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Abstract Artificial intelligence (AI) is gradually changing the practice of surgery with technological
advancements in imaging, navigation, and robotic intervention. In this article, we review the recent successful
and influential applications of AI in surgery from preoperative planning and intraoperative guidance to its
integration into surgical robots. We conclude this review by summarizing the current state, emerging trends, and
major challenges in the future development of AI in surgery.
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Introduction

Advances in surgery have revolutionized the management
of both acute and chronic diseases, prolonging life and
extending the boundary of patient survival. These
advances are underpinned by continuing technological
developments in diagnosis, imaging, and surgical instru-
mentation. Complex surgical navigation and planning are
made possible through the use of both pre- and
intraoperative imaging techniques, such as ultrasound,
computed tomography (CT), and magnetic resonance
imaging (MRI) [1]. Surgical trauma is reduced through
minimally invasive surgery (MIS), which is now progres-
sively combined with robotic assistance [2]. Postoperative
care is also improved by sophisticated wearable and
implantable sensors for supporting early discharge after
surgery, thereby enhancing patient recovery and early
detection of postsurgical complications [3,4]. Numerous
terminal illnesses have been transformed into clinically
manageable chronic lifelong conditions, and surgery is
increasingly focused on the systematic effects of this
procedure on patients, avoiding isolated surgical treatment
or anatomical alteration, with careful consideration of
metabolic, hemodynamic, and neurohormonal conse-
quences that can influence the quality of life.
Owing to recent advances in medicine, artificial

intelligence (AI) has played an important role in support-
ing clinical decision-making since the early years of the

development of the MYCIN system [5]. AI is now
increasingly used for risk stratification, genomics, imaging
and diagnosis, precision medicine, and drug discovery. AI
was introduced into surgery more recently, with a strong
root in imaging and navigation and early techniques
focusing on feature detection and computer-assisted
intervention for both preoperative planning and intrao-
perative guidance. Over the years, supervised algorithms,
such as active-shape models, atlas-based methods, and
statistical classifiers, have been developed [1]. The recent
successes of deep convolutional neural network (DCNN),
such as AlexNet [6], have enabled automatically learned
data-driven descriptors to be used for image understand-
ing, which have shown improved robustness and general-
izability compared with ad hoc hand-crafted features.
As robotics is increasingly applied in surgery, AI is set to

transform the field through the development of sophisti-
cated functions connecting real-time sensing to robotic
control. Varying levels of autonomy can allow the surgeon
and robotic system to navigate together the constantly
changing and patient-specific environments, a situation
that may reduce the ability of either to complete a surgical
task effectively. Additionally, by leveraging the parallel
medical advances in early detection and targeted therapy,
AI can ensure that the proper intervention is executed.
Future surgical robots would expectedly be able to
perceive and understand complicated surroundings, con-
duct real-time decision-making, and perform desired tasks
with increased precision, safety, and efficiency. But what
are the roles of AI in these systems and the future of
surgery in general? How can these systems deal with
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dynamic environments and learn from human operators?
How can reliable control policies be derived to achieve
human–machine symbiosis?
In this article, we review the applications of AI in

preoperative planning, intraoperative guidance, and its
integrated use in surgical robotics. Popular AI techniques,
including an overview of their requirements, challenges,
and sub-areas in surgery are summarized in Fig. 1, which
outlines the main flow of the contents of the paper. We first
introduce the application of AI in preoperative planning.
We then discuss several AI techniques for intraoperative
guidance and review the applications of AI in surgical
robotics. Finally, we provide our conclusions and future
outlook. Technically, we put a strong emphasis on deep
learning-based approaches in this review.

AI for preoperative planning

Preoperative planning where surgeons plan the surgical
procedure on the basis of existing medical records and
imaging is essential for the success of a surgery. X-ray, CT,
ultrasound, and MRI are the most common imaging
modalities used in clinical practice. Routine tasks based on
medical imaging include anatomical classification, detec-
tion, segmentation, and registration.

Classification

Classification outputs the diagnostic value of the input,
which is a single or a set of medical images or volumes of
organs or lesions. Aside from traditional machine-learning
and image-analysis techniques, deep learning-based meth-

ods are growing in popularity [7]. The network architecture
of deep learning-based methods for classification is
composed of convolutional layers for extracting informa-
tion from the input and fully connected layers for
regressing the diagnostic value.
For example, a classification pipeline using Google’s

Inception and ResNet architecture was proposed to
segment lung, bladder, and breast cancers [8]. Chilam-
kurthy et al. demonstrated that deep learning can recognize
intracranial hemorrhage, calvarial fracture, midline shift,
and mass effect from head CT scans [9]. The mortality,
renal failure, and postoperative bleeding in patients after
cardiosurgical care can be predicted by recurrent neural
network (RNN) in real time with improved accuracy
compared with standard-of-care clinical tools [10].
ResNet-50 and Darknet-19 are used to classify benign or
malignant lesions in ultrasound images, showing similar
sensitivity and improved specificity [11].

Detection

Detection provides the spatial localization of regions of
interest, often in the form of bounding boxes or landmarks,
and may also include image- or region-level classification.
Similarly, deep learning-based approaches have shown
promise in detecting various anomalies or medical
conditions. DCNNs for detection usually consist of
convolutional layers for feature extraction and regression
layers to determine the bounding box properties.
A deeply stacked convolutional autoencoder was trained

to extract statistical and kinetic biological features for
detecting prostate cancer from 4D positron-emission
tomography images [12]. A 3D CNN with roto-translation

Fig. 1 An overview of popular AI techniques, as well as the key requirements, challenges, and sub-areas of AI used in preoperative
planning, intraoperative guidance, and surgical robotics.
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group convolutions was proposed for pulmonary nodule
detection with good accuracy, sensitivity, and convergence
speed [13].
Deep reinforcement learning (DRL) based on an

extension of the deep Q-network was used to learn a
search policy from dynamic contrast-enhanced MRI for
detecting breast lesions [14]. To detect acute intracranial
hemorrhage from CT scans and improve network inter-
pretability, Lee et al. [15] used an attention map and an
iterative process to mimic the workflow of radiologists.

Segmentation

Segmentation can be treated as a pixel- or voxel-level
image classification problem. Owing to the limitation of
computational resources in early works, each image or
volume was previously divided into small windows, and
CNNs were trained to predict the target label at the central
location of the window. Image- or voxel-wise segmenta-
tion was achieved by running the CNN classifier over
densely sampled image windows. For example, Deepme-
dic exhibited good performance for multimodal brain
tumor segmentation from MRI [16]. However, the sliding
window-based approach is inefficient as the network’s
function is repeatedly computed in regions where many
windows are overlapping. For this reason, the sliding
window-based approach was recently replaced by fully
convolutional networks (FCNs) [17]. The key idea of
FCNs is to replace fully connected layers in a classification
network with convolutional layers and upsampling layers,
a process that substantially improves segmentation effi-
ciency. Encoder–decoder networks, such as U-Net [18,19],
have shown promising performance in medical-image
segmentation. The encoder has multiple convolutional and
downsampling layers that extract image features at
different scales. The decoder has convolutional and
upsampling layers that recover the spatial resolution of
feature maps and finally achieve pixel- or voxel-wise dense
segmentation. A review of different normalization methods
for training U-Net for medical-image segmentation is
provided by Zhou and Yang [20].
For navigation during endoscopic pancreatic and biliary

procedures, Gibson et al. [21] used dilated convolutions
and fused-image features in multiple scales to segment
abdominal organs from CT scans. For interactive segmen-
tation of placenta and fetal brains from MRI, FCN and
user-defined bounding boxes and scribbles were com-
bined, where the last few layers of FCN were fine-tuned
according to user input [22]. The segmentation and
localization of surgical instrument landmarks were mod-
eled as heatmap regression, and an FCN was used to track
the instruments in near real time [23]. For pulmonary
nodule segmentation, Feng et al. addressed the issue of

requiring accurate manual annotations when training FCNs
by learning discriminative regions from weakly labeled
lung CTwith a candidate screening method [24]. Bai et al.
proposed a self-supervised learning strategy to improve the
cardiac segmentation accuracy of U-Net with limited
labeled training data [25].

Registration

Registration is the spatial alignment between two medical
images, volumes, or modalities. It is particularly important
for both pre- and intraoperative planning. Traditional
algorithms usually iteratively calculate a parametric
transformation, i.e., an elastic, fluid, or B-spline model,
to minimize a given metric, i.e., mean square error,
normalized cross correlation, or mutual information,
between two medical inputs. Recently, deep regression
models were used to replace the traditional time-consum-
ing and optimization-based registration algorithms.
An example of deep learning-based approaches to

registration is VoxelMorph, which maximizes standard
image-matching objective functions by leveraging a CNN-
based structure and auxiliary segmentation to map an input
image pair to a deformation field [26]. An end-to-end deep
learning framework was proposed for 3D medical-image
registration that consisted of three stages, namely, affine
transform prediction, momentum calculation, and non-
parametric refinement, to combine affine registration and
vector momentum-parameterized stationary velocity field
[27]. A weakly supervised framework was proposed for
multimodal image registration, with training on images
with a higher level correspondence, i.e., anatomical labels,
rather than voxel-level transformation for predicting the
displacement field [28]. A Markov decision process with
each agent trained with dilated FCN was applied to align a
3D volume to 2D X-ray images [29]. RegNet was
proposed by considering multiscale contexts and trained
on an artificially generated displacement vector field to
achieve a nonrigid registration [30]. A 3D image
registration can also be formulated as a strategy-learning
process with 3D raw images as the input, the next optimal
action (i.e., up or down) as the output, and the CNN as the
agent [31].

AI for intraoperative guidance

Computer-aided intraoperative guidance has always been a
cornerstone of MIS. Learning strategies have been
extensively integrated into the development of intraopera-
tive guidance to provide enhanced visualization and
localization in surgery. Recent works can be divided into
four main aspects: shape instantiation, endoscopic naviga-
tion, tissue tracking, and augmented reality (AR) (Fig. 2).
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3D shape instantiation

For intraoperative 3D reconstruction, 3D volumes can be
scanned with MRI, CT, or ultrasound. In practice, this
3D/4D process can be time consuming or produce scans
with low resolution. Limiting the number of images
needed for 3D shape reconstruction can enable a program
to reconstruct a 3D surgical scene in real time, and superior
protocols can additionally improve the resolution of the
reconstruction. Intraoperative real-time 3D shape instantia-
tion from a single or limited amount of 2D images is an
emerging area of research.
For example, a 3D prostate shape was instantiated from

multiple nonparallel 2D ultrasound images with a radial
basis function [32]. The 3D shapes of fully compressed,
fully deployed, and also partially deployed stent grafts
were instantiated from a single projection of 2D fluoro-
scopy with mathematical modeling combined with the
robust perspective-n-point method, graft gap interpolation,
and graph neural networks [33–35]. Furthermore, an
equally weighted focal U-Net was proposed to segment
automatically the markers on stent grafts and improve the
efficiency of intraoperative stent graft shape-instantiation
framework [36]. Moreover, a 3D AAA skeleton was
instantiated from a single projection of 2D fluoroscopy
with skeleton deformation and graph matching [37]. A 3D
liver shape was instantiated from a single 2D projection via
principal component analysis (PCA), statistical shape
model (SSM), and partial least square regression (PLSR)
[38]; this work was further generalized to a registration-
free shape instantiation framework for any dynamic organ
with sparse PCA, SSM, and kernel PLSR [39]. Recently,
an advanced deep and one-stage learning strategy that
estimates 3D point cloud from a single 2D image was
proposed for 3D shape instantiation [40].

Endoscopic navigation

The trend now in surgery is increasingly leaning toward
intraluminal procedures and endoscopic surgery driven by
early detection and intervention. Navigation techniques
have been evaluated to guide the maneuvering of
endoscopes toward target locations. To this end, learn-
ing-based depth estimation, visual odometry, and simulta-
neous localization and mapping (SLAM) have been
tailored for camera localization and environment mapping
with the use of endoscopic images.

Depth estimation

Depth estimation from endoscopic images plays an
essential role in 6 DoF camera motion estimation and 3D
structural environment mapping, which had been tackled
either by supervised [41,42] or by self-supervised [43,44]
deep learning methods. This process is hindered by two
main challenges. First, obtaining a large amount of high-
quality training data containing paired video images and
depth maps is practically difficult because of both
hardware constraints and labor-intensive labeling. Second,
surgical scenes are often textureless that makes applying
depth recovery methods that rely on feature matching and
reconstruction difficult [45,46].
To address the challenge of limited training data, Ye

et al. [47] proposed a self-supervised depth estimation
approach for stereoimages using siamese networks. For
monocular depth recovery, Mahmood et al. [41,42] learned
the mapping from rendered RGB images to the corre-
sponding depth maps with synthetic data and adopted
domain transfer learning to convert real RGB images into
rendered images. Additionally, self-supervised unpaired
image-to-image translation [44] using a modified cycle

Fig. 2 AI techniques for computer-aided intraoperative guidance in MIS. Multimodal data acquired preoperatively and intraoperatively
are used in either supervised or unsupervised learning-based techniques for various surgical applications. US, ultrasound; NIRF, near-
infrared fluorescence; OCT, optical coherence tomography; pCLE, probe-based confocal laser endomicroscopy; EM sensor,
electromagnetic sensor; RF, random forests; BL, Bayesian learning; DT, decision tree; EM, expectation maximization; GMM, Gaussian
mixture models.
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generative adversarial network (CycleGAN) [48] was
proposed to recover the depth from bronchoscopic images.
Moreover, a self-supervised CNN based on the principle of
shape from motion was applied to recover the depth and
achieve visual odometry for an endoscopic capsule robot
[43].

Visual odometry

Visual odometry uses consecutive video frames to estimate
the pose of a moving camera. CNN-based approaches [49]
were adopted for camera pose estimation on the basis of
temporal information. Turan et al. [49] estimated the
camera pose for an endoscopic capsule robot using a CNN
for feature extraction and long short-term memory (LSTM)
for dynamics estimation. Sganga et al. [50] combined
ResNet and FCN to calculate the pose change between
consecutive video frames. However, the feasibility of
localization approaches according to visual odometry was
only validated in lung phantom data [50] and gastro-
intestinal (GI) tract data [49].

3D reconstruction and localization

Owing to the dynamic nature of tissues, real-time 3D
reconstruction of tissue environment and localization are
vital prerequisites for navigation. SLAM is a widely
studied technique in robotics. In SLAM, the robot can
simultaneously build a 3D map of surrounding environ-
ments and localize the camera pose in the built map.
Traditional SLAM algorithms are based on the assumption
of a rigid environment, which is in contrast to that found in
a typical surgical scene where the deformation of soft
tissues and organs is involved. Hence, this flawed
assumption limits its direct adoption for surgical tasks.
To address this limitation, Mountney et al. [51] first
applied the extended Kalman filter SLAM (EKF-SLAM)
framework [52] with a stereoendoscope, where the SLAM
estimation was compensated with periodic motion of soft
tissues caused by respiration [53]. Grasa et al. [54]
evaluated the effectiveness of monocular EKF-SLAM in
hernia repair surgery for measuring hernia defects. Turan
et al.[55] estimated the depth images from the RGB data
through shape from shading. They then adopted the RGB-
D SLAM framework by using paired RGB and depth
images. Song et al. [56] implemented a dense deformable
SLAM on a graphics processing unit (GPU) and an ORB-
SLAM on a central processing unit (CPU) to boost the
localization and mapping performance of a stereoendo-
scope.
Endovascular interventions have been increasingly

utilized to treat cardiovascular diseases. However, visual
cameras are not applicable inside vessels. For example,
catheter mapping is commonly used in radiofrequency

catheter ablation for navigation [57]. To this end, recent
advances in intravascular ultrasound (IVUS) have offered
another avenue for endovascular intraoperative guidance.
Shi et al. [58] first proposed the simultaneous catheter and
environment (SCEM) framework for 3D vasculature
reconstruction by fusing electromagnetic sensing data
and IVUS images. To deal with the errors and uncertainty
measured from both EM sensors and IVUS images, they
improved SCEM and reconstructed the 3D environment by
solving a nonlinear optimization problem [59]. To alleviate
the burden of preregistration between preoperative CT data
and EM sensing data, a registration-free SCEM approach
was proposed for more efficient data fusion [60].

Tissue feature tracking

Learning strategies have also been applied to soft tissue
tracking in MIS. Mountney and Yang [61] introduced an
online learning framework that updates the feature tracker
over time by selecting correct features using decision tree
classification. Ye et al. [62] proposed a detection approach
that incorporates a structured support vector machine
(SVM) and online random forest for re-targeting a
preselected optical biopsy region on soft tissue surfaces
of the GI tract. Wang et al. [63] adopted a statistical
appearance model to differentiate the organ from the
background in their region-based 3D tracking algorithm.
Their validation results demonstrated that incorporating
learning strategies can improve the robustness of tissue
tracking with respect to the deformations and variations in
illumination.

Augmented reality

AR improves surgeons’ intraoperative vision by providing
a semitransparent overlay of preoperative image on the
area of interest [64]. Wang et al. [65] used a projector to
project the AR overlay for oral and maxillofacial surgery.
A 3D contour matching was used to calculate the
transformation between the virtual image and real teeth.
Instead of using projectors, Pratt et al. exploited Hololens,
a head-mounted AR device, to project a 3D vascular model
on the lower limb of patients [66]. Given that one of the
most challenging tasks is to project the overlay on
markerless deformable organs, Zhang et al. [67] intro-
duced an automatic registration framework for AR
navigation, in which the iterative closet point and
RANSAC algorithms were applied for 3D deformable
tissue reconstruction.

AI for surgical robotics

Owing to the development of AI techniques, surgical
robots can achieve superhuman performance during MIS
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[68,69]. The objective of AI is to boost the capability of
surgical robotic systems in perceiving complex in vivo
environments, conducting decision-making, and perform-
ing the desired tasks with increased precision, safety, and
efficiency. As illustrated in Fig. 3, the common AI
techniques used for robotic and autonomous systems
(RAS) can be summarized in four aspects: (1) perception,
(2) localization and mapping, (3) system modeling and
control, and (4) human–robot interaction.
As overlap exists between intraoperative guidance and

robot localization and mapping, this section mainly covers
the methods for increasing the level of surgical autonomy.

Perception

Instrument segmentation and tracking

Instrument segmentation tasks can be divided into three
groups: segmentation to distinguish the instrument from
the background, multiclass segmentation of instrument
parts (i.e., shaft, wrist, and gripper), and multiclass
segmentation for different instruments. The advancement
of deep learning in segmentation has remarkably improved
the instrument segmentation accuracy from the exploita-
tion of SVM for pixel-level binary classification [70] to
recent DCNN architectures, such as U-Net, TernausNet-
VGG11, TernausNetVGG16, and LinkNet, for both binary
segmentation and multiclass segmentation [71]. To further
improve instrument segmentation performance, Islam et al.
developed a cascaded CNN with a multiresolution feature
fusion framework [72].

Algorithms for solving tracking problems can be
separated into two categories: tracking by detection and
tracking via local optimization [73]. Previous works in this
field mainly relied on hand-crafted features, such as Haar
wavelets [73], color or texture features [74], and gradient-
based features [75]. In the context of deep learning-based
methods, the proposed methods were built on the basis of
the concept of tracking by detection [76,77]. Various CNN
architectures, such as AlexNet [76] and ResNet [23,77],
were used to detect the surgical tools from RGB images.
Sarikaya et al. [78] additionally fed the optical flow
estimated from color images into the network. LSTM was
integrated to smoothen the detection results to leverage
spatiotemporal information [77]. In addition to position
tracking, the pose of the articulated end-effector was
simultaneously estimated by the methods proposed by Ye
et al. [75] and Kurmannet al. [79].

Interaction between surgical tools and environment

A representative example of tool–tissue interaction during
surgery is suturing. In this task, the robot needs to recover
the 2D or 3D shape of thread from 2D images in real time.
Other challenges in this task include the deformation of
thread and variations in the environment. Padoy and Hager
[80] introduced a Markov random field-based optimization
method to track the 3D thread modeled by a nonuniform
rational B-spline.
Recently, a supervised two-branch CNN, called deep

multistage detection (DMSD), was proposed for surgical
thread detection [81]. In addition, the DMSD framework

Fig. 3 AI techniques for surgical robotics, including perception, localization and mapping, system modeling and control, and human–
robot interaction.
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was improved with a CycleGAN [48] structure to perform
domain adaption for the foreground and background [82].
On the basis of adversarial learning, additional synthetic
data for thread detection were generated while preserving
the semantic information that enabled the transfer of
learned knowledge to the target domain.
Estimation of the interaction forces between surgical

instruments and tissues can provide meaningful feedback
to ensure safe robotic manipulation.
Recent works have incorporated AI techniques in the

field of vision-based force sensing, which can accurately
estimate the force values from visual inputs. The LSTM-
RNN architecture can automatically learn accurate map-
ping between visual–geometric information and applied
force in a supervised manner [83]. In addition to
supervised learning, a semisupervised DCNN was pro-
posed by Marban et al. [84], where the convolutional auto-
encoder learns the representation from RGB images,
followed by minimizing the error between the estimated
force and ground truth using LSTM.

System modeling and control

Learning from human demonstrations

Learning from demonstration (LfD), also known as
programming by demonstration, imitation learning, and
apprenticeship learning, is a popular paradigm for enabling
robots to perform autonomously new tasks with learned
policies. This paradigm is beneficial for complicated
automation tasks, such as surgical procedures, for which
surgical robots can autonomously execute specific motions
or tasks through learning from surgeons’ demonstrations
without tedious programming procedures. The robots can
reduce surgeons’ tedium, as well as provide superhuman
performance in terms of execution speed and smoothness.
The common framework of LfD is to first segment a
complicated surgical task into several motion primitives or
subtasks, followed by recognition, modeling, and execu-
tion of these subtasks sequentially.

Surgical task segmentation and recognition

The JHU-ISI Gesture and Skill Assessment Working Set
data set [85] is the first publicly available benchmark data
set for surgical activity segmentation and recognition. This
data set contains synchronized video and kinematic data of
three subtasks captured from the Da Vinci robot: suturing,
needle passing, and knot tying. Unsupervised clustering
algorithms are the most popular for surgical task
segmentation. Fard et al. [86] proposed a soft boundary-
modified Gath–Geva clustering algorithm for segmenting
kinematic data. A transition state clustering (TSC) method

[87] was presented to exploit both the video and kinematic
data to detect and cluster transitions between linear
dynamic regimes on the basis of kinematic, sensory, and
temporal similarities. The TSC method was further
improved by applying DCNNs to extract features from
video data [88]. For surgical subtask recognition, most
previous methods [85,89,90] were developed according to
variations in hidden Markov model (HMM), conditional
random field (CRF), and linear dynamic systems (LDS).
Particularly, joint segmentation and recognition frame-
works were proposed by Despinoy et al. [91] and DiPietro
et al [92]. DiPietro et al. [92] specifically modeled
complex and nonlinear dynamics of kinematic data with
RNN to recognize both surgical gestures and activities,
where the simple RNN, forward LSTM, bidirectional
LSTM, gated recurrent unit, and mixed history RNN were
compared with traditional methods. Liu and Jiang [93]
introduced a novel method by modeling the recognition
task as a sequential decision-making process and trained an
agent by RL with hierarchical features from a DCNN
model.

Surgical task modeling, generation, and execution

After acquiring the segmented motion trajectories repre-
senting surgical subtasks, the dynamic time warping
algorithm can be applied to align temporally different
demonstrations before modeling. To generate the motion in
a new task autonomously, previous works extensively
studied Gaussian mixture model (GMM) [94,95], Gaussian
process regression (GPR) [96], dynamics model [97], finite
state machine [98], and RNN [99] for modeling the
demonstrated trajectories. Experts’ demonstrations are
encoded by the GMM algorithm, and the parameters of
mixture model can be iteratively estimated by the
expectation maximization algorithm. With a given
GMM, the Gaussian mixture regression is then used to
generate the target trajectory of the desired surgical task
[94,95]. GPR is a nonlinear Bayesian function learning
technique that models a sequence of observations
generated by a Gaussian process. Osa et al. [96] chose
GPR for online path planning in a dynamic environment.
Given the predicted motion trajectory, different control
strategies, e.g., linear–quadratic regulator controller [97],
sliding mode control [96], and neural network [100], can
be applied to improve robustness in surgical task
execution.

Reinforcement learning

In many surgical tasks, reinforcement learning (RL) is
another popular machine-learning paradigm to solve
problems, such as control of continuum robots, soft tissue
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manipulation, and tube insertion, that are difficult to model
analytically and explicitly observe [101]. In the learning
process, the controller of the autonomous surgical robot,
known as an agent, attempts to find the optimized policies
that yield highly accumulated reward through iterative
interaction with the surrounding environment. The RL
environment is modeled as a Markov decision process. The
RL algorithm can be initialized with the learned policies
from expert demonstrations instead of learning from
scratch to reduce efficiently the learning time [95,102,103].
Tan et al. [103] trained a generative adversarial imitation
learning [104] agent to imitate latent patterns existing in
human demonstrations. This agent can deal with mis-
matched distributions caused by multimodal behaviors.
DRL with advanced policy search methods allowed robots
to execute autonomously a wide range of tasks [105].
However, repeating these experiments on a surgical robotic
platform over a million times is unrealistic. To this end, the
agent can be first trained in a simulation environment and
then transferred to a real robot [106]. The agent can first
learn tensioning policies from a finite-element simulator
via DRL, and then it can be transferred to a real physical
system. However, the discrepancy between simulation data
and real-world environment needs to be reconciled.

Human–robot interaction

Human–robot interaction (HRI) is a field that integrates
knowledge and techniques from multiple disciplines to
build effective communication between humans and
robots. With the help of AI, surgical task-oriented HRI
allows surgeons to control cooperatively surgical robotic
systems with touchless manipulation. Interaction media
between surgeons and intelligent robots are usually
through surgeons’ gaze, head movement, speech/voice,
and hand gestures. By understanding the intention of
humans, robots can then perform the most appropriate
actions that satisfy the surgeons’ needs.
Tracking 2D/3D eye-gaze points of surgeons can assist

surgical instrumental control and navigation [107]. For
surgical robots, the eye-gaze contingent paradigm can
facilitate the transmission of images and enhance proce-
dure performance, thereby enabling more accurate naviga-
tion of the instruments [107]. Yang et al. [108] first
introduced the concept of gaze-contingent perceptual
docking for robot-assisted MIS, in which the robot can
learn the operators’ specific motor and perceptual behavior
through their saccadic eye movements and ocular
vergence. Inspired by this idea, Visentini-Scarzanella
et al. [109] used the gaze-contingent docking to recon-
struct the surgeon’s area of interest with a Bayesian chains
method in real time. Fujii et al. [110] performed gaze
gesture recognition with the HMM so as to pan, zoom, and
tilt the laparoscope during surgery. In addition to human

gaze, surgeons’ head movements can also be used to
control remotely a laparoscope or endoscope [111,112].
Robots have the potential to interpret human intentions

or commands through voice commands. However, robot
assistance during surgery remains challenging because of
the noisy environment in the operation room. With the
development of deep learning in speech recognition, the
precision and accuracy of speech recognition have
considerably improved [113], thus leading to more reliable
control of the surgical robot [114].
Hand gesture is another popular medium in different

HRI scenarios. Learning-based real-time hand gesture
detection and recognition methods have been developed by
harnessing different sensors. Jacob et al. [115] designed a
robotic scrub nurse, called Gestonurse, to understand
nonverbal hand gestures. They used the Kinect sensor to
localize and recognize different gestures generated by
surgeons to help in delivering surgical instruments to
surgeons. Wen et al. introduced an HMM-based hand
gesture recognition method for AR control [116]. More
recently, vision-based hand gesture recognition with high
precision [117] can be achieved with the help of deep
learning. This development can therefore substantially
improve the HRI safety in surgery.

Conclusion and future outlook

The advancement in AI has been transforming modern
surgery toward more precise and autonomous intervention
for treating both acute and chronic symptoms. By
leveraging such techniques, notable progress has been
achieved in preoperative planning, intraoperative gui-
dance, and surgical robotics. Herein, we summarize the
major challenges for these three aspects (Fig. 4). We then
discuss achievable visions of future research directions.
Finally, we further examine other key issues, such as
ethics, regulation, and privacy.

Preoperative planning

Deep learning has been widely adopted in preoperative
planning for tasks ranging from anatomical classification,
detection, and segmentation to image registration. The
results seem to suggest that deep learning-based methods
can outperform those which rely on conventional
approaches. However, data-driven approaches often suffer
from inherited limitations, making deep learning-based
approaches less generalizable, explainable, and more data-
demanding.
To overcome these issues, close collaborations between

multidisciplinary teams should be encouraged, particularly
between surgeons and AI researchers, to generate large-
scale annotated data that will provide more training data
for AI algorithms. An alternative solution is to develop AI
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techniques, such as meta-learning, or learning to learn, that
enable generalizable systems to perform diagnosis with
limited data sets yet improved explainability.
Although many state-of-the-art machine-learning and

deep-learning algorithms have made breakthroughs in the
field of general computer vision, the differences between
medical and natural images can be massive and thus may
impede their clinical applicability. In addition, the under-
lying models and the derived results may not be easily
interpretable by humans, a condition that raises important
issues, such as potential risks and uncertainty in surgery.
Potential solutions to these problems would be to explore
different transfer learning techniques to mitigate the
differences between image modalities and develop more
explainable AI algorithms to enhance its decision-making
performance.
Furthermore, utilizing personalized multimodal patient

information, including omics-data and lifestyle informa-
tion, in AI development can be useful in early detection
and diagnosis, thereby leading to personalized treatment.
These improvements also allow early treatment options
that result in minimal trauma, low surgical risks, and short
recovery time.

Intraoperative guidance

AI techniques have already contributed to more accurate
and robust intraoperative guidance for MIS. 3D shape
instantiation, camera pose estimation, and dynamic
environment tracking and reconstruction have been tackled
to assist various surgical interventions.
The key points in developing computer-assisted gui-

dance from visual observations should be improving the
localization and mapping performance with textureless

surfaces, variation in illumination, and limited field of
view.
Another major challenge is organ/tissue deformation

that complicates surgery with a dynamic and uncertain
environment despite extensive preoperative planning.
Although AI technologies have succeeded in detection,
segmentation, tracking, and classification, further studies
are warranted to extend these processes to more sophis-
ticated 3D applications. Additionally, during a surgery, an
important requirement for an AI algorithm is its ability to
assist surgeons in real time efficiently. Such demands have
been encountered in developing AR or VR where frequent
interactions are required either between surgeons and
autonomous guidance systems or during remote surgery
involving multidisciplinary teams located in different
geographical locations.
Aside from visual information, future AI technologies

must fuse multimodal data from various sensors to achieve
more precise perception of the complicated environment.
Furthermore, increasing the use of micro- and nanorobotics
in surgery will generate new guidance issues.

Surgical robotics

With the integration of AI, surgical robotics would be able
to perceive and understand complicated surroundings,
conduct real-time decision-making, and perform surgical
tasks with increased precision, safety, automation, and
efficiency. For instance, current robots can already
automatically perform some simple surgical tasks, such
as suturing and knot tying [118,119]. Nevertheless, the
increased level of robotic autonomy for more complicated
tasks can be achieved by advanced LfD and RL
algorithms, especially when considering interactions with
dynamic environments. Owing to the diversity of surgical

Fig. 4 An outlook of the future of surgery in preoperative planning, intraoperative guidance, surgical robotics, and potential ethical and
legal issues.
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robotic platforms, generalized learning for accurate
modeling and control is also required.
Most of the current surgical robots are expensive, bulky,

and can only perform master–slave operations. We
emphasize that a more versatile, lighter, and probably
cheaper robotic system should be developed so that it can
access more constrained regions during MIS [2]. Certainly,
it also needs to be easily integrated in well-developed
surgical workflows so that the robot can seamlessly
collaborate with human operators. To date, the current
technologies in RAS are still far from achieving full
autonomy; human supervision would remain to ensure
safety and high-level decision-making.
In the near future, intelligent micro- and nanorobots for

noninvasive surgeries and drug delivery could be realized.
Furthermore, with the data captured during preoperative
examinations, robots could also assist in the manufacturing
of personalized 3D bioprinted tissues and organs for
transplant surgery.

Ethical and legal considerations of AI in surgery

Beyond precision, robustness, safety, and automation, we
must also carefully consider the legal and ethical issues
related to AI in surgery. These issues include the following:
(1) privacy: patients’ medical records, genetic data, illness
prediction data, and operation process data must be
protected with high security. (2) Cybercrime: the negative
effects on patients should be minimized when failures
happen in AI-based surgical systems, which should be
verified and certificated while considering all possible
risks. (3) Concerned parties should adhere to a code of
ethics to ensure that new technologies, such as gene editing
and bioprinted organ transplant for long-term human
reproduction, are used responsibly and to build trust
between humans and AI techniques gradually.
In conclusion, we still have a long way to go to replicate

and match in robotic surgery the level of intelligence that
surgeons display. AIs that can learn complex tasks on their
own and with a minimum of initial training data will prove
critical for next-generation systems [120]. Here we quote
some of the questions raised by Yang et al. in their article
on Medical Robotics [121]: “As the capabilities of medical
robotics following a progressive path represented by
various levels of autonomy evolve, most of the role of the
medical specialists will shift toward diagnosis and
decision-making. Could this shift also mean that medical
specialists will be less skilled in terms of dexterity and
basic surgical skills as the technologies are introduced?
What would be the implication on future training and
accreditation? If robot performance proves to be superior
to that of humans, should we put our trust in fully
autonomous medical robots?” Clearly, various issues must
be addressed before AI can be more seamlessly integrated
in the future of surgery.
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