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Abstract In recent years, studying the role of myeloid-derived suppressor cells (MDSCs) in many pathological
inflammatory conditions has become a very active research area. Although the role of MDSCs in cancer is
relatively well established, their role in non-cancerous pathological conditions remains in its infancy resulting in
much confusion. Our objectives in this review are to address some recent advances in MDSC research in order to
minimize such confusion and to provide an insight into their function in the context of other diseases. The following
topics will be specifically focused upon: (1) definition and characterization of MDSCs; (2) whether all MDSC
populations consist of immature cells; (3) technical issues in MDSC isolation, estimation and characterization;
(4) the origin of MDSCs and their anatomical distribution in health and disease; (5) mediators of MDSC expansion
and accumulation; (6) factors that determine the expansion of one MDSC population over the other; (7) the Yin
and Yang roles of MDSCs. Moreover, the functions of MDSCs will be addressed throughout the text.

Keywords non-human primates (rhesus macaques); myeloid-derived pro-inflammatory cells (MDPCs); autoimmune disorders;
alloimmune responses; pregnancy; mature MDSCs; multiple sclerosis; Yin-Yang law of MDSCs

Introduction

The identification of myeloid-derived suppressor cells
(MDSCs) was first achieved in tumor-bearing mice and
shortly after in cancer patients. Since then MDSCs have
emerged as important regulators of immunity, and this is
reflected in the immense research interest during the past
decade, with more than 4000 articles related to MDSCs
being published. Indeed, in 2019 alone, more than 650
articles were published, indicating that MDSCs have
become an attractive research area. Although, the role of
these cells has been extensively studied in cancer, in recent
years the involvement of MDSCs in different non-cancer
inflammatory conditions has also been highlighted. The
latter include but are not limited to infectious diseases,
autoimmune disorders, sepsis, stress, trauma, wounds/
injuries, aging, and organ/tissue transplantation, as well as
pregnancy and lactation [1–8]. Since most of our knowl-
edge about MDSCs has stemmed from cancer studies, it

will not be surprising to see a particular emphasis on the
results obtained from cancer studies throughout the text.
MDSCs are a heterogenous population of innate

immune cells of myeloid origin that are best known for
their ability to express extremely potent immunosuppres-
sive activity. Once at the site of inflammation, they
participate in inhibition of inflammatory responses via
different mechanisms. Indeed, MDSC expansion has been
highlighted in many inflammatory pathological conditions
(Fig. 1) [1–6]. To some extent, such expansion should be
considered as a normal immune response to counteract
chronic immune activation which could worsen the clinical
status if the inflammatory response is not kept under
control. On the other hand, uncontrolled expansion and
accumulation of MDSCs, in turn, can also worsen the
clinical status, indicating that they could be involved in the
pathogenesis of certain pathological conditions. For
example, in the setting of cancer (which is a good example
of a chronic inflammatory condition), expansion of
MDSCs result in suppression of immune responses against
tumor cells, particularly those mediated by the T cell
immune response. This, in turn, creates a suitable
environment that facilitates tumor growth and metastasis,
both of which are associated with bad clinical outcomes.
Since the mechanisms of immune suppression by MDSCs
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are out of the scope of this review, we will not discuss them
any further.
Recent investigations have also shown that MDSCs

could express pro-inflammatory immune responses under
certain inflammatory conditions, such as autoimmune
disorders [9–11], which in turn could worsen the
inflammatory status. This is in contrast to their already
established immunosuppressive function by definition.
Therefore, we suggest to name these cells as “myeloid-
derived pro-inflammatory cells” (MDPCs). Furthermore,
MDSCs have always been defined as immature immune
suppressor cells of myeloid origin, however, recent
findings have indicated that even the immaturity feature
of such cells is also debatable. Taken together, these data
indicate that the pathological role of MDSCs is more
complicated than we envisage, and that the old definition
should be reevaluated. Herein, we aim to provide some
recent advances in the knowledge about the different
biological roles of MDSCs. In particular, we will focus on
the properties and origins of MDSCs and their anatomical
distribution in health and disease, the technical issues faced
in their isolation and characterization, the mediators of
MDSC expansion and the factors that determine the
expansion of one MDSC population over the other, as well
as the Yin and Yang roles of MDSCs.

MDSCs definition and characterization

The term “myeloid-derived suppressor cells” was origin-
ally coined in 2007 to differentiate between myeloid and
lymphoid immune suppressor cells in cancer patients and
to minimize the ambiguity present in the literature about
these cells [12]. MDSCs are a morphologically, phenoty-
pically, and functionally heterogeneous population of
immature innate immune cells of myeloid origin with
potent capabilities to suppress immune responses [13–15].

By definition, MDSCs express common myeloid markers
and lack the expression of lymphoid markers. In mice, they
express Gr-1 and CD11b (also known as αM-integrin),
whereas in humans, they express CD33 and CD11b,
and lack expression of maturation markers, such as
HLA-DR. MDSCs are subdivided into two main
populations according to their morphology and the
expression of monocytic (mononuclear monocytic “M-
MDSCs”) and granulocytic (polymorphonuclear granulo-
cytic “G-MDSCs or PMN-MDSCs”) markers. Human
M-MDSCs and PMN-MDSCs can be described as
HLA-DR–/lowCD11b+CD33+CD14+CD15– and HLA-
DR–CD11b+CD33midCD15+CD14– bearing cells, respec-
tively, according to the presence of the monocytic marker
(CD14) and the granulocytic marker (CD15), as well as the
expression level of CD33 marker which is highly
expressed on M-MDSCs and intermediately on PMN-
MDSCs. Of note, certain markers such as CD66b could
also be used to differentiate between human PMN-MDSCs
and M-MDSCs. On the other hand, the phenotypes of M-
MDSCs and PMN-MDSCs in mice can be described as
CD11b+Ly6ChighLy6G– and CD11b+Ly6ClowLy6G+,
respectively, based on the expression level of Ly6C and
Ly6G. Furthermore, a new population of MDSCs with a
more immature state has also been proposed recently [14].
These early-stage MDSCs (E-MDSCs) lack the expression
of monocytic and granulocytic markers with a
CD33+HLA-DR–Lin– phenotype (Lin includes CD3,
CD14, CD15, CD19, and CD56 markers) [14]. It is
believed that E-MDSCs could give rise and differentiate to
PMN-MDSCs andM-MDSCs [15,16], indicating that such
cells could act as precursors for both M-MDSCs and PMN-
MDSCs. Highfill et al. [17] have also identified a more
potent immunosuppressive subset called “MDSC-IL13”
in mice. More recently, a new subpopulation of MDSCs
was also reported in mice infected with Staphylococcus
aureus that phenotypically resembles eosinophils, namely

Fig. 1 MDSCs in health and disease. The case number 1 represents healthy subjects without MDSCs expansion. The case number 2
represents a normal physiologic condition, i.e., pregnancy, in which MDSCs expansion occurs during all pregnancy stages and their levels
are normalized post-delivery. The case number 3 represents a pathological condition where MDSCs expansion directly correlates with the
disease progression.
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“Eo-MDSCs” [18]. The identification of such new subsets
of MDSCs further complicates the picture and opens a new
door that could lead to the identification of additional
subsets. However, the counterparts of such subsets of
MDSCs remains to be determined in humans.
The characterization of MDSCs in mice is of impor-

tance, since they are widely considered as a key pre-
clinical model for studying a diverse range of human
diseases and used for testing novel therapeutic strategies
including vaccines, before the commencement of the
clinical phases. However, it must be remembered that
significant differences exist in the immune responses of
mice and humans, underscoring the need to study other
animal models that are much closer to humans than mice,
in particular the non-human primates [19–22]. Until
recently, mice were the favorite animal model but recently,
Zahorchak et al. [23] studied MDSCs in rhesus macaques
and found that normal M-MDSCs with similar phenotypes
(CD11b+HLA-DR–Lin– or CD33+CD14+HLA-DR–Lin–)
to those isolated from the peripheral blood of healthy
individuals [24,25] can be isolated, albeit at very low
levels, from peripheral blood mononuclear cells (PBMCs).
The primary objective of their study was to mobilize and
isolate M-MDSCs from non-human primate PBMCs for
use in adoptive cell therapy in the hope of mediating
immune tolerance to allografts (organs/tissue transplanta-
tion). Zahorchak et al. [23] chose to characterize M-
MDSCs but not PMN-MDSCs for two major reasons.
Firstly, because M-MDSCs are less susceptible to damage
from the freezing-thawing process than PMN-MDSCs
(discussed later) and secondly due to the compatibility of
M-MDSCs with the study objectives, in that M-MDSCs
have a positive role in mediating tolerance against organ/
tissue transplantation. In a more recent study, Zahorchak
et al. [26] generated M-MDSCs from rhesus macaque bone
marrow and observed that M-MDSC populations can be
further subdivided into three sub-populations based on the
differential expression of CD11b, CD14, CD33, and CD34
markers. The phenotypes of these sub-populations were as
follows: HLA-DR–Lin–CD14+CD33+CD34+CD11b+,
HLA-DR–Lin–CD14–/lowCD33highCD34+CD11b–/low, and
HLA-DR–Lin–CD14highCD33–/lowCD34lowCD11bhigh. Nota-
bly, HLA-DR–Lin–CD14highCD33–/lowCD34lowCD11bhigh

expressing cells were the most immunosuppressive of the
three groups [26]. In 2017, a study on simian immunode-
ficiency virus (SIV) infected rhesus macaques was
conducted to investigate the role of MDSCs in the
pathology of SIV infection [27]. This study identified
two main MDSC populations in rhesus macaques, namely
PMN-MDSCs and M-MDSCs, in different anatomical
tissues including the blood, liver, and bone marrow. M-
MDSCs in the bone marrow were also subdivided into
CD14high and CD14intermediate subpopulations [27]. The
important finding from these studies is that MDSC
populations could be further subdivided into subpopula-

tions that vary in phenotypes and suppressive functions
even within the same host. In 2018, Lin and colleagues
conducted a study with a primary objective of characteriz-
ing MDSCs in rhesus macaques [28] and in consistence
with previous studies on humans and mice, they identified
and characterized two main populations of MDSCs,
namely, M-MDSCs and PMN-MDSCs. Three surface
markers (CD66abce, CD14, and CD33) were used to
differentiate between M-MDSCs and PMN-MDSCs in
these non-human primates beside the myeloid and
maturation markers, namely CD11 and HLA-DR, respec-
tively. Lin and colleagues have shown that M-MDSCs can
be described as CD11+HLA-DR–CD14+CD66abce– bear-
ing cells, while PMN-MDSCs can be described as
CD11+CD33midHLA-DR–CD14–CD66abce+ bearing cells
[28]. Initially, as expected, these data confirm that MDSC
phenotypes in rhesus macaques are much closer to those of
humans than mice, especially since CD66b could also be
used to differentiate between PMN-MDSCs and M-
MDSCs in humans, as previously mentioned. It goes
without saying that non-human primates are much closer to
humans in immune responses [19], but we still need
additional investigations to establish the role of MDSCs in
different pathological conditions in this unique animal
model. Subsequent comparisons between the results
obtained from non-human primates with those obtained
from both mouse models and humans are essential because
it can guide us to decisively determine which animal model
is better for studying the role of MDSCs in the future.
It is worthy to note that there are many other potential

markers that could also be used to characterize human
MDSCs. The latter include lectin-type oxidized LDL
receptor 1 (LOX-1), CD40, CD66b, CD80 (also known as
B7.1), CD115 (macrophage-colony stimulating factor (M-
CSF) receptor), CD124 (IL-4 receptor α-chain), S100A9,
and SPARC (secreted protein acidic and rich in cysteine
also known as osteonectin or as basement-membrane
protein 40 (BM-40)) [29–31]. It has been established that
these markers are expressed by MDSCs, however, none of
them can be harnessed to characterize distinct MDSC
populations, with an exception to CD66b, and possibly
LOX-1 and SPARC [15,29–31]. Both LOX-1 and CD66b
can be used to differentiate between PMN-MDSCs and M-
MDSCs. Interestingly, unlike CD66b, LOX-1 could be
used as a specific marker of PMN-MDSC populations
without the need to use other assays to distinguish them
from normal neutrophil populations. This is especially
advantageous because LOX-1+ but not LOX-1– neutrophils
show immunosuppressive activity which seems to fulfill
the need to characterize PMN-MDSC populations directly
[15,29]. In addition, studies have shown that using this
marker, it was possible to quantify PMN-MDSCs from
entire neutrophil populations among cancer patients.
Similarly, the recently suggested SPARC could also be
considered as a potential marker for direct isolation of
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MDSCs, particularly PMN-MDSCs, in both humans and
mice as reported by Sangaletti and colleagues [31].
However, although the latter study was able to provide
evidence that SPARC–/– MDSCs are not immunosuppres-
sive, the data obtained could not confirm that such a
marker is exclusively expressed on PMN-MDSCs since the
levels of M-MDSCs were very low in the study and
additional work is required to confirm these findings.
Finally, an important issue that needs to be mentioned

here is that although different isolated MDSC populations
share common markers, characterization of MDSCs from
different pathological conditions and/or different anatomi-
cal sites could necessitate using additional markers. For
example, studies on bone marrow-derived MDSCs have
shown that additional markers, such as CD34, could be
used to differentiate between blood and bone marrow
MDSCs [26]. Indeed, immature myeloid suppressive cells
expressing CD34 were also detected in the blood of
patients with certain types of cancer [32–35], indicating
that CD34+ MDSCs could be considered a distinct
population [34], which leave the bone marrow as a
result of increased myelopoietic output. One could assume
that this subset is a precursor for MDSC populations,
however, the co-expression of monocytic (CD14+) or
granulocytic (CD15–) markers beside CD34 on MDSCs
would prove this assumption to be unfounded, unless the
presence of CD34+CD14–CD15– myeloid suppressor cells
coincides with the presence of CD34+CD14+CD15– or
CD34+CD14–CD15+ myeloid suppressor cells. Taken
together, it can be observed that the heterogeneity of
MDSCs is much more complex than is known at present,
necessitating additional investigations to further clarify
this heterogeneity.

Do all MDSC populations consist of
immature cells?

This is still a controversial question that needs to be
answered. In fact, early studies have shown that MDSCs
were immature myeloid cells, however, more recent
studies have concluded that the immature myeloid cell
profile and the lack of activation markers may not be
sufficient features to describe MDSCs. Therefore, it is
important to point out that we need to reevaluate the
maturation feature of these cells. This is, in particular,
because of several reasons. First, some cells of myeloid
origin could lose their activation markers in certain
conditions, for example, in response to hypoxia, upon
exposure to certain cytokines, or signaling with toll-like
receptors (TLR) in a repeated manner [36–39]. Second,
even the immature property of MDSCs has recently been
debated as a result of detection of activation markers on
MDSCs. For example, it has been shown that low-density
immunosuppressive CD66b+ neutrophils (PMN-MDSCs)

present in the circulation of healthy individuals treated
with G-CSF for stem cell mobilization, consist of a mixture
of mature activated CD10+ and immature CD10– PMN-
MDSCs populations [40]. Of note, activated low-density
immunosuppressive CD10+ neutrophils can also be
detected in systemic lupus erythematous (SLE) and
psoriasis [41]. Interestingly, it has been concluded that
CD10+ can be utilized to distinguish between mature and
immature neutrophils isolated from low- and normal-
density blood fractions of G-CSF-treated volunteers [40].
Furthermore, a recent study on patients with Hodgkin’s
lymphoma has reported that most of patients’ PMN-
MDSCs isolated from the low-density fraction were
immunosuppressive mature neutrophils in an activated
state [42]. More recently, in head and neck cancer patients,
a very potent immunosuppressive subset of mature PMN-
MDSCs has also been reported [43]. Indeed, these cells
possess even more suppressive activities on T cell
proliferation than M-MDSCs and E-MDSCs. In another
example, CD80 and CD83 expression on M-MDSCs were
also reported in melanoma and breast cancer patients
[44,45]. Third, many published studies have called
immunosuppressive myeloid cells “with almost the same
M-MDSCs and PMN-MDSCs features” as inflammatory
monocytes and neutrophils, respectively [46,47]. In
addition, even normal cells without these features were
also called MDSCs based on their phenotypes. Forth,
interesting evidence has emerged that both MDSCs
populations could represent monocytes and neutrophils,
especially because some studies have indicated that
monocytes, CD1a+ dendritic cells, and neutrophils can
be reprogrammed and give rise into immunosuppressive
cell populations [48–52]. Taken together, these data
provide strong evidence that the immature state of
MDSCs that used to be included in the old definition of
such cells should be reevaluated.
Moreover, a question on whether MDSCs really differ

from monocytes and neutrophils has been raised. Gabri-
lovich and others have answered this question and have
clearly shown that MDSCs really do differ from normal or
tumor activated monocytes/macrophages and neutrophils
in various aspects including function, protein and genomic
profiles, phenotype, and biochemical features [13,53]. This
indicates that for a cell population to be described as
MDSCs, the phenotype profile is not sufficient to be used
alone in most cases, rather it should be coupled with other
MDSC defining-tests, especially those that measure
immunosuppressive activity, unless highly specific mar-
kers are revealed/used. Gabrilovich [13] has also con-
cluded that monocytes and neutrophils cannot be easily
reprogrammed to a suppressive state similar to that of
MDSCs in vitro by treatment with pro-inflammatory
cytokines, or danger-associated molecular patterns
(DAMPs) and pathogen-associated molecular patterns
(PAMPs) molecules. To some extent, this is challenged
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from two points of view. First, different studies have
shown that the in vitro and ex vivo expansion of MDSCs
can be achieved either by inducing the normal differentia-
tion of the precursors of MDSCs or reprogramming
peripheral mature myeloid cells, such as, monocytes and
dendritic cells to M-MDSCs or M-MDSCs-like cells
[38,52,54–57], or mature neutrophils into PMN-MDSCs
[30,49,58]. Second, studies have demonstrated that
MDSCs can be differentiated into mature macrophages
and DCs in vitro [59,60], indicating that MDSCs include
precursors of such mature cells. Although this may hold
true in that the in vitro activated MDSCs could express less
immunosuppressive activity than those isolated from
inflamed tissues such as tumor sites, it must be
remembered, however, that this is similar to what already
has been observed for MDSCs in vivo, which are distant
from the site of inflammation, i.e., tumor microenviron-
ment. In this regard, Haverkamp et al. [61] have shown
that MDSCs isolated from the liver or spleen are not as
immunosuppressive as those in the inflammatory micro-
environment, which further challenges the Gabrilovich
view. In sum, MDSC populations could comprise a
mixture of immature and mature myeloid cells with
suppressive capabilities even within a single host. None-
theless, to remove the confusion in this regard, the
previously-mentioned potential markers could be used
for this purpose. Further, uncovering new highly-specific
markers could simplify the characterization of such cells
into distinct functional and phenotypical populations.

Technical issues in MDSC isolation,
estimation, and characterization

An important issue to be considered in this context is the
“avoidable” technical factors that could accompany and
influence the isolation, estimation/quantification, and
characterization of MDSCs, especially because MDSCs
are very sensitive to some manipulations. For instance,
delay in sample processing and freezing of whole blood or
PBMC samples have been demonstrated to exert negative
effects on viability of MDSCs. Although PMN-MDSCs
can tolerate relatively longer storage times than M-MDSCs
(24 h vs. less than 4 h, respectively, following blood
withdrawal), they are still much more sensitive to the
freezing/thawing process than M-MDSCs [27,62,63]. As
such, investigators have to avoid, or at least limit, the use
of cryopreserved samples, as much as possible, to avoid
false results, and if the use of cryopreserved samples
cannot be avoided, they should mention this in the
discussion of their study.
Another important point is that although polymorpho-

nuclear MDSCs (i.e., PMN-MDSCs) are similar to
neutrophils in morphology, investigations have demon-
strated that they should be isolated from the low-density

gradient fraction of human PBMC samples (mononuclear
cell fraction), a procedure that is not carried out for
isolation of normal polymorphonuclear immune cells
which include both normal and high density neutrophils
[29,64,65]. Thus, for enhanced isolation and estimation of
PMN-MDSC populations in blood samples in normal and
pathological conditions, the high-density gradient fraction
(polymorphonuclear “neutrophils” cell fraction) should not
be the target. Indeed, the similarities in phenotype between
MDSC populations and their cognate normal monocytes
and neutrophils can affect the characterization of MDSCs
[46,47,53]. To overcome these problems, the use of whole
blood, as suggested by Apodaca and colleagues [66], as
well as, the identification of highly specific markers that
are exclusively expressed on each MDSC population, but
not on the normal monocytes and granulocytes (e.g., LOX-
1 marker for PMN-MDSCs), can help evade the need for
density gradients and lead to a better isolation and
characterization of MDSC populations [29]. A similar
candidate marker is also needed for definitive identification
of M-MDSCs, since the identification of M-MDSCs based
on the already available surface phenotyping markers often
results in a mixture of monocytes/M-MDSC populations.
Until achieving this goal, investigators have to use assays
that at least measure the immunosuppressive activity
besides the cell surface phenotyping, so that we can
differentiate between suppressive myeloid cells (MDSCs),
non-suppressive mature granulocytes and agranulocytes,
in particular, the M-MDSC population and normal
monocytes.
Apodaca et al. [66], very recently, have comprehen-

sively assessed the factors that could significantly affect
quantification of MDSCs in blood samples at different
stages during the process of isolation and characterization
of MDSCs including the: (1) target sample (whole blood
vs. PBMC samples), (2) collection tube types (K2EDTA
and Na+ heparin), (3) time elapsed between venipuncture
and antibody labeling (i.e., processing the sample as soon
as possible after blood collection or after 4, 8, 24 h), and
(4) temperature (i.e., room temperature or refrigerator at 4
or 8 °C) at which samples are maintained until antibody
labeling before flow cytometry analyses is carried out, as
well as, (5) the analytical step of “flow cytometry gating”
especially for those using complex panels that require
multiple sub-setting steps [66]. Initially, in contrast to the
results of Flörcken et al. [67] who observed no difference
in MDSC numbers after processing whole blood vs.
PBMC, Apodaca et al. [66] have reported that using whole
blood yields more accurate results than using PBMC
samples. In the context of collection tubes, they have
shown that there was a comparable difference in results
(i.e., total MDSCs and M-MDSC levels) obtained using
K2EDTA and Na+ heparin collection tubes with a positive
trend to use K2EDTA tubes. Consistent with the results of
Flörcken et al. [67], Apodaca et al. [66] have shown that
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the time elapsed until the sample processing occurs is also
a critical factor that significantly affects the quantification
of MDSCs. Indeed, sample processing as soon as possible
after blood collection yielded much better results than after
storing samples either at room temperature or at 4 or 8 °C
for 24 h. Interestingly, processing the samples upon storage
at 4 °C after 4 or 8 h, but not after 24 h, was shown to
ameliorate the time-dependent effect. Finally, the gating
step is also very critical, since small changes in how to
define positive and negative populations could signifi-
cantly impact the results, particularly, for those using
complex panels that require multiple sub-setting steps to
yield the ultimate results.
Finally, it is of importance to point out to the fact that

studies addressing the technical factors in MDSC research
are limited, and we, therefore, encourage researchers to
conduct more investigations to further clarify and
determine such factors that could affect MDSC isolation,
quantification, and characterization of both blood and other
tissue samples, such as the liver, lymphatic tissues, and/or
tumor/inflamed sites. In parallel, as much as possible, we
need solutions that prevent, or at least minimize, the
occurrence of technical errors in the future.

On the origin of MDSCs and their anatomi-
cal distribution in health and disease

By definition— undoubtedly— all MDSC populations are
of myeloid origin, and thus we can conclude that the same
scenario that governs the differentiation of myeloid cells
from myeloid progenitors/precursors during myelopoiesis
will govern the differentiation of MDSCs as well. Under
normal (steady-state) conditions, myelopoiesis is a highly
coordinated and regulated process in which hematopoietic
stem cells are transited to myeloid precursors (immature
myeloid cells) that rapidly undergo through the differentia-
tion process, in a step-wise manner, into terminally
differentiated mature myeloid cells (i.e., granulocytes:
neutrophils, eosinophils, and basophils; and agranulocytes:
monocytes and dendritic cells) in the bone marrow before
being released to the peripheral tissues [68,69]. This
process is essential to maintain the physiologic levels of
circulating granulocytes and agranulocytes and is under the
control of growth factors and cytokines. Only a very small
proportion of immature myeloid cells migrate outside the
bone marrow to the periphery before being fully
differentiated. In normal mice, it has been shown that
MDSCs which express Gr-1 and CD11b comprise about
20%–30% of the total cells in the bone marrow [70]. The
number of MDSCs in other tissues such as liver, spleen,
and lymph nodes of normal mice reaches up to 5%, 4%,
and less than 1%, respectively [70–72]. In non-human
primates, Zahorchak et al. [23] reported that M-MDSCs
account for only 2.1% � 1.7% of normal Rhesus macaque

Lin–HLA-DR– PBMC. Sui et al. [27] were the first group
that investigated the distribution of MDSCs in many
anatomical sites of normal and simian immunodeficiency
virus (SIV) infected Rhesus macaques. They observed that
normal Rhesus macaques had a very low frequency (less
than 0.5%) of MDSCs in PBMC samples (0.09% � 0.02%
and 0.20% � 0.04% for M-MDSCs and PMN-MDSCs,
respectively), and similarly there was also a low frequency
(less than 2%) of MDSCs in liver tissues. In contrast,
MDSCs accounted for more than 20% of the bone marrow
cells (14.5% � 1.3% and 7.7% � 0.6% for M-MDSCs
and PMN-MDSCs, respectively). In humans, peripheral
blood of healthy individuals contains only about 0.5% of
immature myeloid cells of the total peripheral blood
immune cells [73,74]. Recently, MDSCs were also isolated
from breast milk cells of normal breastfeeding mothers of
healthy term infants [75]. Interestingly, the levels of PMN-
MDSCs in breast milk were about 20-fold higher than that
of peripheral blood [75], whereas the breast milk M-
MDSCs were much lower in number than that in peripheral
blood. Although some studies have isolated MDSCs from
bone marrow of healthy individuals, quantification of such
cells was out of the scope of these studies [76]. To the best
of our knowledge, MDSCs were not quantified in the bone
marrow of healthy humans and, if present, the data cannot
be generalized because of the small sample size and
inconsistency in results [77,78]. Indeed, the main reason
behind the absence of such data in healthy subjects is
referred to the invasiveness of bone marrow aspiration,
making such isolation method clinically undesirable.
Similar to the bone marrow, there is a lack of available
data about the distribution of MDSCs in the spleen, liver,
or lymphatic tissues of healthy humans. Based on these
data, we can say that the bone marrow is considered to be
the reservoir of MDSCs under normal conditions, at least
in animal models, with some conditional exceptions in
humans. The latter is seen during a healthy pregnancy (i.e.,
in mothers and their embryos) and also during lactation in
breastfeeding mothers (i.e., in milk) [75], and we could
postulate that these examples are the only normal
physiologic conditions where MDSCs are expanding and
accumulating in maternal and fetal organisms for the
purpose of achieving maternal-fetal tolerance (discussed
later). In other words, to our knowledge, these are the only
normal physiologic conditions where MDSCs are naturally
(without human intervention, e.g., using certain drugs)
expanded and able to express positive impacts. Although it
could be argued that MDSC expansion and accumulation
in other physiologic conditions such as aging also occur in
both humans and mice, however their accumulation is
undesired, especially because it is associated with
unwanted consequences [79–81]. In addition, some
members of the scientific community are now regarding
aging as a disorder (pathological condition) rather than a
normal condition [81–83]. Indeed, the quantification and
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characterization of MDSCs in the bone marrow and other
lymphatic and non-lymphatic tissues of healthy subjects of
different ages in both genders and comparing them to
nonhealthy conditions may enhance our understanding of
their functions in physiologic and pathologic conditions,
and thus may enhance treatment interventions of patholo-
gic conditions.
On the other hand, in the setting of pathological

conditions, especially those with chronic inflammatory
responses such as cancer, chronic infections, and certain
autoimmune disorders, MDSCs can be detected at very
high levels in the bone marrow and peripheral tissues (e.g.,
spleen, liver, lymph nodes, and blood circulation), as well
as within the inflammation sites, especially as the disease
progresses [70–72,84–93] (Fig. 1). For example, in many
tumor mice models, a several-fold increase in the number
of MDSCs in the spleen was reported [94–96]. Similarly,
an up to 10-fold increase in the number of MDSCs in
peripheral blood was reported in humans with different
cancer types [73,84–86]. In another example, Delano et al.
[93] reported up to 3-fold and 10 to 20-fold increase in the
number of MDSCs in the bone marrow and spleen of late
septic mice, respectively. Similarly, Brudecki et al. [88]
reported that septic mice experience at least a 3-fold
increase in the number of MDSCs in the bone marrow (up
to 88% in septic and 30% in normal mice). In other words,
MDSC expansion is triggered in certain pathological but
not in normal conditions, with some exceptions as seen for
example in pregnancy (as aforementioned and will be
discussed later). This raises a major question “on the origin
of such expansion in abnormal conditions” in terms of
whether it results from the differentiation of myeloid
precursors, or from reprogramming of terminally differ-
entiated granulocytes and agranulocytes, or both. Gen-
erally speaking, there is no doubt that there is an increased
body demand for myeloid cells in response to the
development of certain pathological conditions, e.g.,
cancer and infections, and/or as a result of their idiopathic
depletion in peripheral tissues inducing “emergency
myelopoiesis” [69], a process by which hematopoiesis is
triggered and directed to the myeloid over lymphoid
lineage in the bone marrow to such a degree that meets the
increased body demand to myeloid cells in the periphery.
This process depends on the microenvironment triggering
factors such as hematopoietic growth factors (mainly
granulocyte/macrophage-CSF (GM-CSF), granulocyte-
CSF (G-CSF), and macrophage-CSF (M-CSF)) in addition
to other factors that govern the differentiation line. As a
result of this increase in hematopoietic output, higher
levels of immature myeloid cells will be found inside and
outside the bone marrow, which is logically expected.
However, whether the expansion of MDSCs in the setting
of pathological conditions occurs exclusively as a result of
triggering myelopoiesis in the bone marrow only or not
remains a debatable issue. In recent years, increased

evidence suggests that MDSC expansion could also be
triggered outside the bone marrow in lymphatic tissues in a
process called extramedullary myelopoiesis, which mainly
occurs in spleen. It could also occur as a result of either
activating the differentiation of immature myeloid cells
(i.e., MDSC progenitors) present in peripheral tissues into
MDSCs, or reprograming of mature myeloid immune cells
(i.e., monocytes and neutrophils) to become less mature
[97], or they could still mature as they are, but gain
immunosuppressive activities. For example, it has been
shown that monocytes can be reprogramed to M-MDSCs
in sepsis and breast cancer [44]. Interestingly, other studies
have also revealed the possibility of M-MDSCs differ-
entiating into PMN-MDSCs [98]. An important point to be
mentioned here is that all adult myeloid cells are generated
from bone marrow-derived precursors upon differentiation
of hematopoietic stem cells, with two exceptions namely
tissue macrophages, and resident mast cells [69]. This is
consistent with the notion that all MDSCs isolated from
different anatomical structures (e.g., bone marrow, spleen,
peripheral blood, or tumor tissues) share a similar
phenotype, indicating that they could share a common
ancestor. Based on these notions, we can say that the
anatomical structure/site where MDSC expansion occurs
in the setting of pathological conditions is an arguable
issue, but the question of whether they have originated in
tissues other than the bone marrow should not be an
arguable issue anymore. However, in certain circumstances
some exceptions are observed, for example, in chronic SIV
infection MDSCs expand in peripheral blood while
dramatically decrease in the bone marrow [27]. Taken
together, recent evidence suggests that MDSC expansion is
not exclusive to the expansion of immature myeloid cells
in the bone marrow via myelopoiesis. Indeed, MDSC
expansion also involves extramedullary myelopoiesis in
lymphatic tissues and reprograming of mature myelocytes
to become MDSCs or MDSC-like cells in peripheral
tissues. In addition, the aforementioned evidence about the
notion that MDSC populations comprise a mixture of
mature and immature myeloid suppressor cells supports
this idea (Fig. 2).

Mediators of MDSC expansion and
accumulation

One important issue to be addressed also in this regard is to
understand the factors and mechanisms that mediate the
expansion and accumulation of MDSCs. MDSCs expan-
sion is a multifactorial process which heavily depends on
the pathological condition. Condamine and Gabrilovich
[99–101] have generalized a model describing this process
by proposing a two-signal model that only works in the
setting of chronic (with persistent “prolonged duration of”
inflammatory signals of weaker strength) but not in the
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acute (with temporary “short duration of” inflammatory
signals of stronger strength) inflammatory conditions. In
this model, they have shown that for MDSCs to
accumulate, a combination of two partially overlapping
groups of regulatory factors called first and second signals
should be simultaneously activated. The first signal
induces the differentiation of myelocytes while retaining
the differentiation process at the immature stage. The
second signal potentiates the activation of immunosup-
pressive activity of such cells. At the molecular level, there
are several transcription factors and signaling pathways.
These include signal transducer and activator of transcrip-
tion (STAT3), interferon related factor-8 (IRF-8), CCAAT/
enhancer binding protein-β (C/EBPβ), cyclic adenosine
3′,5′-monophosphate/mitogen-activated protein kinase
(cAMP/MAPK), and retinoblastoma protein 1 (RB1)

which includes p105, p107, and p130. The latter are not
transcription factors, instead they interact with certain
transcription factors such as the E2-factor and cause
repression. Immature myeloid cells, therefore, upon
activation with different cytokines and/or interaction with
specific ligands or other molecules (e.g., growth factors
(GM-CSF, G-CSF, M-CSF), IL-6, Notch ligands, and
adenosine), differentiate from their progenitors/precursors.
On the other hand, MDSCs during this process gain their
suppressive activity upon interaction with different
cytokines such as IFN-g, IL-1β, IL-6, IL-4/IL-13, tumor-
necrosis factor (TNF-α) or other molecules such as TLRs,
and prostaglandin E2 (PGE2) that activate specific cellular
signaling pathway(s) (e.g., STAT1, STAT3, STAT6,
cyclooxygenase (COX), and NF-kB) depending on their
interaction with the corresponding receptor(s) on the

Fig. 2 Expansion of MDSCs during inflammation (e.g., cancer). (1) Produced molecules by tumor/stroma cells initiates (2) a signal that
trigger emergency myelopoiesis in which hematopoietic progenitor cells (HPCs) transit to common myeloid progenitors (CMPs). These
CMPs continue the differentiation process to immature myeloid cells (IMCs). (3) Some of them will be able to continue the differentiation
process normally (the so-called normal-IMC (N-IMC)) to generated mature monocytes/dendritic cells (Mo/DCs) and polymorphonuclear
neutrophils (PMNs) in the bone marrow. (4) Then these cells can be released to periphery (blood circulation and tissues). (5) The other
portion of IMCs cannot continue their normal differentiation to Mo/DCs or PMNs, since their differentiation is blocked at this immature
stage (the so-called blocked-IMC (B-IMC)) in response to tumor/inflammation signal. (6) These cells could acquire immunosuppressive
activity signal so that we called them immature-myeloid derived suppressor cells (immature-MDSCs (i-MDSCs)). (7) As the
hematopoietic output is increased, releasing (exporting) both the B-IMCs and N-IMCs to peripheral tissues is normally expected. Once
outside the bone marrow, (8) blood B-IMCs could acquire suppressive activity and become i-MDSCs or are recruited to the inflammation
sites and/or lymphatic tissues (11). On the other hand, (9) N-IMC could be differentiated to mature cells or recruited to the lymphatic
tissues and inflammation sites (11). Furthermore, (10) peripheral blood PMNs and Mo/DCs could be reprogrammed to either i-MDSCs or
gain immunosuppressive activity while remain in their mature state, so that we call them mature-MDSCs (m-MDSCs). Alternatively,
PMNs and Mo/DCs are recruited to the site of inflammation where they could be reprogrammed to i-MDSCs or m-MDSCs. (12) A similar
scenario occurs for B-IMC and N-IMC upon recruitment to lymphatic tissues. Importantly, at the inflammation site, (13) the recruited
MDSCs (i-MDSCs and m-MDSCs) to the inflammation site (e.g., tumor) become more suppressive over time as they exposed to tumor-
stroma cells and their byproducts. Red arrows, reprogramming; blue arrows, export/homing.
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surface of these cells (reviewed in References [100,102]).
The model presented by Condamine and Gabrilovich in

2011, describes the processes that govern MDSC expan-
sion and accumulation [99]. However, recent advances
show that this model is still a premature model and can
only describe the process partially. This is especially
because the expansion and accumulation of MDSCs
according to this model does not occur in acute
inflammatory settings, as mentioned previously. This
contradicts the results of recent investigations which
show that MDSC expansion occurs in response to acute/
temporary inflammatory signal(s), as seen in response to
acute-phase protein “C-reactive protein” and upon vacci-
nation, as well as, in response to tolerogenic treatment for
organ/tissue transplantation [28,74,103]. Furthermore,
recent advances that are mentioned earlier in the text
regarding the maturation state of MDSCs (i.e., the presence
of mature MDSCs) debate the first signal of this model in
that the differentiation of myeloid cells is induced while
their differentiation is blocked at the immature status.
Indeed, this does not mean that we exclude this
mechanistic way by which MDSCs are generated. Instead
we believe it is, at least in part, one of the mechanistic ways
involved in MDSC generation (Fig. 2).

Factors that determine the expansion of
one MDSCs population over the other

The simultaneous expansion of both MDSC populations
can be observed in different pathological conditions,
however, the expansion of one population over the other
is also observed. For instance, several studies have shown
that PMN-MDSCs represent the predominant immuno-
suppressive population with about 80% or even more of
the total MDSC populations present in blood and at the
tumor site(s) of most forms of cancer [13,43,100,104].
Activation of MDSCs through certain transcription factors
and signaling pathways was shown to direct/shift the cell
differentiation toward either M-MDSCs or PMN-MDSCs.
For example, inhibition of STAT3 in tumor cells has been
shown to decrease PMN-MDSC differentiation, while
retaining the levels of M-MDSCs unchanged or sometimes
increased [105,106]. In another example, studies on mice
with fibrosarcoma have shown that C/EBPβ deficiency can
affect the differentiation of M-MDSCs [107]. It is worthy
to note that C/EBPβ, which belongs to the basic-region-
leucine zipper transcriptional factor family, is also an
essential regulator of the immunosuppressive activity of
MDSCs, since it regulates the expression of inducible
nitric oxide synthase (NOS2) and arginase (ARG1) [108].
RB1, which is a member of retinoblastoma protein (RB),
was shown to play a critical role in the differentiation of
MDSCs in both humans and mice [109], where the skewed
differentiation of M-MDSCs, unlike PMN-MDSCs, is

favored in the presence of high levels of RB1 [110]. Still, a
decreased level of PMN-MDSCs at the tumor sites of mice
with Lewis lung carcinoma as a result of decreased
adenosine receptors, i.e., A2b, was also observed [111].
Downregulation of IRF8 is particularly associated with
PMN-MDSC expansion [112–115]. Deletion of nuclear
factor I-A (NFIA), an integral transcriptional component of
myeloid differentiation in myeloid cells, blocks the
expansion of MDSCs during sepsis [116]. Recently,
NFIA was also revealed to be associated with the
immunosuppression function of PMN-MDSCs [117].
Inhibition of NFIA is known to guide the differentiation
toward granulopoiesis [118], yet whether it participates in
PMN-MDSC accumulation over M-MDSCs remains to be
determined. Likewise, the long noncoding RNA plasma-
cytoma variant translocation 1 (lncRNA Pvt1) has also
been demonstrated to be involved in regulating PMN-
MDSC immunosuppressive function. Although, the level
of expression of IncRNA Pvt1 is thought to be directly
associated with PMN-MDSC expansion in tumor tissues
[119], additional investigations are needed to determine
whether it is involved in PMN-MDSCs expansion or not.
Hypoxia-inducible factor-1 α (HIF-1α), which is a subunit
of a heterodimeric transcription factor HIF-1 consisting of
both HIF-1α and HIF-1β, was responsible for the elevation
of this long noncoding RNA under hypoxic condition,
indicating that HIF-1 could have an indirect role in
mediation of PMN-MDSCs expansion.
Taken together, these data show that transcription factors

are extremely important in expansion of one MDSC
population over the other. However, it is essential to point
out that signaling pathways and activation of transcription
factors are determined as a consequence of MDSC
interaction with molecules and/or cells within the inflam-
matory microenvironment, which, in turn, determines the
differentiation fate of such cells. Therefore, the micro-
environment could be considered the real driving force
behind this process. However, additional investigations are
needed to further clarify the factors involved in expansion
of one subset over the other.

The Yin and Yang roles of MDSCs

The role of MDSCs in cancer and infection

As discussed earlier, most of our knowledge about MDSCs
comes from cancer studies, yet surprisingly, until now
there is no single indication that could show any beneficial
role of the expansion of such cells in the setting of cancer
[120]. Rather, it is generally agreed that such expansion is
directly associated with the disease progression and tumor
burden in cancer patients and animal models bearing
different types of tumors. In recent years, MDSCs have
become an attractive research area in which different
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pathological and non-pathological conditions have been
included. In the setting of non-cancer studies, expansion of
MDSCs was also observed in different microbial infections
including: parasitic infections with Trypanosoma cruzi,
Toxoplasma gondii, and Leishmania major; bacterial
infections with Listeria monocytogenes and Porphyromo-
nas gingivalis; and fungal infection with Candida albicans
[46,87,121–127]. Furthermore, studies on mice and
humans have shown MDSC expansion during different
viral infections such as influenza virus, hepatitis C virus
(HCV) and human immunodeficiency virus (HIV)
[91,92,128,129]. Unfortunately, as expected, the expan-
sion of MDSCs during these pathological conditions was
not associated with any beneficial effects in the terms of
controlling disease progression, rather, it was associated
with disease progression, supporting the notion that
MDSCs are bad, i.e., MDSCs have a “Yin” role in such
conditions.

The role of MDSCs in autoimmune and alloimmune
responses

On the other hand, immune activation downregulation is
very important for both the autoimmune disorders and
alloimmune responses to allografts (graft-rejection). Per-
haps, this could shed light on the possibility that MDSCs
might have a good “Yang” role in these conditions, since
they are potent immunosuppressive cells. On this basis, the
role of MDSCs in alloimmune responses and autoimmune
disorders such as inflammatory bowel disease (IBD), type
1 diabetes (T1D), multiple sclerosis (MS), rheumatoid
arthritis (RA), autoimmune hepatitis (AH), alopecia areata
(AA), and systemic lupus erythematosus (SLE) has started
to be investigated in recent years [130–132]. Generally
speaking, autoimmune disorders are associated with a
remarkable increase in the activity of immune (inflamma-
tory) responses against certain self-antigens. Therefore,
downregulating these responses is indeed a rational way to
restore immune-tolerance to self-antigens and to contain
inflammation, both of which would result in reversing the
pathological immune activation to a normal or semi-
normal state, or at least maintaining the inflammatory
process under control [133–140]. Similarly, alloimmune
responses are inflammatory responses triggered in the
recipient patient to foreign (non-self-antigens) grafts
(organ/tissue) that consequently result in graft-rejection.
Therefore, downregulating immune responses is essential
for the success of organ/tissue transplantation (preventing
allograft rejection) [141,142].
Some reports indicate that MDSCs could also have a

“Yang” role based on initial results obtained from in vitro
and in vivo (animal models) studies on both autoimmune
disorders, as well as, immune responses to allografts. In the
context of organ/tissue transplantation, to date, the role of
MDSCs in prevention of allografts rejection have been

reported to be generally consistent, in that they have a good
“Yang” role. Taking into account that MDSCs are recruited
to the allografts upon adoptive transfer or upon their
expansion as a result of the immunosuppressant treatments
(tolerogenic treatments) given before the transplantation,
suggests that such cells could be considered as a potential
therapeutic approach for downregulating immune activa-
tion and mediating graft-host tolerance upon transplanta-
tion (for more details see References [7,132,143–148]). Of
note, these cells are not naturally (i.e., without human
intervention) expanded upon organ/tissue transplantation
[7,147,148], and thus cannot be described as good cells by
themselves, simply because mediating tolerance to a
foreign transplant (non-self-organ/tissue) is considered to
be an abnormal condition if human intervention was not
involved. Furthermore, adoptively transferred MDSCs that
fail to be recruited to the site of the allograft fail to protect
these allografts from the host immune responses [132].
On the other hand, as indicated earlier, the role of

MDSCs in autoimmune disorders could be beneficial. In
theory, this is true, but it could be argued that if the
regulatory immune cells including MDSCs are naturally
expanded and accumulated in autoimmune disorders, they
may be without any beneficial outcomes [9–11]. If this is
the case, there are two plausible possibilities to explain
such events: first, these expanded MDSCs are functionally
defective, i.e., they have no or at least have suboptimal
immunosuppressive capabilities which could be due to
intrinsic or extrinsic defects. This is important especially
because the loss of MDSC suppressive function makes
them unable to fulfill their anticipated jobs (i.e., immune
suppression) [149]. Second, they could be functionally
intact, i.e., they are immunosuppressive, but they cannot be
recruited to the site of inflammation upon expansion in
blood circulation. The latter, could be due to the down-
regulation of expression of chemoattractant chemokines in
the inflammatory microenvironments or downregulation of
the expression of certain chemokine ligands on MDSC
surfaces that subvert their homing. This explains the
extreme importance of the presence of chemotactic
markers on MDSCs for the success of adoptively
transferred MDSCs to downregulate inflammatory
responses against allografts. Indeed, CCR2–/– MDSCs
failed to protect allografts from the recipient immune
responses because they failed to be recruited to the site of
inflammation (allograft) [132]. Furthermore, if the disease
progression (inflammation markers) in an autoimmune
disorder directly correlates with the expansion and
accumulation of MDSCs, then we could postulate that
these cells could behave like pro-inflammatory cells rather
than anti-inflammatory cells and that’s why we proposed to
call them MDPCs as mentioned earlier (Fig. 3). Surpris-
ingly, this is exactly what has been recently documented by
many studies [9–11]. Thus, if MDSCs are not “naturally”
expanded in autoimmune conditions, then mediating their
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expansion in vivo using certain drugs and/or cytokines/
growth factors, or alternatively, adoptive MDSC transfer
upon activation and expansion in vitro will be a rational
therapeutic approach in this case (Fig. 3).

The Yin-Yang law of MDSCs

One important note that we should be aware of, is that there
is a critical difference between pathologically-activated/
expanded and normally-activated/expanded MDSCs. As
such, we can employ this information, in theory, to solve
the perplexing results addressing the “Yin and Yang roles”
of such cells. Although the expansion of MDSCs in an
inflammatory condition is considered a normal immune
response to contain that inflammation, still the outcome of
such expansion will determine whether it is beneficial
(Yang) or not (Yin). According to our understanding of the
recent advances in MDSC research and upon extrapolating
the results, we can say that the natural expansion of
MDSCs under abnormal pathological conditions is always
“Bad.” This is due to the fact that they contribute to the
pathogenesis of the pathological condition one way or
another, or at least, there is no association with better
clinical outcomes when such cells were identified and
quantified (as seen in cancer, infections, stress, sepsis,
etc.). On the contrary, the natural expansion of such cells

under normal physiologic conditions is “Good.” For
example, the number of PMN-MDSCs was shown to be
drastically expanded in healthy pregnant women during all
pregnancy stages when compared to non-pregnant women
as reported by Köstlin and coworkers [150]. Furthermore,
the number of M-MDSCs was shown to be expanded in the
first trimester when compared to the third trimester
indicating that M-MDSCs in particular could play an
important role in the implantation process [151]. This is
also supported by the notion that a reduction of such cells
in the peripheral blood and endometrium is observed in
early miscarriage outcomes [151]. The failure of in vitro-
fertilization (IVF) was also shown to be, at least in part, as
a result of a reduction in the number of PMN-MDSCs in
the patients [152]. Indeed, such immunosuppression
activity is essential to protect the fetus from the maternal
immune responses and to achieve mother-fetal tolerance
[2,3]. Nonetheless, one could argue against this by taking
into account the results of Zhang et al. [153] who showed
that elevated numbers of PMN-MDSCs is observed in
patients with endometriosis which is an inflammatory
condition that affects women in the reproductive age and
often leads to infertility. Importantly, Zhang et al. [153]
have also demonstrated that a marked reduction in
endometrial lesions can be achieved by depleting PMN-
MDSCs in mice. At first glance, there seems to be a

Fig. 3 Yin and Yang faces of MDSCs. Natural (without human intervention) MDSCs expansion is considered to be beneficial (Yang
face) only if it blunted the inflammation process that in turn consequently results in better clinical outcomes (disease resolution) and their
levels returned to the normal level before the inflammation onset started, as seen in the case 1. Otherwise, if the natural expansion of
MDSCs is not associated with inflammation resolution, rather, the inflammation continues, then these cells are considered to be directly
associated with the disease progression, or could be considered to be pro-inflammatory cells, indicating that they have a Yin face, as seen
in the case 2.
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contradiction in their results as illustrated by Budhwar and
colleagues [120], yet, we would say this is not a plausible
argument if the following notes are taken into considera-
tion: (1) the elevated count of PMN-MDSCs is normally
reported in healthy pregnant women but not in healthy
non-pregnant women, (2) unlike pregnancy, which is a
normal physiologic condition that is associated with
different normal changes that can only be observed in
pregnant females, endometriosis is a pathological condi-
tion where an elevation in the number of PMN-MDSCs in
non-pregnant women is observed. In other words, reduc-
tion of PMN-MDSCs in pregnant women is an abnormal
condition, as it is the case with PMN-MDSC elevation in
endometriosis in non-pregnant women. From this point of
view, one could suggest mediating the expansion of PMN-
MDSCs as a therapeutic strategy for pregnant women with
reduced PMN-MDSC numbers. Similarly, targeting PMN-
MDSCs for depletion could be suggested to be a
therapeutic strategy for endometriosis. Hence, when
talking about MDSCs, investigators have to separate the
pathological from the non-pathological conditions. More
importantly, they have to consider this issue when
addressing therapeutic strategies, i.e., harnessing such
cells to control certain inflammatory conditions by
inducing their expansion in vivo therapeutically (using
certain drugs or molecules) or via adoptive transfer of in
vitro activated and expanded MDSCs. As such, MDSCs
could have a “Yang” role only if human intervention is
included into the equation.
From this point of view, the “Yang” role of MDSCs is

indeed conditional, meaning that we consider it only if
these cells meet the criteria to be employed as a therapeutic
tool to contain inflammation in a specific pathological
condition, such as autoimmune disorders and organ/tissue
transplantation allografts. In other words, mediating their
expansion therapeutically or adoptive transfer of MDSCs
to certain inflammatory conditions in humans is considered
to be a rational therapeutic strategy only when: (1) these
cells are not already expanded in the recipient patients, or
at least are not expanded at the site of inflammation, (2) the
immunosuppressive effects mediated by MDSCs in vitro
and/or in vivo (i.e., animal models) should be associated
with remarkable beneficial outcomes, otherwise such
adoptive transfer will be meaningless [154]. Therefore, It
is suggested that translating the results obtained from the
in vitro and preclinical studies that showed a beneficial role
of MDSCs in a given pathological condition to the clinical
phase, while there is no data about the exact role and the
anatomical distribution of such cells in that pathological
condition in humans should be scientifically unaccepted. In
other words, in the absence of enough information about a
specific inflammatory pathological condition in humans
we cannot provide a scientific interpretation that represents
or at least resembles the human case upon taking results
from studies on animal models of that pathological

condition. For instance, there is no data that either
confirms or denies the presence of MDSCs in the tissues
of multiple sclerosis patients [155,156]. In this case, a
scientific interpretation that represents or at least resembles
the human case cannot be made in studying the role of
MDSCs in animal models of multiple sclerosis, namely the
experimental autoimmune encephalomyelitis (EAE) [157–
159]. Moreover, there are contradictions in results between
studies on EAE mice. Some investigators agree that
MDSCs are good while others disagree, in fact, this further
supports our view that we cannot provide definitive
conclusions without data from previous human studies.
For example, Yi and colleagues [159] were the first group
to study multiple sclerosis in EAE mice. They reported that
MDSC expansion exacerbated EAE disease in mice. In
other words, that MDSC expansion is associated with
unwanted outcomes manifested by increased inflammatory
responses which was concomitant with increased T helper
17 (Th17) differentiation. These results were consistent
with other studies on other autoimmune disorders such as
autoimmune arthritis and systemic lupus erythematosus
[9–11], in that MDSCs could behave like pro-inflamma-
tory cells in these conditions. On the other hand, other
groups have shown that MDSCs could have a good role in
controlling EAE disease progression [154,157,158].
Therefore, from the available data we cannot conclude
that MDSCs have a Yang role in this pathological
condition, but still we cannot exclude this possibility. It
is important to note that, unlike studies that indicated that
MDSC expansion exacerbates EAE disease progression
when the elevation of MDSCs occurred naturally during
the disease course [159], we find that the elevation of
MDSCs in studies that indicated that these cells could be
involved in EAE disease controlling was not naturally
occurring, rather it was as a consequence to the given
tolerogenic treatments or upon adoptive MDSCs transfer
[73,154,157]. Indeed, Elliott and colleagues wanted to
uncover the mechanism by which cannabinoids attenuate
neuroinflammation in patients with multiple sclerosis upon
using marijuana cannabinoids. They treated EAE mice
with cannabinoids and reported that the subsequent
elevation of MDSCs was the reason for the attenuation
of EAE in cannabinoid treated mice [157]. It must be
remembered; however, this does not necessarily mean that
the same mechanism of action (scenario) would occur in
humans, necessitating the performance of studies on
humans. Another important note to be considered in this
context is that the function of in vitro expanded MDSCs
differs from those isolated from abnormal donors (patho-
logical conditions). So, even if there is enough information
about the role and the distribution of MDSCs in a specific
inflammatory condition, the in vitro and the preclinical
studies do not necessarily represent exactly the clinical
status. Therefore, investigating the role and the distribution
of MDSCs in autoimmune disorders in humans is urgently
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needed, and the final verdict in this case can be made only
after studying the role of MDSCs in humans suffering from
autoimmune disorders such as multiple sclerosis.
A critical difference between pathologically and nor-

mally activated/expanded MDSCs is that, in contrast to
pathological conditions in normal conditions (such as
pregnancy) these cells are activated and expanded,
relatively, for a short period of time. Once the desired
outcome is achieved, protecting the fetus from maternal
immune response in the case of pregnancy, their counts are
normalized (Fig. 1).
Finally, it is important to remember that the role of

MDSC is not yet investigated in many inflammatory
conditions, and if so, there is no enough evidence to
declare whether they have a Yin or Yang role in such
conditions, e.g., the role of MDSC in wound healing [1],
thus additional investigations are required to delineate their
role in such conditions.

Conclusions

Indeed, MDSCs are more complex than initially thought.
Although commonly defined as immature potent immu-
nosuppressor cell populations of myeloid origin, it is now
evident that MDSCs comprise of both mature and
immature cells, indicating that MDSCs should not be
defined as immature cells. Moreover, recent advances in
MDSC biology indicate that characterization of these cells
using the surface phenotype alone is not possible, due to
the similarities between M-MDSCs and PMN-MDSCs
with their cognate cells, namely monocytes and neutro-
phils, respectively. For example, in mice, MDSC popula-
tions cannot be differentiated from normal monocytes and
neutrophils based on their surface phenotypes only,
indicating the need for other assays that, at least, measure
their suppressive capabilities. A similar case is also
observed in humans. The discovery of highly specific
markers exclusively expressed on MDSCs populations can
help avoid this problem. Fortunately, recent investigations
show that the recently discovered markers LOX-1 and
SPARC could be used to define PMN-MDSCs populations
directly without a need to use other assays that measure
their suppressive activities, as they are expressed by the
immunosuppressive cells only. The discovery of such
highly specific markers for M-MDSCs is also important for
better MDSC characterization. To this end, we encourage
investigators to uncover such markers.
Of note, when studying MDSCs, the technical issues

that could influence the result should also be taken into
consideration. These include the type of sample (whole
blood vs. PBMC), type of collection tubes, time of sample
processing (as soon as possible vs. delayed), storage
temperature (room temperature vs. refrigeration or freez-
ing), and flow cytometry gating. If these issues are not

addressed the results will be affected and this could widen
the contradictions present in the literature. Furthermore,
additional studies are also required to investigate such
factors in other types of samples, such as the bone marrow,
liver, spleen, tumors, etc. in order to fill the gap of
knowledge in this regard.
In the context of the origin of MDSC expansion, recent

advances suggest that MDSCs may be expanded as a result
of emergency myelopoiesis in the bone marrow, extra-
medullary myelopoiesis mainly in spleen, and reprogram-
ing of mature cells in the periphery. These events may
occur simultaneously. However, more investigations are
needed to further clarify this issue.
The anatomical distribution of MDSCs is also another

important matter for better understanding their role in
pathophysiology. Although their anatomical distribution is
well established in mice, and to some extent in non-human
primates, it is not established in humans, particularly in
health. This could stand as a barrier to our understanding of
their role in human pathophysiology, and limit the
understanding and interpretation of results when examin-
ing the role of MDSCs in animal models of human disease.
The latter is due to the lack of reference information to date
in humans and we, therefore, encourage investigators in
MDSCs research to open this door as soon as possible.
With respect to the mediators of MDSC expansion we

addressed the model presented by Condamine and
Gabrilovich. This model describes the processes that
govern MDSC expansion and accumulation. However,
recent advances show that this model is still a premature
model and can only describe the process partially. Thus,
additional investigations are required to establish a model
that precisely describes the process of MDSC expansion
and compensate the limitations of “Condamine and
Gabrilovich” model.
In the context of the factors that mediated the expansion

of one MDSC population over the other, we have shown
that transcription factors are extremely important in
expansion of one MDSC population over the other.
However, it is essential to point out that signaling
pathways and activation of transcription factors is
determined as a consequence of MDSC interaction with
molecules and/or cells within the inflammatory micro-
environment, which, in turn, determines the differentiation
fate of such cells. Therefore, the microenvironment could
be considered the real driving force behind this process.
However, additional investigations are needed to further
clarify the factors involved in expansion of one subset over
the other.
In the Yin and Yang section we tried to remove the

ambiguity surrounding the MDSC Yin and Yang concepts.
To this end, we showed that the expansion of MDSCs in
pathological conditions including cancer, infection, aging
and autoimmune disorders has a negative impact, and this
is true when such expansion occurs naturally without
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external intervention and such expansion is associated with
bad outcomes. On the other hand, we showed that MDSCs
could have a Yang role under certain conditions such as
pregnancy, and this is the only normal condition to our
knowledge where MDSCs are expanded without negative
effects. Finally, we showed that MDSCs could be
harnessed as a therapeutic strategy to control certain
inflammatory conditions where MDSCs are not naturally
expanded. As such we wrote the law of Yin-Yang law of
MDSCs.
Of note, it is essential to realize that mice are widely

used as animal models for studying many human diseases
and for testing new treatments and vaccines. However,
there are great differences between humans and mice,
particularly in the immune system. In fact, this explains
why contradicting results are observed upon translating the
promising results obtained from mouse studies on a
pathological condition to the clinical phase on humans
[19]. Non-human primates are much closer to humans in
many aspects including the immune system [19–22], yet
they are only recently being included in MDSC research.
We therefore strongly encourage scientists in this field to
include such animal models in the near future.
Finally, in the context of MDSC functions, in addition to

their immunosuppressive activity, recent advances have
also shown that MDSCs have pro-inflammatory activity in
certain pathological conditions (such as autoimmune
disorders), suggesting that the previous definition should
be reevaluated. Herein, we sub-grouped these cells into
immunosuppressive MDSCs and pro-inflammatory
MDPCs according to the observed immune responses
once expanded in a pathological condition.
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