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Abstract deep learning (DL) has achieved state-of-the-art performance in many digital pathology analysis tasks.
Traditional methods usually require hand-crafted domain-specific features, and DL methods can learn
representations without manually designed features. In terms of feature extraction, DL approaches are less
labor intensive compared with conventional machine learning methods. In this paper, we comprehensively
summarize recent DL-based image analysis studies in histopathology, including different tasks (e.g., classification,
semantic segmentation, detection, and instance segmentation) and various applications (e.g., stain normalization,
cell/gland/region structure analysis). DL methods can provide consistent and accurate outcomes. DL is a
promising tool to assist pathologists in clinical diagnosis.
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Introduction

In clinical medicine, pathological examination has been
regarded as a gold standard for cancer diagnosis for more
than 100 years [1]. Pathologists use a microscope to
observe a histological section. Many advanced technolo-
gies, including hematoxylin and eosin (H&E) staining and
spectral methods, have been applied in the preparation of
tissue slides to improve imaging quality. However, intra-
and interobserver disagreement cannot be avoided through
visual observation and subjective interpretation, especially
for experienced pathologists [2,3]. The limited agreement
has resulted in the necessity of computational methods
for pathological diagnosis [4–16] because automatic
approaches can attain robust performance. The first step
for computer-aided analysis is digital imaging.
Digital imaging is the process of acquiring, compres-

sing, storing, and displaying scenes digitally. Whole slide
imaging is a more advanced and frequently used
technology in pathology compared with traditional digital
imaging technologies that process static images through
cameras [17–19]. This technology involves two processes.

A specialized scanner is utilized to convert an entire glass
histopathology or cytopathology slide into a digital slide.
A virtual slide viewer is used to visualize the collected
digital files. This technique can efficiently generate high-
resolution whole slides. A whole slide image (WSI)
typically contains trillions of pixels ranging from 200
MB to 1 GB [20]. The size of one patient’s data generated
from a biopsy can reach TB level because a WSI records
the information of the entire tissue section. The WSI
immensely promotes systematic image analysis toward
microscopic morphology.
Digital pathology (DP) analysis aims to determine the

degree of tissue cancerization and predict its prognosis.
Traditional computational methods objectively evaluate
disease-related tissue changes by extracting mathematical
features, such as textural [6,7,9,12], morphological [4,5],
structural [6,13–16], and fractal features [8,11]. However,
staining, fixation, and sectioning difference can cause huge
variances, thereby causing difficulties to these hand-crafted
features with limited generalization. Deep learning (DL)
methods provide domain agnostic solutions that are ideally
suitable for DP image analysis tasks.
DL is a popular machine learning method based on a

deep neural network. A deep neural network [21] is
composed of multiple nonlinear modules and can learn
representations from raw data without domain expertise.
As a representation learning framework, multilevel
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features are extracted during the multilayer propagation.
Network internal parameters are randomly initialized at the
beginning and updated through backpropagation (back-
ward propagation of errors). DL can discover intricate
structures in large data sets. Many training data usually
result in enhanced performance. A convolutional neural
network (CNN) is a popular deep neural network [22]. It
was first proposed by LeCun et al. [23]. CNN is suitable
for processing images in the form of 2D or 3D arrays.
Convolutional and pooling layers are two typical compo-
nents. The convolutional layer extracts feature maps from
previous layers through the convolutional kernel. Every
unit of the output feature map is the multiply–accumulate
of the convolutional kernel and the local input area. The
same kernel is shared among all the units in a feature map,
making the network invariant to target locations. The
concept of weight sharing and receptive field can reduce
model complexity and the number of weights, thereby
deepening the depth of CNN. The pooling layer is used to
merge neighboring features from the previous convolu-
tional layer, thereby immensely reducing the feature
dimension and increasing the robustness to small shifts.
Nonlinearity, such as a rectified linear unit module, is
another important component that enables the network to
emulate complex functions [24]. CNN takes raw images
(or large patches) as input to avoid the complex feature
extraction in conventional recognition algorithms. CNN is
highly invariant to translation, scaling, inclination, and
other forms of deformation. It has brought great break-
throughs in image processing and is widely applied in a
vast variety of computer vision tasks. Histopathology
images are characterized by data complexity, making deep
architectures extremely suitable for complex feature
learning in DP analysis [25].
This paper systematically reviews the research direc-

tions of DL in DP research: (1) Image preprocessing–stain
normalization. Stain variation can seriously deteriorate
training results. Color normalization is a prerequisite step
for automatic algorithms. (2) Obtaining clinical/biological
structure information. Qualitative and quantitative histol-
ogy characteristics are the key indicators used in cancer
evaluation [26,27]. The extraction and analysis of low-
(cell), middle-(gland), and high-level (region) objects

(Fig. 1) through classification, semantic segmentation,
detection, and instance segmentation are extensively
discussed. (3) Grading and prognosis. DL methods that
either extract valid pathological information to facilitate
subsequent survival prediction and treatment suggestions
or conduct cancer grading on theWSI are comprehensively
presented. We aim to provide readers with either medical
or engineering backgrounds with thorough and detailed
cases in the intersection of DL and medical image
processing.

Stain normalization

Original tissue sections are visually transparent under the
microscope. Efficient examination requires dyeing tissue
sections with colored histochemical stains. Stains enhance
the contrast among various structures by selectively
binding to particular cellular components. However,
color variation exists in histopathology images because
of the uncertainty of multiple factors, such as (1) scanner
type, (2) stain concentration, (3) manufacturer, (4) time
elapse, (5) environmental temperatures upon staining, and
(6) digitization. Undesired color variations will affect the
visual examinations of tissues by pathologists and
automatic analysis of DP images by software. Stain
normalization (also known as color normalization) that
basically transfers the mean color from one source image
to others is developed to alleviate interimage biases.
Although DL algorithms can partially mitigate color
variation through proper data augmentation, the result
performance deteriorates without stain normalization
because of a limited amount of data. Therefore, stain
normalization acts as a prerequisite for pathological image
analysis.
Various approaches [28–31] have been proposed for

stain normalization. Khan et al. [28] presented a
supervised method based on nonlinear mapping using a
representation derived from color deconvolution. Principal
color histograms were derived from a set of quantized
histograms. A global stain color descriptor was then
computed. Thus, a supervised classification framework
was learned to calculate image-specific stain matrices.

Fig. 1 Multilevel WSI objects (delineated in red lines).
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Vahadane et al. [29] proposed a structure-preserving
method for stain separation and color normalization to
preserve biological structure information by modeling
stain density maps on the basis of nonnegativity, sparsity,
and soft classification. Janowczyk et al. [30] presented an
algorithm based on an unsupervised neural network. They
explored sparse autoencoders (SAEs) through an iterative
process to partition similar tissue types in source and target
images. The learned filters can optimally reconstruct the
original image. The color of the target image was then
altered to match the source image tissue through histogram
specification. Bentaieb and Hamarneh [31] proposed a
different approach based on generative adversarial net-
works. They cast stain normalization as a style transfer
problem to transfer the staining appearance of tissue
images across data sets. A recent review summarized the
pros and cons of various stain normalization methods for
histopathology images [32].

Cell level

Cellular objects are the frequently used biomarkers for
cancer histology diagnosis [33,34]. In accordance with the
widely-used Nottingham–Bloom–Richardson grade for
breast cancer screening [33], tubule formation, nuclear
pleomorphism, and the number of mitotic figures are
essential for the assessment of breast cancer. Nuclei
features, such as spatial distribution and morphological
appearance, play an important role in identifying mitotic
index and nuclear pleomorphism level [2,33–35]. The
number of mitoses is a critical predictor of tumor
aggressiveness and is of great importance for cancer
screening and assessment. Manual cell segmentation and
mitosis counting are time consuming and labor intensive
for pathologists. The results are usually subjective,
exhibiting intra- and interindividual variability. Thus, the
development of automatic segmentation and detection
methods is essential for efficient and reliable pathological
diagnosis. However, accurate detection and segmentation
of nuclei experience the following difficulties: (1) many
cells touch each other with weak nuclear boundaries,
making them difficult to discriminate; (2) variability
exhibits in sizes, shapes, textures, and appearances of
individual nuclei; (3) background clutter, stain imbalance,
and image artifacts unavoidably exist. In addition to the
general difficulties of nuclei analysis in the histopathology
image, the mitosis analysis shows some unique challenges.
The mitosis exhibits diverse shape configurations in
different growth stages. Apoptotic nuclei look similar to
mitoses, thereby causing false positive during detection
[36]. A number of DL-based approaches have been
proposed to achieve enhanced performance. Here, we
first review the application of DL in cell and nucleus
semantic segmentation. We then summarize the develop-

ment of cell and mitosis detection. We discuss nuclei
instance segmentation, which is a combined task of nuclei
semantic segmentation and detection. Table 1 presents an
overview of each task in the cell-level analysis.

Cell and nucleus semantic segmentation

The segmentation task, which aims to assign a class label
to each pixel of an image, is a common task in pathology
image analysis. Neural membrane segmentation in electron
microscopy (EM) images is the primary task for automated
pipeline reconstruction and mapping neural connections
[65]. Cellular object segmentation is a prerequisite step for
cellular morphology computation, characteristic quantifi-
cation, and cell recognition. In glioblastoma multiforme,
round oligodendroglioma can be distinguished from
elongated and irregular morphology of astrocytoma with
the assistance of nuclear segmentation [39]. In cervical
cytology diagnosis, nuclear segmentation is necessary to
discover all types of cytological abnormalities that are
usually identified by certain nuclear abnormality [66].
Therefore, the development of accurate automatic nuclear
segmentation methods is essential for computer-assisted
diagnosis to ease pathologists’ burden of manual inspec-
tion and alleviate the missed diagnosis and misdiagnosis.
Previous studies [67–69] for nucleus or cell segmentation
focused on region growth, threshold, clustering, level set,
supervised color-texture-based, and watershed-based
methods. These conventional approaches depend on
elaborately designed features or representations that
require intense domain knowledge and are unadaptable
to different circumstances. DL approaches has been
increasingly applied for automated nuclear segmentation.
CNN is initially used in classification tasks, where the
input is an image, and the corresponding output is a single
class label. Hence, some studies have regarded segmenta-
tion tasks as pixelwise classification tasks [37,39,40].
These methods are based on fixed pipeline steps. First, a
group of windows is densely sampled from the WSI via a
sliding window. The central pixel is then predicted to a
certain class at a probability by utilizing the rich context
information of the window. This pixel is assigned a label,
such as “foreground” or “background” in accordance with
the fixed threshold. Finally, the whole image is segmented
in accordance with the labels of all the pixels. DL methods
function as the feature extractor and classifier during the
pixel-level classification. Cireşan et al. [37] first applied a
CNN-based method to neural membrane segmentation in
EM stacks using the above strategy. They achieved the best
performance at ISBI 2012 EM Segmentation Challenge
[65]. Similarly, Zhou et al. [39] proposed an approach for
nuclear segmentation. They randomly cropped image
patches at nuclear centers and jointly learned a set of
convolutional filters and a sparse linear regressor. The
segmentation results were obtained by applying a threshold
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to the regressor prediction in performing pixelwise binary
classification. For most single-scale CNN-based methods,
a small patch size cannot provide sufficient context
information for learning effective features. Windows with
large sizes are also unfeasible to achieve the goal because
of the high computational cost. Song et al. [40]
implemented a multi-scale CNN framework to segment
cervical cytoplasm for solving the scale variations in the
nuclei. They first extracted feature representations via
multi-scale CNN and obtained coarse segmentation by
inputting the features into a two-layer neural network. A
graph partitioning model was then implemented on the
basis of coarse segmentation and superpixels for fine
segmentation. Finally, they computed nuclear markers to
split touching nuclei. A similar approach that combines
CNN features with morphological operations for nuclei
segmentation was presented in Reference [42]. Xing et al.
[41] used a CNN model to learn the feature representation
of raw data and to generate a probability map. Each pixel
was assigned a probability indicating its probability that it
belongs to a nucleus. An iterative region merging approach
was then performed to initialize the contours. Accurate
nucleus segmentation was achieved via a selection-based
sparse shape model. Although the above pixel-based
methods [37,39–42] have shown promising performance,
obvious limitations are found. First, the patch size in pixel-
based methods is small. Although this property can
increase the locating accuracy, rich context information
cannot be fully utilized. Second, densely selected patches
increase the calculation burden, making the algorithm
cumbersome and time consuming. Finally, these methods
usually rely on prior assumptions on the target structure,
thereby reducing the generalization to targets with different
morphologies. Semantic segmentation tasks have become
asymptotically and absolutely efficient with the success of
fully convolutional network (FCN) [70]. This end-to-end
network consists of a downsampling path and an
upsampling path. The downsampling path extends the
classification network structure, which is composed of
convolutional and pooling operations. The upsampling
path includes convolutional and deconvolutional layers
that can produce dense classification scores for a whole
image. The full image is fed as input rather than multiple
dense patches when conducting training and testing. A
pixelwise probability map will be outputted with one
single forward propagation. Zhang et al. [43] combined
FCN and graph-based approach for cervical nuclei
segmentation. The FCN acted as a nucleus high-level
feature learner and generated a nucleus label mask and a
nucleus probabilistic map. The former was used to guide
the graph construction, and the latter was formulated into
an in-region cost function. They achieved state-of-the-art
Zijdenbos similarity index of 0.92 � 0.09. Ronneberger
et al. [38] innovatively modified and extended the FCN by

adding a symmetric expanding path along with a usual
contracting path. High-resolution features from the con-
tracting path and the upsampled output from the expanding
path were combined to enable precise localization. The
resulted architecture was named U-net, and many varieties
were subsequently invented for multiple medical image
tasks [44,71,72]. Without pre- and postprocessing, FCN
[70] and its variants, such as U-net [38], are proved to be
well-suited in medical image segmentation tasks.

Cell and mitosis detection

A detection task aims to find and locate the regions of
interests (ROIs), such as nuclei or mitoses in a tissue slide
and is of great importance to cancer screening. Cell spatial
distribution analysis and mitosis counting can help in
distinguishing differentiation degrees [73]. Automatic cell/
nuclei detection serves as an essential prerequisite for a
series of subsequent tasks, such as cell/nuclei instance
segmentation, tracking, and morphological measurements
[74]. Object detection is necessary to automatically acquire
spatial distribution and quantity information. A detection
task requires classifying and positioning the targets. Many
traditional methods based on hand-crafted features have
been proposed [75–78] to solve this problem. A number of
DL-based studies have been conducted on this field in
recent years.
In recent studies toward nuclei detection, feature

representations learned by DL-based methods have been
demonstrated more effective than hand-crafted features
[79]. DL-based nuclei detection approaches can be divided
into two categories: (1) conduct per-pixel classification via
a sliding window to find local maxima on a probability
map. Xu et al. [47] applied a stack SAE to learn high-level
features using such strategy and fed into a softmax
classifier to classify each patch as nuclear or nonnuclear.
Their method achieved promising performance on breast
cancer histopathology images. Sirinukunwattana et al. [46]
proposed a spatially constrained CNN to generate a
probability mask for spatial regression. Their model
predicted the centroid locations of nuclei and their
confidence whether they corresponded to true centroids;
(2) regress the proximity value for each pixel. Xie et al.
[45] presented a CNN-based structured regression
approach. Their method generated proximity patches that
show high values for pixels near cellular centers rather than
a single class label assigned to an input image patch. In this
way, each cell was detected. However, the model with a
large-size proximity patch was difficult to train because the
subsampling operation resulted in information loss. In their
another work [48], they extended the previous method with
a fully residual CNN to directly output a dense proximity
prediction that had the same size as the input image. The
experimental results showed the superiority of their

474 Deep learning in digital pathology image analysis: a survey



method in terms of detection accuracy and speed.
Given the importance of mitosis counting for cancer

prognosis and treatment, some challenges or contests have
been encounterd in developing robust algorithms on
mitosis detection [80–82]. Most methods regarded this
task as follows: (1) as a classification problem that relies on
sliding window to classify whether an image patch is
centered with the mitosis; (2) as a semantic segmentation
task that first segments the images to find candidates of
mitoses and then classifies these candidates to obtain the
final detections; (3) as a proposal-based detection issue that
produces a number of potential proposals on the image
patch and eliminates the most possible ones.
(1) As a classification problem. Cireşan et al. [49]

utilized CNN as a pixelwise classifier via a sliding window
manner to detect the mitoses in breast histology images.
Their method achieved the best performance in the 2012
ICPR Mitosis Detection Challenge [81]. Wang et al. [50]
performed mitosis detection in breast cancer pathology
images with the combination of CNN and hand-crafted
features. They presented a cascaded approach that possibly
maximized the exploiting of the two distinct feature sets.
Such a strategy exhibited higher accuracy and less
demanding computational cost compared with each
individual feature extraction technique. To acquire suffi-
cient training images, crowdsourcing was introduced in the
learningprocess of CNN to exploit additional data sources
annotated by nonexpert users for mitosis detection [52].
They trained a multi-scale CNN model with the same basic
architecture on different image scales to perform mitosis
detection and provided the crowds with mitosis candidates
for annotation. The collected annotations were then passed
to the existing CNN with the specially designed aggrega-
tion layer attached for model refinement and ground truth
generation. These methods are usually computationally
demanding.
(2) As a semantic segmentation task. Chen et al. [36]

proposed a deep regression network based on FCNs. Their
method can produce a dense score map with the same size
as the input image and can be trained in an end-to-end
fashion. The regression layer was added at the end of the
FCN architecture, and the proximity score map was
defined to efficiently locate the mitotic centroid on the
map. Their method was concise and general to be applied
to other similar tasks. They also utilized a transfer learning
strategy from cross-domain to alleviate the insufficiency of
medical data. In their another study [51], they used two
networks to build a cascade detection system. They first
exploited FCN to locate the candidates of mitoses. A
second fine discrimination model was then applied to
classify the candidate patches. Li et al. [55] expanded the
mitosis labels that were usually single pixel to labels with
concentric circles, where the inside circle was a mitotic
region, and the outside ring was a “middle ground.” Thus,

a concentric loss was defined to detect mitosis from a
segmentation model.
(3) As a proposal-based issue. Li et al. [53] applied a

proposal-based deep detection network to the mitosis
detection task and utilized a patch-based deep verification
network to improve the accuracy.
Strategy 1 (classification-based) is largely applied in

previous DL-based studies. The advancement of computa-
tional power and DL technologies have promoted Strategy
2 (semantic segmentation-based) to be the mainstream.
Strategy 3 (proposal-based) is becoming increasingly
popular with the success of detection algorithms developed
in natural scenes.

Nuclei instance segmentation

Instance segmentation is a unified work that groups pixels
into semantic classes and object instances [83]. Compared
with detection, instance segmentation provided finer
segmentation rather than a box for each independent
object. Unlike semantic segmentation, foreground pixels
are separated into different individuals [84]. Nuclei
instance segmentation, which aims to differentiate nuclear
regions from the background and separate them into
different individuals, is fundamental to acquire many
grading indexes. For example, the average nuclear size
estimated by nuclei instance segmentation results is an
important indicator used for nuclear pleomorphism scoring
[85] in manual [86,87] and automatic [88] measurements.
Increasing explorations have been conducted for nuclei
instance segmentation.
Some public data sets [61,89–91], such as the Fluo-

N2DL-HeLa data set from ISBI cell tracking challenge
[89], the Computational Precision Medicine Nuclear
Segmentation Challenge at MICCAI 2015 and MICCAI
2017 [90], the Triple Negative Breast Cancer [91], and the
Multiorgan Nuclei Segmentation (MoNuSeg) Data set
[61], are available to facilitate the development of nuclei
instance segmentation algorithms. The cell/nucleus
instance segmentation approaches are classified into two
strategies, namely, (1) semantic segmentation-based: apply
semantic segmentation with traditional image processing
methods (image labeling, watershed, etc.) to separate
nuclei into different individuals; (2) detection-based:
present potential seeds (centers of each nucleus) or
proposals (bounding boxes surrounding each nucleus)
initially and predict segmented masks on the basis of
detection outputs.
(1) Semantic segmentation-based. To separate touching

nuclei into individual ones, Chen et al. [59] proposed to
integrate contour information into a multilevel FCN for
developing a deep contour-aware network. Their method
won the 2015 MICCAI Nuclei Segmentation Challenge
[90]. Kumar et al. [61] explicitly introduced a third class of
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nuclear boundary (besides foreground that is inside any
nucleus and background that is outside every nucleus) to
discriminate different nuclear instances. Song et al. [60]
first relied on a semantic FCN to classify each pixel into the
class of nuclei, cytoplasm, and background. They then
defined overlapped cell splitting as a discrete labeling task
and designed a suitable cost function to split crowded cells.
They applied a dynamic multitemplate deformation model
for cell boundary refinement. Similarly, Yang et al. [56]
achieved instance-level segmentation of glial cells in 3D
images by first obtaining voxel-level segmentation via
FCN. Subsequently, they adopted a k-terminal cut algo-
rithm to separate touching cells. Naylor et al. [63]
predicted the distance map of nuclei with U-net and a
regression loss. Postprocessing was conducted on the basis
of the output of the regression network. Zhou et al. [64]
achieved the highest ranking in the 2018 MICCAI
MoNuSeg Challenge [92]. Their method aggregated
multilevel information between two task-specific decoders.
With bidirectionally combined task-specific features, they
leveraged the spatial and texture dependencies between the
nuclei and contours. Zeng et al. [72] applied residual-
inception-channel attention-U-net. Their model output
contour and nuclei masks to achieve instance segmenta-
tion. The above methods tend to obtain semantic
segmentation results as a premise and implicitly or
explicitly introduce contour priors (e.g., as the additional
label, encoded in the distance loss, etc.) to disentangle
nucleus-to-nucleus connections. Such methods show
simplicity and fastness. However, some disadvantages
are found. Oversegmentation will lead to additional
identified nuclei instances. Undersegmentation will fail
to split touching nuclei accurately. These methods usually
experience heavily-engineered post-processing, making
them difficult to be generalized. Nuclei with irregular
boundaries cannot be well-handled.
(2) Detection-based. Akram et al. [57,58] designed a

two-stage network for nuclei instance segmentation. In the
first stage, a FCN model proposed possible bounding
boxes for cell proposals and their scores. Nonmaxima
suppression [93] was then implemented to remove low-
scored duplicate proposals. In the second stage, segmenta-
tion masks were obtained through thresholding and
morphological operations [57] or predicted using a second
CNN for each proposed bounding box [58]. Ho et al. [62]
proposed a 3D CNN framework for nuclei detection and
segmentation in fluorescence microscopy images. They
first used the 3D distance transform [94] to individually
detect seeds and a 3D CNN segmented nuclei within a
subvolume centered at each seed. Region-based object
detection algorithms [95,96] have been increasingly used
for nuclei instance segmentation [97,98]. Detection-based
approaches usually exhibit high performance but cost
considerable time and may include certain false positives
or false negatives.

Gland level

A gland is a group of cells that can synthesize and release
proteins and carbohydrates [99,100]. It is included in many
types of organs, such as colon, breast, and lung.
Cancerization of these organs usually causes organiza-
tional and structural changes toward their glands [101].
Adenocarcinoma is a common form of carcinoma [102].
Among all the colon cancers, colorectal adenocarcinoma is
the most common form that originates in intestinal glands
[100]. Most of the pancreatic cancers are adenocarcinomas
[100,103]. The quantitatively measured glandular forma-
tion is a crucial indicator for the degree of differentiation
[104], and architectural features (such as size and shape)
are equally important for the prediction of prognosis [105].
Instance segmentation [106] is a prerequisite step to obtain
the morphological and statistical features of glands in
digital histology images. In this section, we review the
application of DL in gland instance segmentation.

Instance segmentation

Gland instance segmentation is a challenging task because
of the huge variance of gland morphology [101]. First, the
size and shape of glands vary with different sectioning
orientations. Glands within the same tissue image can
possibly have different sizes when the orientation is
different (Fig. 2A and 2B). Second, the density difference
between the connective tissue and glands can cause
artifacts to the boundaries of glandular tissue (Fig. 2C).
Third, section thickness and dye freshness or uniformity
will lead to intensity variations (Fig. 2B and 2D). Finally,
glands in neoplastic tissue usually show heterogeneous
appearances (Fig. 2E and 2F). The glandular structures will
degenerate with the increase in the grading of cancer.
Separating touching glands, which is a crucial step in
instance segmentation, is challenging.
The automatic segmentation of glands in histology

images has been explored by many studies [104].
Traditional methods rely on the extraction of hand-crafted
features, conventional classifiers, and a large amount of
prior knowledge [67,101,112–125]. Although these studies
perform well for tissues with many regular glands (usually
healthy and benign cases), they yield unsatisfactory results
for cancer cases, where the glands show substantial
variation and deformation. DL algorithms have enabled
accurate and general gland segmentation.
In the 2015 MICCAI Colon Gland Segmentation

Challenge (GlaS) [100], DL methods were introduced in
the segmentation and classification tasks of the gland and
showed superior performance over traditional methods.
Chen et al. [59] proposed an FCN-based deep contour-
aware network (DCAN). This method combined gland
segmentation and contour prediction into a unified multi-
task structure. Multiple regularizations can provide
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complementary information for the two tasks. The final
segmentation mask, with individual glands separated from
each other, can be generated through this single forward
network by fusing the predicted probability map and
predicted contour. In the semantic segmentation branch,
DCAN combined multilevel contextual features to handle
variant gland shapes. This method achieved the best
performance in the contest. Xu et al. [106,109] conducted
gland instance segmentation on this data set. They
designed a deep multichannel side supervision system
(DMCS), where region and boundary cues were fused with
side supervision to solve the instance segmentation issue.
The DMCS adopted one channel for semantic segmenta-
tion and another channel for contour prediction. The region
feature channel followed the FCN structure. The holisti-
cally-nested edge detector (HED)-side convolution chan-
nel was inspired by HED [126], where five multi-scale
outputs were generated from the FCN channel to combine
into a final edge map. The boundary information loss
during the FCN downsampling can be compensated by
adding an additional contour segmentation channel.
Different from DCAN, DMCS alleviated the burden of
postprocessing by generating the final instance segmenta-
tion result through fully convolutional layers. Their
method exceeded the previously reported performance on
this data set, including the competition champion [59].
DCAN and DMCS aim to preserve object boundaries by

adding an additional branch. BenTaieb et al. [110]
incorporated topology and smoothness information into
the training of FCN by designing a new loss function. In
this work, two losses, namely, traditional pixel-level and
topology-aware losses, were combined. Hierarchical rela-
tions and boundary smoothness constraints were encoded
into a unified topology-aware loss function. The label
hierarchy should be followed in accordance with the
proposed algorithm. Epithelium and lumen regions were
labeled as foregrounds, and surrounding stroma was
labeled as background. The boundary was smoothed by
limiting the neighborhood pixels to output similar
probabilities. This end-to-end network did not require
postprocessing nor cause additional computational burden
during testing. BenTaieb et al. [111] creatively proposed
another method to solve the gland instance segmentation
problem. On the basis of the thought that classification and
segmentation tasks can provide compensation information
for each other, they designed a symmetrically joint
combined classification and segmentation network. Two
loss functions were utilized, where the first function
penalized the classification of gland grading, and the other
was used for pixel-level segmentation. The pretrained
classification output can provide spatial information of
multiple glands that assists in the discrimination of
different objects. In this way, improved performance was
achieved for the two tasks.

Table 2 Overview of papers using deep learning for gland-level DP image analysis
Reference Year Architecture Methods Postprocessing

[107] 2017 CNN Object-Net to predict foreground and Separator-Net to segment
individuals

Yes

[108] 2016 CNN Pixel-level classification Yes

[59] 2017 FCN FCN-based semantic segmentation and contour prediction Yes

[106,109] 2016, 2017 FCN FCN-based semantic segmentation and HED side convolution
channel for contour detection

No

[110] 2016 FCN Combine two losses into a unified topology-aware loss No

[111] 2016 CNN Multitask learning for gland grading and segmentation No

CNN, convolutional neural network; FCN, fully convolutional network; HED, holistically-nested edge detector. All studies use the Warwick-QU data set of
histology colon glands stained by H&E.

Fig. 2 H&E stained pathology images of colon glands [100, 116]. (A–D) Benign cases. (E and F) Malignant cases. All the slides are
under the same magnification and lighting conditions.
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In addition to the abovementioned FCN-based
approaches, some studies have viewed gland segmentation
as a pixel-based classification problem [107,108]. One of
the participant teams in 2015 GlaS [100], Kainz et al.
[107], applied two distinct CNNs as pixelwise classifiers.
The first network called Object-Net performed four-class
classification to distinguish benign background, benign
gland, malignant background, and malignant gland. The
second network called Separator-Net was trained to predict
the separating structures among glands for differentiating
touching glands. The postprocessing method based on
weighted total variation transformed the combination of
two outputs into a final segmentation result. This method
successfully segmented glands from the background and
classified whether the tissue was benign or malignant. Li
et al. [108] used Alexnet [126] and Googlenet [127] (with
weights pretrained on ImageNet [128]) for window
classification rather than using specifically designed
CNN structures. Their result outperformed the previous
state-of-the-art method that utilized hand-crafted features
with support vector machine (SVM) (HC-SVM) [129].
They also validated that the fusion between CNN and HC-
SVM will result in additional improvement, indicating that
the two contrasting methods are complementary (Table 3).

Region level

The DP analysis is regarded as a region-level task when the
target ROI is a larger tissue compared with the cell and
gland. Region-level information is an important diagnostic
factor. The biological behavior and morphological char-
acteristics of tissue cells and contextual information should
be considered. Pathologists need to identify tumor areas in
WSIs, determine carcinoma types (e.g., small cell and non-
small types for lung cancer), and assess their aggressive-
ness in the following treatment. Several challenges exist in
the automatic analysis of region-level tasks [130]: (1) the
complexity of clinical feature representation: histopathol-
ogy characteristics, such as morphology, scale, texture, and
color distribution, can be remarkably heterogeneous for
different cancer types, making it difficult to find a general
pattern for different cancers; (2) the insufficiency of
training images: different from a natural scene image data
set that can include millions of images, a pathological
image data set usually contains only hundreds of images;

(3) the extremely large size of a single histopathology
image: a gigapixel WSI typically possesses a size larger
than 100 000 pixels and contains more than 1 million
descriptive objects, thereby making effective feature
extraction difficult. In this section, we will illustrate the
application of DL in region-level structure analysis from
two aspects. The first aspect is to classify whether the
region is cancerous or distinguish different cancer
subtypes. The second aspect is to segment certain
structures associated with specific clinical features.
Table 4 presents an overview of each task in the region-
level analysis.

Classification

Previous studies [141,142] on histopathology image
classification mainly focused on manual feature design.
Automatic feature learning by CNNs has drawn much
attention with the development of DL methods. Directly
applying CNNs to region-level analysis is impractical
because of the large scale of WSIs and high computational
cost. Downsampling a WSI to fit into a neural network is
unsuitable because essential details may be lost. Alter-
natively, most studies [130,132,134] choose to perform
analysis locally on small patches that are densely cropped.
The final results are acquired on the basis of the overall
patch-level predictions. Knowledge transferred from cross-
domain is largely utilized to alleviate data insufficiency. Xu
et al. [130,132] exploited CNN activation features to
achieve region-level classification. They first divided each
region into a set of overlapping patches. A transfer learning
strategy was then explored by pretraining CNN with
ImageNet [126]. Each patch was transformed into a 4096-
dimensional feature vector. Feature pooling and feature
selection were implemented to yield a region-level feature
vector for reducing redundancy and selecting a subset of
many relevant features. Region-level features were passed
to a linear SVM [143] for classification. Their method
achieved a state-of-the-art accuracy of 97.5% in the
MICCAI 2014 Brain Tumor Digital Pathology Challenge
[144]. Similarly, Källén et al. [134] developed a region-
level classification algorithm to report the Gleason score.
They used the pretrained OverFeat [145] to extract
multilayer features for each patch. Random forest (RF)
[146] or SVM was used for patch classification. They
applied a voting strategy on all patches for different classes

Table 3 Performance comparison of the three methods based on pure deep learning, hand-crafted features, and their fusion [108], respectively

Method Jaccard index Dice index

HC-SVM 0.71 � 0.11 0.83 � 0.09

Alexnet+ Googlenet 0.74 � 0.14 0.84 � 0.10

HC-SVM+ Alexnet+ Googlenet 0.77 � 0.11 0.87 � 0.08
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to classify the whole region image. The class with the
highest votes was assigned. However, this approach may
miss small lesion areas in a cancerous WSI. An average
pooling strategy was exploited for aggregating patch-level
features to region-level ones [140]. In particular, they first
fine-tuned a pretrained VGG-16 network [147] using
fixed-size patches sampled from the lesion spots. The CNN
was then used to extract a convolutional feature vector for
each patch. The softmax probabilities outputted by the
CNN were used as weights of patch-level feature
representations. Region-level features were obtained
through the average pooling of patch-level ones. Their
method may be limited because they only considered ROIs
with the most severe diagnosis within a WSI.
The abovementioned supervised patch-level prediction

strategies have several inherent drawbacks. First, these
methods require WSIs with well-annotated cancer regions.
However, pixel wise annotations are seldom available
because of the large sizes of WSIs. Comparatively, many
WSIs with only image-level ground truth labels can be
utilized. Second, patch-level labels do not consistently
correspond with the region label [133]. Simple decision
fusion approaches (e.g., voting and max pooling) are
insufficiently robust to make the right region-level
prediction. Weakly supervised methods, especially MIL-
based ones [131,133,139,148–151], are extensively inves-
tigated to solve the above issues. Xu et al. [131] extracted
feature representation via deep neural networks and
applied the MIL framework for classification. Their MIL
performance outweighed that of supervised DL features.

Hou et al. [133] proposed an expectation–maximization
(EM)-based method that combines patch-based CNN with
supervised decision fusion. First, they identified discrimi-
native patches in WSIs by combining an EM-based
method with CNN. The histograms of patch-level predic-
tions were then passed to a multiclass logistic regression or
SVM to predict the WSI-level labels. They verified their
method on two WSI data sets. However, their algorithm
was computationally intensive, and its performance
improvement was slight. Wang et al. [139] first collected
discriminative patches using FCN. The spatially contextual
information was then utilized for feature selection. A
globally holistic region descriptor was generated after
aggregating the features from multiple representative
instances and fed into a RF for WSI-level classification.

Segmentation

Considering the large sizes and small quantity of tissue
sections, the region-level segmentation problem is typi-
cally formulated as a patch-level classification task. In the
MICCAI 2014 Brain Tumor Digital Pathology Challenge
[144], Xu et al. [130,132] extracted patch features using
CNN (pretrained on ImageNet [126]). A linear SVM was
then applied to classify the patches as necrosis or
nonnecrosis. The method achieved state-of-the-art perfor-
mance in the challenge. Qaiser et al. [136] computed the
persistent homology and CNN features of each patch. Two
types of features were separately fed into the RF regression
model. The output prediction was obtained via a multistage

Table 4 Overview of papers using deep learning for region-level DP image analysis
Reference Year Architecture Region/WSI Organ Task Methods

[131] 2014 CNN Region Colon Classification and segmentation CNN with MIL

[132] 2015 CNN Region Brain/colon Classification and segmentation CNN with feature pooling and
selection

[133] 2016 CNN WSI Lung Classification EM-based model with CNN

[134] 2016 CNN Region Prostate Classification Pretrained OverFeat with
multilayer feature learning

[135] 2016 CNN Region Breast/colon Classification and segmentation Superpixel-based scheme for
generating patches

[136] 2017 CNN WSI Colon Segmentation Combine persistent homology
features with CNN features for
ensemble learning

[137] 2017 FCN Region Colon Segmentation FCN with constrained deep weak
supervision

[138] 2018 CNN WSI Lung/lymph
nodes

Classification and segmentation ResNet-50 with MIL

[139] 2019 FCN WSI Lung Classification FCN with context-aware feature
selection

[140] 2019 CNN Region Breast Classification Pretrained VGG-16 and average
pooling of patch-level features
for region-level ones

CNN, convolutional neural network; FCN, fully convolutional network; WSI, whole slide image; MIL, multiple instance learning. The data sets in all included
studies are stained by H&E.
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ensemble strategy. Although their approach was elabo-
rately designed, the improvement was small. A superpixel-
based scheme was used to oversegment the region into
atomic areas rather than cropping patches using a tiling
strategy, indicating that this scheme performed better than
fixed-size square window-based approaches [135].
Some studies have applied weakly supervised methods

for segmentation, where only region-level labels are
available. Courtiol et al. [138] adopted a MIL technique
for localizing disease areas in WSIs. They first cropped all
patches from nonoverlapping grids. The pretrained
ResNet-50 [152] architecture was then utilized to extract
patch-level feature vectors, followed by feature embed-
ding. Top instances and negative evidence were selected. A
multilayer perceptron classifier was used for classification.
Several studies have combined FCN and MIL for weakly
supervised segmentation. Jia et al. [137] developed a new
MIL algorithm under a deep weak supervision (DWS)
formulation. They utilized the first three stages of the
VGGNet and connected side-output layers with DWS
under MIL. Area constraints were presented to regularize
the sizes of predicted positive instances. Subsequently, the
side-outputs were merged to exploit the multi-scale
predictions. The method was general and had potential
applications for various medical image analysis tasks.

Grading and prognosis

Prognosis provides the prediction of possible disease
development, such as the likelihood of disease deteriora-
tion or amelioration, chance of survival, and expectations
of life quality [153]. However, recent advancements of DL
methods in histopathology make DL a potential tool to
enhance the accuracy of prognosis [154].
DL methods are primarily applied to extract cancer-

related features or structures during prognosis. Non-small
cell lung cancer (NSCLC) is typically treated with surgical
resection. However, disease recurrence usually occurs for
patients with early-stage NSCLC. Validated biomarkers
are scarce for the prediction of the recurrence rate [155]. To
assist subsequent therapy decisions (whether or not to
adopt adjuvant chemotherapy), Wang et al. [156] first used
CNN and watershed-based method for nuclear segmenta-
tion. They then extracted and selected massive features
from previously segmented nuclei pixels. Three different
classifiers were used to distinguish binary classes that
corresponded to recurrence or nonrecurrence. In their
experiment, DL showed slightly better performance
compared with conventional watershed algorithms. Vaidya
et al. [157] presented a radiology–pathology fusion
approach to predict recurrence-free survival. These
methods also used CNN to segment nuclei. The patholo-
gical features extracted from the nuclei and intratumoral/
peritumoral features from computed tomography scans

were combined, which was an innovative concept. After
feature selection using a minimum redundancy maximum
relevance algorithm, three classifiers were used for
recurrence risk stratification.
Gene status is an important indicator of prognosis. The

mutation of specific genes reveals the level of tumor
severity and the probability of healing [158–160]. How-
ever, modeling the relationship between pathology images
and high-dimensional genetic data is challenging [161].
Many studies have focused on the prediction of specific
gene mutation. Coudray et al. [162] used a modified
Inception v3 to predict the mutation of six types of genes
(STK11, EGFR, FAT1, SETBP1, KRAS, and TP53). In
particular, the network uses an adenocarcinoma (LUAD)
tile as input and outputs one of the six gene types.
Some research groups [163] studied the feasibility of

substitute DL methods for complicated or expensive
prognosis-related clinical examination. Gastrointestinal
cancer patients with microsatellite instable (MSI) tumors
considerably benefit from immunotherapy. However, the
MSI test requires additional immunohistochemical or
genetic analysis. Many patients do not receive MSI
screening, thereby making potential responders to immune
checkpoint inhibitors for missing timely treatment [164].
To address this problem, Kather et al. [163] successfully
identified MSI from ubiquitously available H&E-stained
histology images. This method first trained ResNet-18
[152] to detect tumors. Square tiles were then cut from
tumor regions. Another ResNet-18 [152] was used for MSI
classification after color normalization. With advanced DL,
a broad target population can be excavated without
additional laboratory testing.
Cancer grade describes the appearance of tumors and

closely correlates with survival. It is an important
determinant for prognosis, and has attracted the interest
of many researchers. CNN can mine the hidden pattern of
pathology characteristics. Therefore, cancer grading is
directly conducted on raw WSIs, without intermediate
feature extraction (e.g., tissue structures and cell morphol-
ogy). Nagpal et al. [165] designed a DL system that
outperforms human pathologists. The WSI was divided
into dense patches, where each patch was classified as
either nontumor or Gleason pattern (GP) 3/4/5 by
InceptionV3 [166]. After calculating the GP quantitation
of a slide, Gleason scoring was predicted. Ing et al. [167]
demonstrated the suitability of semantic segmentation in
prostate adenocarcinoma grading. A semantic segmenta-
tion network can delineate and classify tumor regions. In
their method, foreground tissue areas were roughly located
through gray-level thresholding at the beginning and
partitioning multiple subtiles. Subsequently, four CNN
architectures (FCN-8s [70], SegNet-Full [168], SegNet-
Basic [168], and U-net [38]) were trained to divide the
areas of stroma, benign epithelium, and Gleason Grade
3/4/5 tumors. Segmentation was conducted in differently
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scaled images, which were combined and reassembled to
whole slide grading maps. Li et al. [169] regarded
automatic Gleason grading as an instance segmentation
task. In this way, glands with the same grading will be
separated into different individuals. They proposed a novel
path R-CNN model. In path R-CNN, the ResNet model
was used as a backbone to extract and feed the feature
maps into two branches. The first branch was a cascade of
region proposal network (RPN) and grading network head
(GNH). In this classical two-stage branch, RPN worked as
a proposal generator, and GNH predicted a binary mask,
class, and box offset for each ROI. The second branch was
called epithelial network head (ENH), which was a simple
binary classification network. ENH can filter the images
without tumors, where the network outputted the whole
image as background. The network will output the results
produced by GNH when ENH predicted the existence of
tumors. A fully connected conditional random field model
will reduce the artifacts on the edges of stitched patches.
Although Path R-CNN adopted an end-to-end structure,
the training process was two-stage. GNH and the high
layers of the ResNet backbone were trained and fixed in the
first place, and ENH was then trained.

Conclusions

The advent of DL has immensely improved the consis-
tency, efficiency, and accuracy in pathology analysis. As a
powerful tool, DL provides reliable support for diagnostic
assessment and treatment decisions. In comparison with
traditional machine learning methods, DL algorithms can
uncover unrecognized features to assist prognosis. CNN
benefits from transfer learning, indicating that the
performance can be improved by pretraining the network
on large nonpathology data sets (e.g., ImageNet [128]).
However, DL-based approaches are still in the explora-

tory stage and have several limitations. First, large high-
quality data cohorts labeled by multiple authoritative
pathologists are needed. The performance of CNN strongly
depends on the quality and quantity of training data. The
evaluation of different algorithms relies on the objectivity
of the gold standard. However, the annotation is relatively
expensive, thereby hindering the acquisition of adequate
data. Second, intrinsic difficulties exist in histology
annotations, especially for expert pathologists. Despite
the decision discrepancy of experts, only one criterion is
used for network training and testing, making it unreliable.
Third, strong robustness for the clinical application cannot
be achieved. The result will probably become inferior
when a proposed algorithm in one research is used in
another type of target (WSIs with different image
magnification, dyeing situation, cancer type, etc.). Many
reliable paradigms are required. Finally, DL methods are
still “black boxes” and inside patterns cannot be

comprehended. Low interpretability creates a semantic
gap, making these method undependable in clinical
practice. Apparently, many progresses need to be achieved
in this field.
Despite all these challenges, DL has certainly driven a

revolution on DP diagnosis. In the future, effective cancer
prognosis, image registration, and biological target
prediction on pathology images through DL methods
will be valuable and are challenging research directions.
Solving medical problems through unsupervised or weakly
supervised learning, such as one-shot learning, remains to
be explored. We envision that DL will serve as a decision
support tool for human pathologists and immensely
alleviate their workloads via high-throughput analysis.
The combination of human and artificial intelligence
shows a bright prospect.
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