
Efficacy of intelligent diagnosis with a dynamic uncertain
causality graph model for rare disorders of sex development

Dongping Ning1,2,*, Zhan Zhang3,*, Kun Qiu3, Lin Lu (✉)1, Qin Zhang (✉)4, Yan Zhu5, Renzhi Wang6

1Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; 2Department of Pediatrics, Linfen Central
Hospital, Linfen 041000, China; 3Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
4Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China; 5Institute of Internet Industry, Tsinghua
University, Beijing 100084, China; 6Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100730, China

© Higher Education Press 2020

Abstract Disorders of sex development (DSD) are a group of rare complex clinical syndromes with multiple
etiologies. Distinguishing the various causes of DSD is quite difficult in clinical practice, even for senior general
physicians because of the similar and atypical clinical manifestations of these conditions. In addition, DSD are
difficult to diagnose because most primary doctors receive insufficient training for DSD. Delayed diagnoses and
misdiagnoses are common for patients with DSD and lead to poor treatment and prognoses. On the basis of the
principles and algorithms of dynamic uncertain causality graph (DUCG), a diagnosis model for DSD was jointly
constructed by experts on DSD and engineers of artificial intelligence. “Chaining” inference algorithm and
weighted logic operation mechanism were applied to guarantee the accuracy and efficiency of diagnostic reasoning
under incomplete situations and uncertain information. Verification was performed using 153 selected clinical
cases involving nine common DSD-related diseases and three causes other than DSD as the differential diagnosis.
The model had an accuracy of 94.1%, which was significantly higher than that of interns and third-year residents.
In conclusion, the DUCG model has broad application prospects as a computer-aided diagnostic tool for DSD-
related diseases.
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Introduction

Disorders of sex development (DSD) are defined as a
heterogeneous group of congenital conditions in which the
development of chromosomal, gonadal, or anatomic sex is
atypical [1,2]. DSD are classified into three major
categories on the basis of a patient’s karyotype: 46, XX
DSD; 46, XY DSD; and sex chromosome DSD [1]. The
incidence of DSDs is 1/1000 to 1/106 in the general
population [3–5]. DSDs have multiple intricate causes.
Congenital adrenal hyperplasia (CAH) is the most
common cause of DSDs [6], and the majority of CAH is

caused by 21-alpha hydroxylase deficiency (21OHD) [7].
DSD diagnosis relies on family history, clinical symptoms,
and specific signs, as well as on hormone profile analysis,
chromosome karyotype analysis, and genetic testing
results [8–10]. Distinguishing the exact etiology of DSDs
is quite difficult, even for senior general physicians.
However, diagnosing DSDs is an urgent issue because the
decision-making concerning sex assignment is considered
stressful and difficult for both family members and health
care professionals [1,11]. Moreover, the risk of gonadal
tumors may be as high as 40% in patients with dysgenetic
gonads [8]. Therefore, an early and accurate diagnosis of
DSDs is important for both patients and their families.
However, in reality, the first step for most patients with
DSDs is to consult with a primary care physician, which is
typically composed of young doctors, such as residents and
general physicians. Nevertheless, primary care doctors
usually do not have intensive training in DSD diagnosis.
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Given that each patient has different manifestations and
some patients have atypical symptoms, they may be
misdiagnosed or receive a delayed diagnosis. In addition,
clinical doctors, most of whom are endocrinologists, need
long training cycles to obtain high proficiency in
diagnosing DSDs. Thus, many patients with DSDs may
have been misdiagnosed or have not received appropriate
and early diagnoses. Missed or delayed diagnoses in turn
lead to treatment delay and increase psychological, social,
and familial burden. For example, DSDs in individuals
with CAH due to 21OHD, which is the most common
cause of DSDs, can lead to precocious puberty, premature
epiphyseal fusion, short stature, and impaired adult height
if undiagnosed and untreated at the early stage [12,13]. If
the patient is diagnosed early, then the serious complica-
tions mentioned above could be reversed with glucocorti-
coid treatment.
In the past several decades, with the rapid development

of the artificial intelligence (AI) technology, AI diagnostic
tools have become popular and widely applied in the
medical field of disease diagnosis. These tools have
improved the sensitivity and specificity of diagnosing
diseases. An AI diagnosis system greatly improves the
general level of health care, reduces public health
expenditure, and offers a distinctive value in less-
developed areas of the world. As the technical aspects of
AI developed, dynamic uncertain causality graph (DUCG)
methods have been established to address the causal link
between uncertain information and probability measure-
ments through graphical expressions [14]. DUCG is a
probabilistic graphical model that intuitively expresses a
causal relationship among variables in an explicit pattern
and uses a “chaining” inference algorithm to achieve
efficient reasoning. In this study, we used DUCG theory to
build an intelligent diagnosis system for rare DSDs caused
by steroid hormone synthesis or disorders and tested the
validity of the model with clinical cases.

Materials and methods

Establishment of a DSD knowledge base

First, a knowledge base for diagnosing DSDs was
established. The knowledge base included demographic
information, symptoms, physical signs, and laboratory test
results, as well as imaging diagnostics, medical histories,
and risk factors. The optimal diagnosis of DSDs depends
on a patient’s complete clinical data, including a prenatal
and familial history, a detailed and comprehensive physical
examination, pelvic imaging findings, hormone measure-
ments, chromosome karyotype analysis, and gene detec-
tion [8]. The most common specific clinical signs of
patients with DSDs include virilization in females,
clitoromegaly, posterior labial fusion, formation of a
urogenital sinus, early puberty, premature epiphyseal

closure, and accelerated growth during childhood [15].
Other rare DSD-related diseases can manifest as delayed
puberty, primary amenorrhea, bilateral undescended testes,
microphallus, isolated perineal hypospadias, an inguinal/
labial mass, breast development in males, and cyclic
hematuria in males. The laboratory examination should
include serum glucose, electrolytes, plasma renin activity,
aldosterone, and optional stimulation tests, as well as
hormone measurements of 17-hydroxyprogesterone, 11-
deoxycorticosterone, 11-deoxycortisol, dehydroepiandros-
terone, testosterone, pregnenolone, adrenocorticotropic
hormone (ACTH), cortisol, gonadotropins, anti-Müllerian
hormone, inhibin B, and urinary steroids [16]. Other
evaluation methods, such as pelvic and adrenal imaging,
chromosomal microarray, next-generation sequencing
panel of DSD genes, and whole-exome sequencing in
some special cases, can provide evidence to diagnose
DSDs [9,10]. These methods provide a clear genetic
diagnosis of these monogenic diseases. The process of
diagnosing DSDs usually takes 1–2 weeks if well-arranged
examinations are performed in comprehensive medical
centers, but it can sometimes take months in primary care
units. However, an intelligent possible diagnosis of DSDs
only requires less than a minute. The accuracy and
timeliness of a novel intelligent diagnostic model will
guide general practitioners and primary care physicians
toward a possible diagnosis and suggest the next
investigational step.
The study protocol was approved by the Human Ethics

Committee of Peking Union Medical College Hospital
(PUMCH).

Methodology

The DUCG method for intelligent diagnosis of DSDs must
address the following aspects: (1) how to represent the
clinical knowledge of DSDs mentioned in the preceding
paragraph, including causal relationships and uncertainties
among different events, which serve as the basis for
diagnosis; and (2) how to calculate the post-test probability
for each disease by using the DUCG knowledge base.
The DUCG method provides a concise way of

representing complex scenarios of clinical knowledge.
Each disease can be represented by a subgraph in DUCG
corresponding to a chief complaint, where the disease is
the cause, and the pathological manifestations, such as
symptoms, signs, and examination, are the results. An
independent link event is used to quantify (in the form of a
probability) the uncertain causal relationship between the
cause and the result. The quantitative value can be set
according to physician experience or machine learning,
and this link event is a directed arc that points from the
cause to the result. As shown in Figs. 1, 2, and 3, Bi

(rectangle ) represents the root cause event variable,
which is the hypothetical event variable (disease) in the
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inference calculation. Xi (circle ) is the result event
variable (pathological manifestation) and can also be used
as the cause event of other events. BXi (double circle ) is
the B variable that integrates the risk factors. Di (pentagon

) denotes the default root cause event of Xi, and each Di

corresponds to a unique Xi. SXi (hexagon ) is the gold
standard variable; if SXi is confirmed to be positive, then
the corresponding disease is definitively diagnosed. Ci

(dotted circle ) is a categorical variable that connects the
upstream cause and the downstream result and represents a
general term for a class of medical terms, such as
symptoms, signs, and laboratory inspection results. The
unconditional causal relationship between the cause and
result variables is represented by Fn;i (single line directed
arc ). Similar to Fn;i, causal relationships with an
observable validation condition event Zn;i are represented
by conditional Zn;i (dashed directed arc ). In Fn;i and
Zn;i, “n” refers to the number of parent nodes, whereas
“i” pertains to the number of child nodes; the states of both
nodes form a matrix, and the matrix can be a sparse matrix.
The causal uncertainties are encoded in the parameters of F
variables (details can be found in Reference [17]).
For example, Figs. 1 and 2 show the subgraph of a single

disease. Multiple subgraphs can be synthesized to form a
complete knowledge database (such as that shown in Fig. 3)
for inferential calculation by the DUCG cloud platform.
In terms of diagnostic reasoning, once a patient’s clinical

information (evidence E) is collected, the DUCG inference
calculation begins; first, to simplify the DUCG according
to E and form simplification rules 1–10 [18] and 16 [14], a
beneficial simplification can be performed by deleting the
part unrelated to the evidence and hypothesis, thereby
narrowing the range of hypotheses to be determined and
reducing the number of inference calculations. According
to the simplified DUCG model, each X in evidence E can
be expanded until only B or BX and F or Z exist, and these
variables are all multiplied by X together by an “and”
operation, as shown in Eq. (1).

E ¼
Y

i

Xi (1)

This calculation process completely follows the logic
operation rules and Eq. (2) to calculate the probability of
each disease B conditional on evidence E; then, the
probabilities are sorted to obtain the desired result.

Pr BijEf g ¼ PrfBiEg
PrfEg (2)

Statistical method

All study cases were verified by the DUCG diagnostic
model, interns, and third-year residents. The diagnostic
accuracy was then calculated. Moreover, the difference in

diagnostic accuracy for each disease among the three
groups was statistically analyzed by Pearson’s c2 test using
SPSS software (version 21.0).

Results

Diagnostic model for DSDs based on DUCG

The etiology of DSDs includes nearly 100 diseases that can
be classified into those caused by 46, XX DSD; 46, XY
DSD; and sex chromosome DSD [1,2]. A complete
intelligent diagnosis model for DSD based on a DUCG
would be large and complex. Hence, at this initial stage, the
nine most common causes of DSDs were chosen to
establish the diagnosis model (Fig. 3). In addition, a
diagnostic model of three causes of non-DSD-related
diseases with similar clinical manifestations was also
established for differential diagnosis. These causes are
listed in Table 1. For example, Figs. 1 and 2 demonstrate
three subgraphs of Fig. 3 that represent several causal
correlations between clinical features and diseases for
patients with 21OHD and polycystic ovary syndrome
(PCOS), respectively. All the included parameters and
causalities were determined by the DSD multidisciplinary
team, which included endocrinologists, geneticists, gyne-
cologists, urologists, and psychologists, on the basis of
domain knowledge, epidemiology statistics, and DSD
research findings.
We constructed a diagnostic model for 21OHD with a

DUCG (Fig. 1). The diagnostic flow chart of 21OHD is
representative because it is the most common flow chart for
DSDs. The collected medical evidence for diagnosing
21OHD currently includes demographic characteristics;
family history; characteristic symptoms and signs, such as
growth acceleration, female clitoromegaly, deepened voice
in children, boys with precocious puberty, virilization in
females, and short stature at the end of growth; imaging
findings; laboratory examination results, such as elevated
progesterone, testosterone, 17-hydroxyprogesterone, and
ACTH; and CYP21A1 genetic assay and sex chromosome
examination results.
Similarly, as depicted in Fig. 2, the diagnosis model

graph for PCOS was constructed by a DUCG, and PCOS
was considered as the control for DSDs in this study. The
diagnostic factors for PCOS also included demographic
characteristics; genetic history; typical clinical manifesta-
tions, such as weight gain, excessive body hair, and
oligomenorrhea; laboratory examination results and ima-
ging findings, such as mildly elevated testosterone and
hyperinsulinemia; and pelvic ultrasound findings of
polycystic changes in the ovary.

DSD diagnostic model verification

The data of 153 patients diagnosed with DSD
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Fig. 1 Subgraph of the 21OHD model in the DUCG. Rectangle represents the root cause event variable, which is the hypothetical event variable
(disease) in the inference calculation. Circle is the result event variable (pathological manifestation) and can also be used as the cause event of other
events. Double circle is the variable that integrates the risk factors. Pentagon denotes the default root cause event. Hexagon is the gold standard
variable. Dotted circle is a categorical variable that connects the upstream cause and the downstream result and represents a general term for a class of
medical terms, such as symptoms, signs, and laboratory examination results. Dotted line indicates a conditional connection. Solid line expresses an
unconditional connection.

Fig. 2 Subgraph of the PCOS model in the DUCG. The sequence numbers represent only one sort or index or code. The number of repeated
variables is only 111, 7, or 6. DUCG requires that X (circle) must have a reason, whereas 111, 7, and 6 have no reasons but are objective facts, all of
which are represented by the same number of pentagons. A dotted line indicates a conditional connection, whereas a solid line represents an
unconditional connection. For example, 147 and 148 are only found among women, and women are the conditional limitation.
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manifestations in the endocrinology department of
PUMCH were searched from the hospital information
system, covering 2012 to 2019. They were set as the
verification samples. Nine of the most common DSD-
related diseases were included (Table 1) [6]. Ninety-nine
patients were diagnosed with CAH: 23 patients with
21OHD, 10 patients with 11β-hydroxylase deficiency, 20
patients with 17-hydroxylase deficiency, 11 patients with
steroidogenic acute regulatory protein mutations, 9
patients with 3β-hydroxysteroid dehydrogenase deficiency
(3βHSD), 10 patients with 5α-reductase deficiency, 13
patients with 17β-hydroxysteroid dehydrogenase defi-
ciency (17βHSD), 3 patients with P450 oxidoreductase

deficiency (PORD), and 13 patients with androgen-
insensitivity syndrome (AIS). For each disease, 10 cases
were randomly selected for testing. When fewer than 10
cases existed for a disease, all available cases were tested.
Moreover, patients with androgen-producing tumors (n =
19), PCOS (n = 12), and hypercortisolism (n = 10) were
selected as the control group for the differential diagnosis
of DSDs.

Diagnostic performance

A total of 153 patients with possible DSD manifestations
were tested to verify the efficacy of the DUCG diagnostic

Fig. 3 DUCG with DSDs as the chief complaint combined with 12 subgraphs, two of which are illustrated in Figs. 1 and 2.

Table 1 Accuracy of the DUCG diagnostic model for patients with DSDs and non-DSD-related diseases

Recruited DSD patients
Number of
cases

Diagnostic
accuracy
of the DUCG
model

Diagnostic
accuracy
of interns

Diagnostic
accuracy
of third-year
residents

P value

21-Alpha hydroxylase deficiency (21OHD) 23 100% 82.6% 86.9% 0.127

11β-Hydroxylase deficiency (11βOHD) 10 90% 70% 70% 0.475

17-Hydroxylase deficiency (17OHD) 20 90% 75% 85% 0.432

Steroidogenic acute regulatory (StAR) protein mutations 11 100% 72.7% 81.8% 0.192

3β-Hydroxysteroid dehydrogenase deficiency (3βHSD) 9 88.9% 55.6% 55.6% 0.223

P450 oxidoreductase deficiency (PORD) 3 100% 0% 66.7% NA

Androgen insensitivity syndrome (AIS) 13 84.6% 53.8% 76.9% 0.293

5α-Reductase deficiency 10 90% 40% 70% 0.080

17β-Hydroxysteroid dehydrogenase deficiency (17βHSD)* 13 100% 53.8% 61.5% 0.019

Androgen-producing tumor 19 89.4% 68.4% 73.7% 0.376

Polycystic ovary syndrome (PCOS)* 12 100% 58.3% 83.3% 0.046

Hypercortisolism 10 100% 70% 90% 0.286

Total* (all the above DSD cases) 153 94.1% 64.7% 77.1% <0.001

* indicates P<0.05; NA indicates that no result was calculated in PORD due to the limited number of cases.
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system. Although all cases of monogenic diseases were
confirmed by genetic diagnosis, we did not provide genetic
data in the process of verifying the efficacy of the DUCG
diagnostic system. The total diagnostic accuracy of the
DUCG system was 94.1%, and the diagnostic process took
1–3 s. For some extremely rare cases of DSDs, such as AIS
and 3βHSD, the diagnostic accuracy of the DUCG model
was relatively low (84.6% and 88.9%, respectively). In
comparison, the total diagnostic accuracy of interns and
third-year residents in the endocrinology department was
64.7% and 77.1%, respectively, which were substantially
lower than that of the DUCG diagnostic system. For the
extremely rare cases, the diagnostic accuracy of interns and
residents was also considerably lower than that of the
DUCG diagnostic system. Moreover, the diagnostic
process took an average of 29 s for interns and 20 s for
third-year residents. Significant differences in diagnostic
accuracy were observed for cases of 17βHSD (P = 0.019),
PCOS (P = 0.046), and all cases as a total (P < 0.001)
among the three methods.

Discussion

As a newly developed AI diagnostic system, the DUCG
model has been increasingly and widely applied in the field
of clinical medicine. In 60 cases of 18 different vertigo-
related diseases, Dong et al. found that the diagnostic
accuracy of the DUCG model was 88.3% and 81.7% with
complete and incomplete medical information, respec-
tively, which were considerably higher than those of junior
and senior physicians [14]. Furthermore, in 203 cases
covering 27 jaundice-related diseases, Hao et al. reported
that the accuracy of the DUCG diagnostic system was
99.01% and 84.73% with or without laboratory tests,
respectively, and the system increased the diagnostic
efficacy and accuracy [19]. Recently, Bao et al. stated
that the average diagnostic accuracy of the DUCG model
was 94% for 139 clinical cases of 17 sellar diseases [20].
The results of these studies indicate that the DUCG
technology can be feasibly used in diagnosing clinical
diseases.
At present, AI has been increasingly used for disease

diagnosis and treatment, but the application of AI in the
diagnosis of rare diseases mainly involves facial recogni-
tion [21]. However, DSDs are difficult to diagnose via
facial recognition and require diagnosis by using complete
symptomatic, physical, and laboratory data. Furthermore,
more than 5 to 10 years of training may be required for an
experienced physician to have the ability to manage DSDs.
As demonstrated by the present study, the DUCG
technology can also be applied to diagnose rare DSDs.
In this study, the diagnostic accuracy of the DUCG

model was 94.1% for 153 cases of nine DSD-related
diseases and three non-DSD-related diseases, whereas the

accuracy of interns and third-year residents in the
endocrinology department were 64.7% and 77.1%,
respectively. Thus, even if the data were given to residents
or interns, the test results may not be perfectly judged to
diagnose the disease accurately. Therefore, a considerable
number of patients may have been delayed, missed, or
incorrectly diagnosed, and they need help from experts on
DSDs to obtain a correct diagnosis. DUCG can be a
feasible approach to address the lack of experts on DSDs.
A remarkable difference in diagnostic accuracy was found
among the three diagnostic groups. The DUCG model was
based on the knowledge and experience of experts on
DSDs. Hence, when given multiple symptoms and signs,
the DUCG model will provide 3–5 possible diagnoses
ranked according to probabilities. The advantages of more
accurate diagnoses provided by the DUCG model are
evident. In addition, the DUCG model has a great
advantage in terms of the time required to achieve a
diagnosis. The diagnostic process took only 1–3 s with the
DUCG model, but it took 29 s and 20 s for interns and
third-year residents, respectively. The DUCG model
greatly improved the accuracy of the diagnosis, shortened
the time and process to obtain a diagnosis, and reduced the
cost of medical management for patients. In most cases of
DSDs, an early and accurate diagnosis and early treatment
can substantially improve patient prognosis, including
both physical and psychological prognoses.
DSDs cover a variety of diseases. However, our study

does not include all of these diseases, especially consider-
ing that some DSDs are extremely rare and that sex
chromosome DSDs can be easily identified by chromo-
some detection in certain cases. Therefore, sex chromo-
some DSDs were not included in this diagnostic model.
The DUCG system must be further improved for
diagnosing certain very rare DSD diseases. Moreover, a
few DSD diseases cannot be accurately diagnosed because
the causes of these DSD diseases have clinical symptoms
that resemble other conditions and because laboratory
examinations lack specificity. Thus, comprehensive diag-
nostic assessments and advanced technologies, including
genetic detection, are needed to accomplish a correct
diagnosis. Nevertheless, before obtaining the final diag-
nosis, further examinations that are needed can be derived
from the knowledge base of the DUCG model. The DUCG
system can present possible diagnoses and also recom-
mend further corresponding examinations to physicians.
We will discuss these aspects in another paper. The
advantages of the DUCG model are notable. The DUCG
model is an excellent computer-aided diagnostic tool to
assist physicians in primary care hospitals. This model can
improve their ability to recognize DSD-related diseases
early, thus providing patients with an appropriate referral
to experts on DSDs for better management.
However, the DUCG model also has several deficien-

cies. DSDs cover various diseases, and we included only
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nine relatively common diseases that are the most
frequently observed by experts on DSDs in clinics. Certain
rare or unknown diseases may not be diagnosed from the
inference engine of the DUCG model, the knowledge base
of which still needs to be expanded in the future.

Conclusions

The DUCG model has the characteristics of low-parameter
dependence and graphical representation, which are
beneficial for the application of this model for medical
diagnostics in primary care settings. At present, DUCG
diagnostic models are seldom used to diagnose rare
diseases. However, this diagnostic system for rare DSD
diseases has higher accuracy and efficacy than interns and
third-year residents who lack special training. Addition-
ally, the model can provide a recommendation for the next
investigatory step. In summary, the DUCG diagnostic
model is a promising tool for diagnosing rare diseases, and
its application is worth promoting. However, more cases
need to be verified, and the DUCG system, including its
knowledge base, must be improved. We believe that the
application of the DUCG model would further improve
patient prognosis and reduce the burden on public health
care resources.
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