogenase 1 (IDH1), fumarate hydratase, and succinate
dehydrogenase in the TCA cycle raise the risk of some
cancer types [60–63]. Mutations in the genes of mitochon-
drial DNA, such as the genes encoding ATPase 6 and
NADH dehydrogenase subunit, which cause TCA cycle
dysfunction, are the most commonly mutated genes in
breast cancer [64].

Gluconeogenesis

Gluconeogenesis converts noncarbohydrate carbon sub-
strates to free glucose for energy. Gluconeogenesis,
which affects the regulation of the Warburg effect in
cancer cells, has been paid less attention than glucose
catabolism [37]. Gluconeogenesis can influence glycoly-
sis, TCA, PPP, and other approaches indirectly via the
rates of glucose production. Three key enzymes control
the gluconeogenic flux, including phosphoenolpyruvate
carboxykinase (PEPCK), fructose-1,6-bisphosphatase
(FBPase), and glucose-6-phosphatase. For example, in

addition to increasing the synthesis of glucose and
glutamine, PEPCK can accelerate the rates at which
noncarbohydrate substances are converted to ribose [65].
In addition, the high levels of FBPase are positively
correlated with breast cancer metastases, suggesting that
gluconeogenesis may be another potential target for
metabolic treatment in patients with breast cancer [66].

Breast cancer and lipid metabolism

In recent years, the dysfunctional lipid metabolism is
progressively being regarded as a hallmark of cancer
(Fig. 2). Clinical data show that postmenopausal obese
women have a 20%–40% higher risk of developing breast
cancer than lean women [67]. Except generating energy
and forming cell and organelle membranes, lipids can
transduce biological signals as second messengers.
Lipid metabolism includes three aspects, namely,

de novo FA synthesis, FA uptake and transport, and
FAO. During malignant transformation, unlike normal
tissues, cancer cells upregulate de novo synthesis instead of
lipid uptake to meet the increasing demand for biomass
production [68,69]. The lipid uptake and storage increase
in various cancer types [70–72]. In breast cancer, several
lipid metabolic genes are closely related to the malignancy
of tumors, such as proliferation, metastasis, and drug
resistance [73,74].

De novo FA synthesis

In the de novo synthesis, FA is synthesized from two
sources, namely, glucose and glutamine. Glucose is the
major substrate for the de novo FA synthesis [75,76] and
catalyzed into acetyl-CoA or/and citrate, which are the
precursors for FAs, through glycolysis and TCA. In
addition, glutamine, the most abundant amino acid in
body, can participate in the FA synthesis through the
conversion in TCA in the mitochondria [77,78].
In the first step of the de novo FA synthesis, ATP citrate

lyase (ACLY) catalyzes citrate to acetyl-CoA, thereby
connecting lipid metabolism and two other kinds of
metabolism, namely, glucose and amino acid metabolism.
The overexpression of ACLY promotes tumor cell growth
in various cancer types especially breast cancer [79]. In
addition to its catalysis, ACLY suppresses cell senescence
by inhibiting the AMPK activity directly and the p53
expression indirectly [80]. AMPK can phosphorylate and
inactivate acetyl-CoA carboxylase (ACC) 1, thus strongly
inhibiting FA synthesis [81].
In another rate-limiting step, ACC converts acetyl-CoA

to malonyl-CoA. Conversely, malonyl-CoA decarboxylase
catalyzes the reverse reaction, whereas malonyl-CoA is
oxidized and decomposed into carbon dioxide and acetyl-
CoA. Mammalian cells control the balance between FA
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synthesis and degradation by the malonyl-CoA levels.
In FA anabolism, FA synthase (FASN) utilizes malonyl-

CoA and acetyl-CoA to synthesize a saturated FA. Among
the many critical enzymes of lipid metabolism, FASN is a
key and elevated metabolic oncogene in many cancer
types. The activity of FASN is positively correlated with
cancer progression and chemoresistance. According to
almost 200 cases of metastatic breast cancer, the positivity
rates of FASN are correlated with the positivity of HER-2
[82]. Furthermore, the overexpression of FASN is
remarkably associated with relapse and metastasis in
patients with HER2-enriched breast cancer. In nontumori-
genic breast epithelial cell lines (MCF10A), the HER2
overexpression can upregulate the expression level of
FASN.

FAO

Lipolysis involves two procedures: mobilization of lipid
droplets (LDs) and FAO. Previous evidence suggests that

mobilization of LDs by lipolysis is attributed by the LD-
associated lipases and autophagy-lysosome pathway [83].
FAO occurs in the mitochondria. FAs must be converted to
FA-CoA to enter subsequent metabolic reactions, includ-
ing anabolism or catabolism. This central reaction is
catalyzed by long-chain acyl-coenzyme A synthase
(ACSL). Five ACSL isoforms, including ACSL1,
ACSL3, ACSL4, ACSL5, and ACSL6, are present in the
human organism. ACSL4 is remarkably overexpressed in
invasive breast cancers. Moreover, ER signaling pathways
can regulate the levels of ACSL1, ACSL4, and ACSL5
[84]. ACSL4 can downregulate the antineoplastic drug
sensitivity by promoting the expression of drug resistance
genes in cancer cells [85].

FA uptake and transport

For a long time, the vast bulk of investigative effort on FA
and cancers has focused on the de novo FA synthesis.
However, the exogenous FA uptake is essential for cancer

Fig. 2 Lipid metabolism. In the de novo fatty acid synthesis, citrate is catalyzed into FA by ACLY, ACC, and FASN sequentially. CD36
and FABPs are involved in the intake of FA. FA needs to be transformed to FA-CoA before they enter the subsequent metabolism,
including anabolism or catabolism. During fatty acid β-oxidation, FA-CoA is transported into the mitochondria and then oxidized, the rate
of which is limited by CPT1. FA-CoA and DAG are synthesized into TG catalyzed by DGAT. During triglyceride synthesis, the glycolytic
intermediate 3-PG is converted into DAG by AGPT2 and lipin-1, and DAG is ultimately converted into TG. Abbreviations: ACLY, ATP
citrate lyase; ACC, acetyl-CoA carboxylase; FASN, fatty acid synthase; FABP, fatty acid binding protein; AGPAT2, acylglycerol-3-
phosphate acyltransferase 2; CPT1, carnitine palmitoyltransferase 1; CIC, citrate carrier; FA, fatty acid; TG, triglyceride; DAG,
diacylglycerol; 3-PG, glyceraldeyde 3-phosphate; DGAT, diacylglycerol acyltransferase; AGPAT2, acylglycerol-3-phosphate
acyltransferase 2.
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cell proliferation. The absorption of exogenous palmitate
can protect breast cancer cells from the proapoptotic effect
of FASN inhibition [86]. Compared with normal diet
intake, a high-fat intake independently increases breast
cancer incidence in mice or in Sprague Dawley rats [87].
In addition, attention has been paid to the abnormal

localization of FAs in cancer cells. The FA-binding protein
4 (FABP4) transports FAs to various cellular compartments
to exert various metabolic functions. The FABP4 can
regulate the gene expression and the malignant phenotype
in breast cancer aside from the uptake and the intracellular
storage of FAs [88–90]. For example, exogenous FABP4
elevates the expression levels of the FA transport proteins
CD36 and FABP5 and promotes the proliferation of breast
cancer cells [91].

Breast cancer and amino acid metabolism

The increase in amino acid synthesis satisfies the demands
of rapid proliferation in breast cancer cells (Fig. 3). Besides
the primary units of proteins, amino acids act as regulated
metabolite to support cancer cell growth. Fifteen amino
acids are identified with remarkably elevated levels
compared with normal samples, which can serve as
hallmarks for the early diagnosis of breast cancer [92].
Among these research, glutamine, serine, and glycine are
given attention.

Glutamine metabolism

The increased metabolism of glutamine, the most abundant
free amino acid, is a common metabolic alteration in
cancer [93]. GLS converts glutamine to glutamate, which
is the initial step in glutamine catabolism. The GLUD1
catalyzes glutamate to α-ketoglutarate (α-KG). These two
enzymes dominate the rate of glutamine metabolism. The
glutamine metabolism affects the chemotherapy resistance
of cancer cells. In endocrine-resistant breast cancer cells,
overexpression of cellular-myelocytomatos (c-Myc) can
use glutamine to support enough metabolism by enhancing
the GLS expression in the short-term glucose deprivation,
thus maintaining cell survival [24,94]. Moreover, cancer
cells can generate several ATP through oxidative phos-
phorylation driven by glutamine [95].
In addition, cancer cells require effective amino acid

transport proteins to bring amino acids in and out of the
cell plasma membrane. Amino acid transport proteins are
membrane-bound solute carrier transporters. In breast
cancer, glutamine is heavily consumed for proliferation
and survival, and its intracellular concentration is regulated
by high-efficiency amino acid transport proteins especially
SLC1A5 and SLC7A5 [96]. In TNBC, overexpressed
SLC1A5, SLC7A5, and SLC6A14 promote glutamine
metabolism and tumor growth [97,98].

Serine and glycine metabolism

The increased serine synthesis promotes cell proliferation
by providing raw materials for biosynthesis in breast
cancer [99,100]. In serine synthesis pathways, the
glycolytic intermediate 3-phosphoglycerate is oxidized
into serine, catalyzed by phosphoglycerate dehydrogenase
(PHGDH), phosphoserine aminotransferase, and phos-
phate ester hydrolysis (PSPH). In addition, serine can be
converted into glycine, whose methyl groups can provide
one-carbon metabolism required for synthesis of folate and
other organic substances. Glycine is also an integral part of
glutathione, which sustains the redox balance in mamma-
lian cells. A recent report has suggested that suppressing
the uptake and the biosynthesis of glycine may selectively
impair rapidly proliferating cells by prolonging the G1

phase of the cell cycle [101]. Therefore, targeting glycine
may inhibit cancer cell growth without damaging normal
cells.
Several enzymes involved in serine and glycine metabo-

lism are considered hallmarks for the malignancy of tumors.
The expression levels of PHGDH, PSPH, and SHMT are
elevated in TNBC and decreased in luminal A [102], and
these results are inversely proportional to the clinical
prognosis [101]. Interestingly, serine deficiency inhibits
cell growth in several breast cancer cell lines. Additionally,
when serine is depleted, cancer cells unexpectedly replenish
serine by exhausting glycine and one-carbon units and even
nucleotide pools. The above phenomenon indicates that
serine plays an important role in supporting cell prolifera-
tion by the mechanisms besides one-carbon metabolism in
breast cancer cells [103].

Master transcription factors for glucose, lipid, and
amino acid metabolism

Hypoxia-inducible factor (HIF) 1

Hypoxia is regarded as an essential regulator in the
development of breast cancer. HIFs especially HIF1 play a
crucial role in cellular hypoxia adaptation [104]. HIF1 are
heterodimers composed of an O2-regulated subunit
(HIF1α) and a constitutively expressed subunit (HIF1β)
[105].
The HIF1 expression is upregulated dramatically in

TNBC [6]. The high level of HIF1 is a marker of poor
clinical outcomes in human breast cancer [106,107].
Mechanically, HIF1 has important function on multiple
malignant aspects of breast cancer, including proliferation,
metastasis, pathological damage, and poor prognosis [108–
113]. For example, HIF1 promotes primary tumor growth
and metastasis to lung by upregulating the expression of
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angiopoietin-like 4 and L1 cell adhesion molecule
(L1CAM) in breast cancer [114].
In breast cancers, the overexpression of HER-2

increases the HIF1α protein expression via the PI3K/
AKT/FRAP pathway under normoxic conditions [115].
Conversely, HIF1α can be degraded by von Hippel–Lindau

(VHL), thus inhibiting breast cancer cell invasiveness and
metastatic propensity [116,117]. SHARP1, an important
regulator of tumor-malignant phenotype, also promotes the
independent HIF-1α proteasomal degradation of oxygen
levels and VHL [118].
Given that many cancer cells are exposed to hypoxic

Fig. 3 Amino acid metabolism. Glutamine uptake is regulated by SLC1A5, SLC7A5, and SLC7A11. Glutamine is converted into
glutamate by GLS, and the counter-reaction is catalyzed by GS. GLUD catalyzes glutamate to α-KG. Glutamate is converted into alanine
by ALT and converted into aspartic acid by AST. ASNS utilizes glutamine as a nitrogen donor to turn aspartic acid to asparagine. In
addition, the glycolytic intermediate 3-PG is oxidized into serine catalyzed by PHGDH, PSAT1, and PSPH. Serine is converted into
glycine by SHMT and converted into cysteine catalyzed by CTH. Glutamate, glycine, and cysteine are synthesized into GSH, which
sustains the redox balance. Abbreviations: Ala, alanine; Glu, glutamate; Gln, glutamine; Aln, asparagine; Asp, aspartic acid; Gly, glycine;
Ser, serine; Leu, leucine; Asn, asparagine; Cys, cysteine; α-KG, α-ketoglutarate; GSH, glutathione; PHGDH, phosphoglycerate
dehydrogenase; PSAT1, phosphoserine aminotransferase; PSPH, phosphate ester hydrolysis; SHMT, serine hydroxymethyltransferase;
ALT, alanine aminotransferase; AST, aspartate aminotransferase; GS: glutamine synthetase; GLS, glutaminase; GLUD, glutamate
dehydrogenase; ASNS, asparagine synthetase; 3-PG, 3-phosphoglycerate; ASS, argininosuccinate synthetase; ASL, argininosuccinate
lyase; ADI, arginine deiminase; ASNS, asparagine synthetase; SLCs, membrane-bound solute carriers; CTH, cystathionine g-lyase.
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environments during malignant tumor growth, the meta-
bolic reprogramming from OXPHOS to aerobic glycolysis
is recognized as cancer cell adaption to hypoxia. HIF1 is
remarkably associated with abnormal glucose metabolism
in various cancer types [119–121]. GLUT1 is responsible
for basal glucose uptake to maintain the Warburg effect
with increased glucose consumption in cancer cells. The
expression level of GLUT1 is positively regulated by HIF1
[122]. Moreover, HIF1 can regulate 8 of 9 types of
enzymes involved in glycolysis (Table 2), including HK2,
GAPDH, PFK1, ALDOA, TPI, PGK1, ENO1, and PKM2
[123–126]. Although the evidence of a regulatory relation-
ship between PGM and HIF1 is unclear, hypoxia increases
the PGM levels [127]. Pyruvate is further metabolized to
lactate, but not acetyl coenzyme A, through glycolysis by
LDHA in cancer cells. The high expression level of LDHA
is associated with HIF1 [128]. Furthermore, HIF1 can
reduce OXPHOS by activating the pyruvate dehydrogen-
ase kinase 1 (PDK1) expression, which partly explains the
Warburg effect in breast cancer.
Although the relationship between HIF1 and glucose

metabolism has been extensively studied, the HIF1
function on lipid metabolism is nearly the focus of recent
research. HIF1 upregulates the expression of sterol

regulatory element binding protein (SREBP) 1 under
hypoxia. SREBP1 can upregulate lipid synthesis genes,
such as ACLY, ACC1, and FASN [129]. The SREBP1
activity has recently been shown to be controlled by the
Akt/mTOR signaling, which are potently activated by the
oncogenic HER2 signaling [130,131]. In addition, HIF1
directly activates the expression of transcription factor
PPARg, which regulates the expression of genes involved
in lipid storage and mobilization [132].
HIF1 can enhance exogenous FA uptake by promoting

the FABP expression in cancer cells under hypoxia. Given
the extremely low level of FA oxidation without oxygen,
cells can convert FAs to neutral TAGs to avoid the
lipotoxicity of accumulated free FAs [133]. The TAG
biosynthesis pathway enzymes acylglycerol-3-phosphate
acyltransferase 2 and lipin-1, the two direct targets of
HIF1, regulate the lipid droplet accumulation [134,135].
HIF1 also supports the lipid accumulation under hypoxia
by inhibiting the expression of enzymes involved in FA
degradation [136–138]. Considering that HIF1 has not
been shown to have a direct effect on the inhibition of the
transcription of these genes, the expression of these
enzymes may be regulated indirectly through HIF1 target
genes [139].

Table 2 Hypoxia-inducible factor 1 (HIF1) downstream targets that regulate metabolism
Metabolism Genes Functional category of genes Role of HIF1 in metabolism Reference

Glycometabolism GLUT1
GLUT3

Glucose uptake Increase [140]
[141]

HK2 Glucose phosphorylation Increase [142]

PGI
PFK1
ALDOA
TPI
GAPDH
PGK1
ENO1
PKM2
LDHA
PFKFB3

Glycolysis Increase [143]
[143]
[143]
[143]
[143]
[143]
[143]
[143]
[143]
[144]

MCT4 Lactate excretion Increase [145]

PDK1
MXI1

OXPHOS inhibition Increase PDK1 expression [143]
[143]

Lipid metabolism PPARg
FABPs
LRP1
VDLR

Lipid uptake Increase [132]
[139]
[146]
[147]

SREBP-1
FASN
Lipin-1
AGPAT2

Lipid synthesis Increase [148]
[148]
[134]
[135]

HIG2 Lipid accumulation Increase [149]

CPT1
PGC-1α
LCAD
MCAD

FA β-oxidation Decrease [138]
[138]
[137]
[137]

Glutamine metabolism GLS1 Glutaminolysis Increase [150]
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c-Myc

The c-Myc encoded by the Myc oncogene is over-
expressed in 30%–50% of advanced breast cancers
[151,152]. As a transcription factor controlling cell growth
and metabolism, c-Myc plays an important role in
tumorigenesis and drug resistance.
LDHA is the first glucose metabolism gene that is found

directly regulated by c-Myc [153]. In addition, Zhang et al.
have found that inhibiting LDHA expression can reversely
elevate c-Myc mRNA level, indicating that LDHA has a
negative feedback effect on the c-Myc expression [154].
Many other genes involved in glucose metabolism, such as
GLUT1, HK2, GPI, GAPDH, PFK, ENO1, PGK, and
PDK1, have been found to be activated by c-Myc (Table 3)
[155,156].
In terms of glucose metabolism, complex interactions

exist between c-Myc and HIF1. In hypoxia, HIF1 can
inhibit the activity of c-Myc by stimulating the degradation
of MYC and interrupting the complex of MYC–MAX
[157,158]. However, intermittent hypoxia occurs all the
time in tumor cells. Therefore, elevated c-Myc levels still
work in tumor cells without the HIF1 inhibition of c-Myc
[159]. Overall, HIF1 regulates many glucose metabolism
genes under hypoxic conditions, whereas c-Myc elevates
several genes under normal conditions [160]. For example,
PDK1, which inhibits pyruvate oxidation in mitochondria
under hypoxia, is elevated by HIF1 and c-Myc [161].
However, c-Myc transactivates glycolytic genes and
several key genes involved in TCA. Therefore, the overall
role of c-Myc in glucose metabolism remains to be
investigated.
In addition, glutamine utilization is increased along with

the Warburg effect [162]. A key function of c-Myc in
cancers is the regulation of expression of genes involved in

the absorption and the metabolism of glutamine, such as
GLS [163]. N-Myc also contributes to the conversion of
glutamine to glutamate via transactivating the GLS2
expression directly in neuroblastoma cells [164]. More-
over, the lncRNA GLS–AS, which binds to and decreases
GLS mRNA, is downregulated by c-Myc in pancreatic
cancer with glucose and glutamine deprivation [165]. In
breast cancer, c-Myc increases glutamine and glucose
uptake by regulating the glutamine transporter alanine
serine cysteine transporter 2 and excitatory amino acid
transporters 2 for cell growth [94]. In the luminal B breast
cancer subtype, c-Myc protects the cell from oxidative
damage and maintains survival by regulating the
glutamine–proline regulatory axis [166]. A recent study
has identified that HER2 activation also stimulates the
expression of GLS1 in breast cancer cells [167,168].

SIX1

SIX1, the most studied SIX family member, plays a role in
the development of tumors, including breast cancer [173].
SIX1 is active in the sustained proliferative signaling by
activating cyclin A and cyclin D [174,175]. The SIX1
overexpression is positively correlated with the malignant
biological properties of tumors, including invasion and
metastasis, evasion of growth suppressors, malignant
transformation of nontumorigenic cells, and resistance of
cell death [176–178].
SIX1 promotes breast cancer growth in vitro and in vivo

by regulating aerobic glycolysis [179]. This study shows
that the miR-548a-3p/SIX1 axis acts as an essential
regulatory pathway in the Warburg effect. SIX1 can
enhance aerobic glycolysis by upregulating the expression
of almost all of glycolysis genes, including GLUT1, HK2,
PFKL, ALDOA, GAPDH, PGK1, ENO1, pyruvate kinase
M2 (PKM2), and LDHA. Mechanistically, SIX1 increases

Table 3 c-Myc downstream targets that regulate metabolism

Metabolism Genes Functional category of genes Role of c-Myc in metabolism Reference

Glycometabolism Glut1
Glut2
Glut4

Glucose uptake Increase [169]
[170]
[170]

HK2 Glucose phosphorylation Increase [171]

PGI
PFK1
ALDOA
PGK1
ENO1
PKM2
LDHA

Glycolysis Increase [172]
[170]
[170]
[170]
[170]
[171]
[171]

PDK1 OXPHOS inhibition Increase PDK1 expression [170]

Lipid metabolism FASN Lipid synthesis Increase [170]

Glutamine metabolism GLS1 Glutaminolysis Increase [171]

ASCT2 Glutamine uptake Increase [171]
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the glycolytic gene expression through histone acetyl-
transferases HBO1 and AIB1. miR-548a-3p can reduce the
SIX1 expression, thus affecting tumor metabolism and
growth.

p53

p53 mutations are found in almost 30% of breast cancers
and is highly associated with various breast cancer
subtypes [180]. Women with p53 mutations have an 85%
risk of developing breast cancer by age 60 years [181]. In
addition to its traditional role as a tumor suppressor, p53
suppresses glycolysis and accelerates oxidative phosphor-
ylation in glucose metabolism. In aerobic glycolysis, p53
limits glucose uptake by downregulating GLUT family
genes (Table 4) [182,183]. p53 can compromise glycolysis
by downregulating HK2 and PDK2 transcriptionally
[142,184] and promoting PGM degradation [185]. More-
over, p53 accelerates the accumulation of intracellular
lactate by downregulating the monocarboxylate transporter
1 (MCT1), leading to the shift from glycolysis to oxidative
phosphorylation [186,187]. p53 prevents the active dimer
formation of G6PD through binding, thus suppressing PPP
and reducing glucose consumption and NADPH produc-
tion and biosynthesis [188]. However, studies report that
p53-inducible glycolysis and apoptosis regulator
(TIGAR), one of p53 downstream genes, is overexpressed
and promotes cell oxidative resistance by reducing the
Warburg effect and promoting PPP in breast cancer cells
[189,190]. Moreover, TIGAR may contribute in the
enhancement of the mitochondrial functions of cancer
cells [191]. The function of TIGAR on glycometabolism is
paradoxical to p53, which is supposed to be a tumor
suppressor gene in breast cancer. However, elevated
TIGAR expression is dependent on tumor and not

dependent on p53 in breast cancer, and p53 can slightly
regulate the TIGAR expression [192].
In addition, p53 contributes to the survival during serine

starvation and oxidative stress. When serine is scarce, p53
blocks cell cycle and promotes remaining serine to join in
glutathione synthesis [193]. Recently, the p53 family
member p73 is reported to affect serine biosynthesis. p73
tends to promote the conversion of glutamine to glutamate
by transcriptionally regulating GLS2, thus increasing the
intracellular levels of serine and glycine. Therefore, the
combined action of p73 and p53 maintains glutamine
balance against the oxidative stress [194].

Post-translational modifications of proteins (PTMs)
involved in glucose, lipid, and amino acid metabolism

PTMs are the covalent bindings of functional molecules to
proteins and play essential roles in regulating the activities
and the functions of proteins involved in the malignant
transformation of various cancer types. The common
PTMs mainly include phosphorylation, acetylation, and
ubiquitination. Previous research shows that PTMs are
closely related to energy metabolism in breast cancer [197–
199].
For instance, many rate-limiting enzymes involved in

glucose metabolism, such as HK2, PFK1/2, PKM2, and
LDHA, are all regulated by reversible phosphorylation
(Table 5). The Tyr10 phosphorylation of LDHA facilitates
the formation of its tetramers and enhances the LDHA
activity [200]. By contrast, the Lys5 acetylation degrades
LDHA via the HSC70 transport to lysosomes, thus
inhibiting the LDHA activity [201]. A sharp increase in
ROS concentration inhibits PKM2 through the oxidation
of Cys358 [202]. For lipid metabolism, PPARg is an
essential regulator of adipogenesis. Mitogen-activated

Table 4 p53 downstream targets that regulate metabolism
Metabolism Genes Functional category of genes Role of p53 in metabolism Reference

Glycometabolism GLUT4 Glucose uptake Decrease [43]

PGM1 Glycolysis Decrease [43]

TIGAR Decrease glycolysis and promote
PPP

Increase TIGAR expression [195]

SCO2, Acad11 OXPHOS Increase [195]

HK2 Glucose phosphorylation Decrease [43]

G6PD PPP Decrease [196]

Lipid metabolism Caveolin1 Lipid homeostasis and
endocytosis

Decrease [196]

SREBP1 Lipid synthesis Decrease [195]

DHR53, Lipin1, MCD Lipid accumulation Increase [196]

AMPK Promote FA β-Oxidation
and inhibit lipid synthesis

Increase AMPK expression [196]

Glutamine metabolism GLS2 Glutaminolysis Increase [195]
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protein kinase-mediated phosphorylation at Ser112 inhi-
bits the PPARg function [203]. SUMOylation and
ubiquitination can decrease the stabilization and the
activity of PPARg [204,205]. Although the deacetylation
of PPARg may induce the browning of white adipose
tissue, complex and unknown regulatory mechanisms
between acetylation and PPARg function [206]. SREBP,
another essential transcriptional regulator of lipid metabo-
lism, is degraded by phosphorylation-dependent ubiquiti-
nation [207]. In glutamine catabolism, the phosphorylation
at the Ser95 of GLS decreases its activity in breast cancer
cells [208]. However, the Ser314 phosphorylation of GLS
has the opposite effect, indicating that phosphorylation can
enhance the GLS activity [209]. These contradictory
phenomena show that the same PTM at different sites
may have different functions.

Targeting abnormal metabolism in the treatment of
breast cancer

In recent years, numerous and comprehensive research
have been conducted on the mechanisms of abnormal
metabolism in breast cancer. At the same time, various

targeted drugs for metabolism have been developed.
For instance, obese women have higher incidence and

mortality rates of breast cancer compared with nonobese
women. The overactivation of insulin-like growth factor-1
(IGF1) system plays a vital role in carcinogenesis in obese
women [228]. MEDI-573, a monoclonal antibody (mAb)
blocking the binding of IGF1 and IGF1R, has shown
excellent anticancer activity and tolerability in a phase I
clinical trial in patients with breast cancer [229]. AMPK, a
key protein kinase for maintaining metabolic homeostasis,
is activated and sustains cell survival in the case of glucose
depletion. However, the overactivated AMPK promotes
cell apoptosis instead [230]. Several clinical drugs, such as
metformin, demethoxycurcumin, and fluoxetine, are
thought to overactivate the AMPK pathway to inhibit
breast cancer cells [231]. Over the last decade, several
different FASN inhibitors have been developed. First-
generation FASN inhibitors are not applicable in clinical
practice because of critical defects, such as poor cell
permeability and severe weight loss in mice [232]. TVB-
2640 is the first clinically available new-generation FASN
inhibitor and needs to be further explored in the treatment
of breast cancer. Glutamylcyclotransferase (GGCT), one of

Table 5 Post-translational modifications of proteins involved in metabolism
Proteins Modification Site Functional category Reference

HK2 Phosphorylation Thr473 Enhancing activity [210]

PFK1 Oxidation Ser529 Decreasing activity [211]

PFK2 Phosphorylation Ser466, Ser483 Enhancing activity [212]

PGAM1 Phosphorylation
Acetylation

His11, Tyr26
Lys251, Lys253, Lys254

Enhancing activity
Enhancing activity

[213]
[214]

PKM2 Phosphorylation
Acetylation
Oxidation

Ser37, Tyr105
Lys305, Lys433
Cys358

Enhancing activity
Degradation
Decreasing activity

[215,216]
[217]
[202]

PDP1 Phosphorylation
Acetylation

Tyr381
Lys202

Enhancing activity
Decreasing activity

[218]
[218]

LDHA Phosphorylation
Acetylation

Tyr10, Tyr 83
Lys5

Enhancing activity
Degradation

[200,219]
[201]

PDK1 Phosphorylation Tyr243, Tyr244 Enhancing activity [220]

PDHA1 Phosphorylation
Acetylation

Ser293, Tyr301
Lys321

Decreasing activity
Decreasing activity

[221,222]
[218]

p53 Phosphorylation
Ubiquitylation
Acetylation

Ser15
Lys237, Lys338
Lys

Stabilization
Degradation
Stabilization

[223]
[20]
[224]

HIF1α Ubiquitylation Lys709, Lys532 Degradation [225]

PPARg Phosphorylation
SUMOylation
Acetylation
Ubiquitylation

Serine112
Lys63, Lys94, Lys98, Lys107
Lys268, Lys293
Lys184, Lys185

Decreasing activity
Decreasing activity
Decreasing activity
Degradation

[203]
[195]
[206]
[204,205]

SREBP1 Phosphorylation
Acetylation

Thr402, Thr426
Lys324, Lys333

Degradation
Stabilization

[207]
[207,226]

GLS Phosphorylation
Phosphorylation
Acetylation

Ser95
Ser314
Lys320

Decreasing activity
Stabilization
Decreasing activity

[208]
[209]
[227]
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the main catalytic enzymes in glutathione metabolism,
contributes to cell proliferation, invasion, and migration of
breast cancer [233]. Pro-N-glutaryl-l-alanine (pro-GA), the
first cell membrane-permeable GGCT inhibitor, has
evident inhibitory effects on the proliferation of breast
and other cancer cells. Moreover, the anticancer effect and
the favorable tolerability of pro-GA in vivo have been
demonstrated [234]. Folic acid metabolism plays a key role
in nucleotide synthesis, whose fluxes are elevated in breast
cancer cells. Pemetrexed disodium is an anticancer drug
that targets thymidylate synthase and several folate-
dependent enzymes. Pemetrexed has remarkable effects
on the clinical treatment of breast cancer [235]. In addition
to the drugs mentioned above, a number of anticancer
drugs targeting normal metabolism are being developed.
However, the effectiveness and the adverse side effects of
these drugs deserve further exploration and evaluation.

Breast cancer and immune therapy

Immune evasion is an emerging hallmark of cancer. In
1909, Ehrlich has put forward the notion of “immune
surveillance” and brought the cancer researchers’ attention
to the connection between cancer and the host’s immune
response. In 1970, Burnet has refined the concept and
suggested that malignant genetic mutations occur con-
stantly in the body and that the host immune system
eliminates these cells with dangerous mutants all the time
[236]. Gradually, “immune surveillance” has evolved into
a theory termed “immunoediting,” which can be divided
into three phases, namely, elimination, equilibrium, and
escape [237]. At present, the most in-depth research is the
“Escape” phase. In the “Escape” phase, cancer cells have
established an immunosuppressive tumor microenviron-
ment and proliferate rapidly [238]. In the tumor micro-
environment, poor cellular immunogenicity, lymphocyte
infiltration, and immunosuppression are considered the
reasons for the low efficacy of breast cancer immunother-
apy. Thus, scientists have found a couple of potential
directions for breast cancer treatment, which will be
introduced below.

Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4)
in breast cancer

The T cell activation plays an important role in tumor
immunity. The proper activation of T cells requires
antigens and costimulatory signals. The CD28/B7 family,
known as “immune checkpoints,” is a main part of
costimulatory signals [239,240]. T cells are activated if
the B7 on antigen-presenting cells (APCs) binds to the
CD28 on the T cell. However, T cells sometimes need to be
properly inactivated to prevent excessive autoimmunity.
The CTLA-4 on the T cell surface has been termed a

negative regulator of naive T cell activation. Considering
that the affinity of B7 binding to CTLA-4 is greater than
that to CD28, B7 preferentially interacts with CTLA-4,
resulting in an inhibitory signal to the T cell nucleus [241].
Aside from the negative costimulation signals to T cells,

regulatory T (Treg) cell-mediated immunosuppressive
activity is promoted by CTLA-4 [242]. Interestingly, the
expression of CTLA-4 is found in cancer cells. The
presence of cytoplasmic CTLA-4 may represent the poor
prognosis of breast cancers [243]. Another study has found
that the secretion of an alternatively spliced soluble CTLA-
4 isoform can be increased during the healthy human T cell
immune responses, and this isoform has potent inhibitory
ability on T cell proliferative responses. This soluble
CTLA-4 isoform is derived from Treg cells [244].
The anti-CTLA-4 mAb ipilimumab has been approved

by FDA for advanced melanoma treatment. Ipilimumab
inhibits the CTLA-4 signaling via the enhancement of T
cell response and mediates the antibody-dependent
cytotoxicity reaction [245]. Ipilimumab and tremelimumab
(another anti-CTLA-4 mAb) are clinically evaluated in
other solid tumors, including breast cancer with limited
symptomatic effects [246,247].

Programmed cell death (PD)-1 in breast cancer

CTLA-4 suppresses T cell responses in the initiation of T
cell activation process, and PD-1 attenuates T cell activity
in the later process [248]. PD-1, an immunosuppressive
molecule, is expressed on the T cell surface, which then
binds to the PD ligand 1 (PD-L1) on the tumor tissue,
resulting in T cell inactivation [249,250]. PD-1 is thought
to interact with peripheral tissues directly, and the
inhibition of this process can also promote antitumor
immunity [251,252]. Compared with normal breast
samples, the expression of PD-L1 is upregulated in 20%
of clinical samples and 38% of basal tumor and has
positive correlation with poor prognosis [253].
The expression levels of PD-1 and PD-L1 are upregu-

lated by certain cytokines, including interferon (IFN) g and
interleukin 4, through the activation of IFN/signal
transducer and activator of transcription (STAT) pathway
[254–256]. Tumor cells can induce the expression of PD-
L1 directly through constitutive oncogenic pathways or
indirectly with the help of T cells [257]. This finding
explains in part the phenomenon that PD-L1 expression
level has linear correlation with inflammatory genes,
including IFNg in breast cancer [258]. Moreover, PD-L1
is overexpressed in breast cancers with treatment of some
antitumor drugs, such as etoposide, paclitaxel, and 5-
fluorouracil [259], suggesting that chemotherapy resis-
tance may involve cancer immunity. Doxorubicin has the
opposite effect (PD-L1 expression declines).
PD-1 and PD-L1 are regarded as vital targets of tumor
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immunotherapy. Pembrolizumab is a mAb against PD-1.
Several clinical trials have suggested that pembrolizumab
has certain anticancer activity in patients with early and
PD-L1-positive TNBC [260]. Moreover, pembrolizumab
is well tolerated in patients with breast cancer, and its
toxicities are similar to those in other disease cohorts [259].
The combination of nivolumab (another anti-PD-1 mAb)
and ipilimumab (anti-CTLA-4 mAb) has been demon-
strated to have considerable antitumor effects on mela-
noma and needs further evaluation in the clinical therapy of
breast cancer [261]. Atezolizumab is a mAb against PD-L1
and the first immune checkpoint inhibitor approved by
FDA for breast cancer. The combination of atezolizumab
with paclitaxel has been approved by FDA for PD-L1-
positive advanced or metastatic TNBC. In a phase III
study, this combination therapy improves the progression
and the prognosis for patients with TNBC [262].

Lymphocytic infiltration in breast cancer

Massive lymphocyte infiltration is an important character-
istic of breast cancer. A growing body of literature has
demonstrated that the infiltration of leukocytes into the
neoplastic stroma is enhanced, functionally contributing to
the progression of most solid tumors, including breast
cancer [263].
In general, tumor-infiltrating lymphocytes (TILs) are

composed of T cells and a minority of NK or B cells. B
cells only represent predominant lymphocytes by secreting
immunoglobulins during early breast cancer progression
[6]. However, CD8+ T cells are generally in a state of
inactivation in breast tumors and activated in one-third of
the patients after chemotherapy [264].
The mechanisms of TILs in the clinical oncology of

breast tumors are a matter of debate. For example, one
study suggests that a high percentage of CD4+ T cells
implies the development of metastases in breast cancers
[265]. However, other studies have the opposite argument
that lymphocyte infiltration presents a favorable prognosis
in breast cancer [266,267]. For example, Aaltomaa et al.
have studied the predictive value of TILs in 489 patients
with breast cancer followed for more than 10 years and
found that the presence of TILs are correlated with low
malignancy of tumors, showing efficient immune defense
mechanisms [268]. Moreover, the high level of stromal
TILs is a favorable factor in the chemotherapy response in
TNBC [269,270]. However, the assessment of TILs still
lacks sufficient standardization in the clinical treatments of
breast cancer.
TILs may enhance the antitumor effect of chemotherapy

with improved clinical response [271]. Interestingly, the
level of TILs may increase from low to high after
chemotherapy in patients with TNBC [272,273]. In
patients with TNBC, tumors with high TILs after

chemotherapy have a lower risk of recurrence than those
with low TIL levels [274,275]. Overall, in TNBCs, an
activated immune microenvironment with high TILs is
positively correlated with improved effectiveness of
chemotherapy.

Vaccine-based therapies for breast cancer

Vaccine-based therapies are effective immunotherapies
used to build antitumor immune system by submitting
tumor-associated antigens (TAAs, Fig. 4). In the vaccine-
based therapeutic process of breast cancer, the most
striking example is HER-2 applied in several types of
breast cancer vaccines [276].

Autologous cell-based vaccines

Early autologous cell-based vaccines submit almost all
tumor antigens through the use of whole autologous tumor
cells or tumor cell lysates indiscriminately [277]. Scientists
also use genes encoding costimulatory signals in combina-
tion with the vaccine to achieve T cell activation [278].
However, considering that T cells may preferentially
process other antigens instead of TAAs, autologous cell-
based vaccines are less effective than vaccines presenting
specific antigens [279]. This type of vaccine requires to
generate individualised vaccines for each patient, which is
not a convenient method. Most of all, autologous cell-
based vaccines contain normal somatic cell antigens that
may induce an autoimmune response [280]. Lapuleucel-T,
an autologous cell-based vaccine, has antigen constructs
that consist of HER2 protein sequences. The vaccine
therapy is well tolerated with no major adverse effect in the
phase I clinical trial in breast cancer. This study suggests
that autologous cell-based vaccines are feasible and opens
an avenue to further investigation in tumor immunotherapy
[281].

Dendritic cell (DC)-based vaccines

DCs are efficient APCs that can activate the host immune
system, making them an ideal vehicle for tumor vaccines
[282]. Most of DC vaccines are made by generating DCs,
loading TAAs, or transfecting associated genes [283].
Although DC vaccines have many advantages, several
main challenges associated with ex vivo DC vaccine
preparation have limited development, such as lacking a
good manufacturing practice facility and a relatively
simple process.
However, a large number of DC vaccines are used in

solid tumor with inconsistent results [284–286]. In animal
studies, scientists have injected DCs with a nonsignaling
neu oncogene (i.e., HER-2) into mice with the over-
expression of HER2. This result shows that compared with
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all mice in the control groups, only 35% of vaccinated
mice have developed breast tumors after 28 weeks [287].

Peptide-based vaccines

Peptide vaccines are divided into single- and long-peptide
vaccines. Single-peptide vaccines play a role in cellular
immunity via the major histocompatibilty complex class I
(MHC I). However, the vaccine is only effective for certain
patients because of the MHC I restriction [280]. Besides,
the immune response activated by single-peptide vaccines
may be short lasting and easy to tolerate [288]. Peptide
vaccines are generally used with adjuvants or designed as
DC vaccines to defeat these drawbacks.
The long-peptide vaccines, which elicit intense immune

reactions and MHC II-restricted T cell activation, are being
investigated. Protein vaccines containing whole HER2
protein have appeared. These vaccines contain MHC I and
MHC II epitopes and activate most CD4+ T cells and
relatively few CD8+ T cells in patients with breast cancer
[289].

DNA-based vaccines

DNA-based vaccines are typically provided as plasmids
either with viral vectors or naked. Once these vaccines are
injected, plasmids are integrated to APCs for protein

translation and submission to immune cells. Hence, DNA-
based vaccines can overcome weak immunogen and
tolerance, which occur when peptide or cell-based vaccines
are used. Vaccinia and other pox viruses are the most
appropriate viral vectors because they have enough size to
accommodate numerous genes coding TAAs and costimu-
latory molecules [290,291]. Although DNA vaccines are
easy and inexpensive to construct, their performance is
unsatisfactory. This finding may be because of the
difficulty in expressing enough exogenous genes to
activate effective immune responses in APCs [292].
HER2 DNA vaccines are used in clinical trial without

serious adverse toxicity in patients with breast cancer after
therapy. This result shows that these HER2 DNA vaccines
are safe and effective to activate long-lasting immune
responses in patients with breast cancer [293].

Role of cancer stem cells (CSCs) in
metabolism and immunity

CSCs and metabolism

CSCs may represent an important mechanism of tumor
recurrence and metastasis. Two main viewpoints exist on
the glucose metabolism of CSCs. On the one hand, many
studies suggest that the glycolytic switch plays a critical
role in CSCs. CSCs are more dependent on the Warburg

Fig. 4 Vaccine-based therapies for breast cancer. The autologous cell-based vaccines uses the whole autologous tumor cells, which can
submit almost all tumor antigens. Dendritic cell-based vaccines are finished following DC generation, TAA loading, or associated gene
transfection. Peptide-based vaccines contain MHC I and MHC II epitopes and activate most CD4+ T cells and relatively few CD8+ T
cells. DNA-based vaccines are usually delivered in the form of plasmids. Abbreviations: TAAs, tumor-associated antigens; APC, antigen-
presenting cells.
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effect than normal cancer cells [294]. CD44, a marker of
CSCs, enhances the glycolytic phenotype by interacting
with PKM2 in breast cancer [295,296]. In turn, glucose
increases the population of CSCs by inhibiting the ATP-
mediated AMPK pathway suppression and activating the
Akt pathway [297]. On the other hand, several lines of
evidence demonstrate that quiescent CSCs rely heavily on
mitochondrial respiration rather than glycolysis [298,299].
In TNBC, oxidative phosphorylation may confer CSC
resistance to chemotherapy, which is regulated by MYC
and MCL1 [300].
CSCs also have a reliance on glutamine- and lipid-

associated pathways in addition to glucose metabolism.
High lipid droplets are observed in colorectal CSCs and
BCSCs and confer CSCs with high tumorigenic potential
[301]. In addition, blocking FAO resensitizes breast
cancers to chemotherapy by decreasing BCSCs, suggest-
ing that FAO is an important mechanism for CSC
maintenance and chemotherapy resistance in breast cancer
[302].

CSCs and immunity

Besides the alteration of tumor microenvironment, the
antitumor immunity is suppressed by CSCs. Glioblastoma
multiforme (GBM) is a rapidly growing malignant brain
tumor, and its CSCs are the classic models for the research
of CSCs. GBMCSCs can modulate the immune cells in the
tumor microenvironment to support the malignant pheno-
type of the tumor. For instance, GBM CSCs mediate the
recruitment of TAMs and the suppression of T cell
activation during chemotherapy [303]. Notably, TAMs
can directly enhance the tumor-initiating capacity of CSCs
by activating the transcription factor STAT3 [304].
CSCs avoid immune-mediated rejection in vivo by

reducing immunogenicity. CSCs are found to express less
MHC-I, MHC-II, and natural killer group 2 member D
ligand molecules compared with normal stem cells
[305,306]. In addition, CSCs express PD-L1 instead of
the costimulatory molecules [307]. Moreover, PD-L1 can
raise the expression of embryonic stem cell factors in
BCSCs by activating the PI3K/AKT pathway. The
decreased expression of PD-L1 impairs the ability of
BCSCs to self-renewal in vitro and in vivo [308].

Interplay between metabolism and
immunity in cancer

The metabolic microenvironment suppresses tumor
immunity

Recent studies reveal that the dysfunctional immunity is
closely associated with abnormal metabolism in various
cancer types (Fig. 5). The abnormal metabolism of cancer

cells creates an extreme environment characterized by
acidity, hypoxia, and immunosuppressive metabolites. In
this abnormal metabolic microenvironment, immune cells
are deprived of nutrients and undergo metabolic changes
that influence their activation.
Macrophages play a crucial role in cancer progression.

Under the influence of inflammatory tumor microenviron-
ment, the phenotype of macrophages varies from M1
(antitumor phenotype) to M2 (promoting tumor pheno-
type) [309,310]. The M1 phenotype is characterized by
microbicidal functions by producing inflammatory cyto-
kines and reactive oxygen intermediates. By contrast, the
M2 phenotype is characterized by immunosuppression and
tissue remodeling by producing anti-inflammatory cyto-
kines. In metabolism, M1 maintains energy metabolism
through anaerobic glycolysis, PPP, and FA biosynthesis,
whereas M2 relies on OXPHOS [311]. Most of tumor-
associated macrophages (TAMs) are generally regarded as
the M2 phenotype. Macrophages are sensitive to changes
in oxygen supply. M2 macrophages are concentrated in
hypoxic tumor areas, and M1 macrophages are concen-
trated in normoxic areas. Mechanistically, hypoxia recruits
TAMs in the hypoxia region by triggering the phosphor-
ylation of the vascular endothelial growth factor (VEGF)
receptor [312]. HIF1 is overexpressed and essential to
regulate glycolysis in macrophages to support their
phenotype and function in hypoxic areas [313,314]. In
addition, lactic acid plays a critical role in inducing
macrophages to transform into TAMs [315]. In turn,
hypoxic TAMs express HIF1 and secrete proteolytic
enzymes, thus promoting cell proliferation and metastasis
[316]. The arginase 1 expressed by lactate-induced
macrophages can promote tumor growth. Furthermore,
the accumulation of lactate can decrease the production of
type I IFN to suppress tumor-associated immunity [317].
Besides macrophages, T cells also play vital roles in the

host immune response to cancer cells. Naive T cells ingest
small amounts of glucose and utilize OXPHOS to meet
their energy needs, whereas effector T cells upregulate
glycolysis and glutaminolysis to support rapid prolifera-
tion and function [309]. The glycolysis enzyme GAPDH
binds to AU-rich elements in the 3′ UTRs of IFNg and
inhibits its expression. The increase in the Warburg effect
can eliminate the GAPDH function of inhibiting transla-
tion [318]. AMPK, which is activated by the increased
AMP/ATP ratio in the absence of nutrients, also suppresses
the IFNgmRNA translation [319]. The high metabolism of
tumor cells and the poor vascular system within tumors
lead to the deficiency of nutrients in the microenvironment.
This microenvironment prevents T cells from increasing
glycolysis and impairs TCR signaling, thus suppressing
their function. However, Treg cells gain energy through
FAO rather than glycolysis, whose characteristic helps
Treg cells survive and exert their immunosuppressive
effect on abnormal metabolic microenvironment [320]. In
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addition, the accumulation of metabolites, such as lactic
acid and amino acid metabolites, contributes to inhibiting
T cell activation and promoting Treg cells [321].
Furthermore, HIF1α can induce the proliferation of Treg
cells and PD-L1-overexpressing cancer cells [322].

The immune system adjusts T cell and cancer cell
metabolism

Aside from directly killing cancer cells, the effect of
immune system on the abnormal metabolism of cancer
cells is emerging. The CD28/B7 family plays an important
role in regulating tumor and T cell metabolism.
CD28 plays a key role in increasing glucose uptake and

glycolysis via the PI3K/AKT serine/threonine kinase
(AKT) signaling pathways, allowing T cells to sustain
active response [323]. Recent studies demonstrate that the
PD-1 signaling pathway is involved in the FAO in T cells
[324]. In response to PD-1 signals, T cells utilize increased
FAO to generate the energy required for activation instead
of glycolysis, glutaminolysis, or another metabolism. PD-1
promotes FAO and lipolysis by increasing the expression
of CPT1A and ATGL. CTLA-4 can inhibit glycolysis
without augmenting FAO [324]. Antibodies against PD-1

or CTLA-4 can restore the glucose concentration in the
tumor microenvironment, which promotes T cell glyco-
lysis and immune factor production [325]. However, this
phenomenon still cannot be fully explained by molecular
mechanisms.
The function of PD-L1 in breast cancer also needs to be

further explored. The depletion of PD-L1 can reduce the
glycolysis rate by decreasing the mTOR activity and the
glycolytic enzyme expression, suggesting that PD-L1 may
play a crucial role in the glucose utilization in cancer cells
[325,326]. Moreover, the overexpressed B7-H3 promotes
glucose uptake and lactate production in breast cancer. One
of the mechanisms may be that B7-H3 can upregulate the
levels of HIF-1α and its target genes, namely, LDHA and
PDK1 [327].

Conclusions and prospects

In conclusion, recent breakthroughs have tremendously
refreshed our understanding of the interaction between
reprogramming metabolism and the antitumor immune
system during breast cancer development. Although the
abnormal metabolism and immunity of cancer has emerged

Fig. 5 Interplay between metabolism and immunity in cancer. On the one hand, abnormal metabolism in cancer cells creates a tumor
microenvironment characterized by hypoxia, nutrient depletion, and acidic pH. This microenvironment can prevent T cells from
increasing glycolysis and impair TCR signaling, thus suppressing their function. However, TAMs and Treg cells gain energy through fatty
acid oxidation rather than glycolysis, whose characteristic helps them survive and exert their immunosuppressive effect. On the other
hand, PD-1 and CTLA-4 can inhibit glycolysis in T cells, thus promoting cell death and inactivation. Furthermore, the expression levels of
B7-H3 and PD-L1 promote glucose uptake, glucose utilization, and lactate production in breast cancer cells. Abbreviations: OXPHOS,
oxidative phosphorylation; FAO, fatty acid oxidation; TCR, T cell receptor; MHC, major histocompatibilty complex class; PD-1,
programmed cell death 1; PD-L1, programmed cell death ligand 1; CTLA-4, cytotoxic T-lymphocyte-associated antigen 4.
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as two revolutionary strategies in breast cancer, most of the
related pathways between them remain unknown.
In the aspect of metabolism, breast cancer cells have a

high level of energy metabolism. Breast cancer cells
enhance the Warburg effect to produce energy and lactate
for sustaining proliferation and tumor microenvironment.
Breast cancer cells also utilize lipid metabolism and other
glucose metabolism, such as TCA and PPP, to gain vital
compounds for sustaining the organism. Glutamine is also
elevated and protects cells from ROS elevation and
apoptosis in breast cancer cells. As for immune changes
associated with breast cancer, CTLA4, PD-1/PD-L1, and
TILs have been studied deeply, and novel and effective
clinical treatments have been developed for patients with
breast cancer. In addition, BCSCs have distinctive
metabolism and immune response compared with breast
cancer cells. In general, the unique tumor microenviron-
ment caused by abnormal metabolism suppresses the
antitumor immunity. The effect of immunity on metabo-
lism is still largely unknown but is becoming the hot spot.
With the gradual research of immunotherapy and

metabolic therapy, the next generation of anticancer
drugs should obtain the dual effect of remodeling tumor
metabolism and activating host immunity [328]. For
example, metformin possesses multiple mechanisms of
restraining breast cancer [329,330]. Metformin promotes
the HIF1α degradation by increasing the cellular oxygen
content, thus inhibiting cancer cell growth [331]. Further-
more, metformin maintains the activity of antitumor
immunity by inhibiting PD-L1 expression in endometrial
and breast cancers. This phenomenon is dependent on the
mechanism that activated AMPK by metformin directly
phosphorylates PD-L1. The phosphorylation of PD-L1
leads to its glycosylation and subsequent degradation
through the endoplasmic reticulum-associated protein
degradation pathway [332,333]. However, the actual
clinical effect is not as effective as the expected theoretical
mechanism. The treatment of breast cancer still lacks an
ideal and more effective drug than metformin.
Overall, metabolism and immunity share certain onco-

genes, signal pathways, tumor microenvironment, impor-
tant related functions, and further elucidation is needed.
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