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Abstract Dyspnea is one of the most common manifestations of patients with pulmonary disease, myocardial
dysfunction, and neuromuscular disorder, among other conditions. Identifying the causes of dyspnea in clinical
practice, especially for the general practitioner, remains a challenge. This pilot study aimed to develop a computer-
aided tool for improving the efficiency of differential diagnosis. The disease set with dyspnea as the chief complaint
was established on the basis of clinical experience and epidemiological data. Differential diagnosis approaches
were established and optimized by clinical experts. The artificial intelligence (AI) diagnosis model was constructed
according to the dynamic uncertain causality graph knowledge-based editor. Twenty-eight diseases and syndromes
were included in the disease set. The model contained 132 variables of symptoms, signs, and serological and
imaging parameters. Medical records from the electronic hospital records of Suining Central Hospital were
randomly selected. A total of 202 discharged patients with dyspnea as the chief complaint were included for
verification, in which the diagnoses of 195 cases were coincident with the record certified as correct. The overall
diagnostic accuracy rate of the model was 96.5%. In conclusion, the diagnostic accuracy of the AI model is
promising and may compensate for the limitation of medical experience.
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Introduction

Dyspnea is a subjective respiratory discomfort that
includes a variety of intensity and a heterogeneous nature
of sensations [1]. It may be the main clinical manifestation
of pulmonary disease, cardiovascular disease, myocardial
dysfunction, anemia, and obesity as well as anxiety, anger,
and other psychological feelings. Dyspnea may also exist
in the same patient with a variety of factors leading to

respiratory discomfort. Although dyspnea is a common
chief complaint in outpatient clinics, recent studies showed
that even general practitioners in developed countries
could only reach an accurate diagnosis rate of 61% in
chronic dyspnea patients [2]. The shortage of medical
resources in China was even more serious than the
developed countries. In resource-limited areas, health
care services remain at a low level, and general
practitioners are very short of clinical experiences.
For the past decade, research on artificial intelligence

(AI) has developed quickly. In the medical field, AI
technology can assist in disease diagnosis by analyzing
huge amounts of medical data. Research showed that the
diagnostic accuracy based on AI reaches or even exceeds
the average diagnostic accuracy based on the pathologist or
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radiologist in the field of pathologic or imaging diagnosis
[3–5]. At this stage, technological breakthroughs are
mainly focused on the clinical diagnosis related to pattern
recognition. However, the development of AI-aided
diagnosis system is stuck for diseases whose diagnosis
requires complex logical reasoning. Since the 1960s, many
expert systems were developed to solve inference
problems. However, how to represent and calculate various
and complex uncertainties rigorously is not well solved.
Dynamic uncertain causality graph (DUCG) is a recently
developed AI theory based on expert causal knowledge
[6,7]. It has unique advantages in the diagnosis of large-
scale complex systems and has been applied to the
malfunction analysis and diagnosis in complex industrial
systems with a lot of uncertainties. At the same time,
preliminary exploration has begun in the intelligent
diagnosis of medical diseases [8,9]. The aim of the present
study was to establish a disease knowledge base for
patients with dyspnea as the chief complaint. With the
support of a clinician expert with evidence-based medical
thinking and plentiful experience in diagnosis, and
combined with DUCG theory, an AI-aided diagnostic
model was built and applied to compensate for the shortage
of general practitioners’ experience in diagnosis and
shorten the training cycle of general practitioners, thus
effectively saving the cost of health services for the
Chinese government.

Materials and methods

Graphical representation of DUCG

The basic ideas of DUCG were presented in References
[10–12], in which the virtual random functional event
variables along with weights were introduced to represent
and quantify the uncertain causalities among variables,
resulting in that the logical operation was introduced
before the probability calculation, the simplification rules
were introduced to simplify the problem and scale based
on the received evidence for a specific problem, the
number of parameters was reduced and not so sensitive
significantly, and the construction of causal knowledge
base with uncertainties and inference computation became
much easier and intuitive than other models, including able
to deal with not only DAG (directed acyclic graph) but also
DCG (directed cyclic graph), etc. DUCG is a domain
knowledge-based AI system that has been successfully
applied in many industry areas, such as nuclear power
plants, chemical engineering systems, and aerospace
systems, to resolve fault diagnoses and predictions.
Similarly, DUCG can also be applied in clinical diagnoses.
Different from other AI systems that are usually “black
box,” DUCG is explicable. It is based on the causalities
among events. For example, dyspnea (event A) can be

caused either by pneumonia (event B) or by bronchitis
(event C). By giving different probability values to B
causing A and C causing A, DUCG can deduce the
probability of pneumonia and bronchitis if a patient
acquired dyspnea. Of cause, the above is the simplest
case. The situation can be much more complicated. A
disease can cause many abnormal states in a human body,
including symptoms, physical signs, laboratory examina-
tion items, and imaging information. These abnormal
states can also be caused by different diseases. A DUCG
graphical representation system was developed to repre-
sent such a complex scenario, as depicted in following.

Variable description

In DUCG, the event variables V2{B, X, D, G, BX, SX, RG,
C} are used to represent clinical information and diseases
as follows:

Bi variable drawn as a square represents the basic or

root cause event variables. There is no input or cause for Bi

variable but at least one output or consequence. Normally,
Bi represents diseases.

Xi variable drawn as a circle represents the

consequence or intermediate event variable. Xi variable
has at least one input. Normally, it represents symptoms,
physical signs, laboratory examination items, imaging
information, risk factor, and so forth.

Di variable drawn as a pentagon represents the

default cause variable of Xi or SXi. When there is no input
for an Xi or SXi variable (the description is given later), aDi

variable represents the default input indicating the
unknown cause.

Gi variable drawn as a logic gate represents the

logic gate variable. Its states represent the state combina-
tions of the input variables.

SGi variable drawn as a double line logic gate

represents a special logic gate variable whose states
indicate the meaningful state combinations of risk factors
of a Bi variable. The difference between Gi and SGi is that
only one state of SGi can be true, given the observed states
of risk factors represented by Xi variables.
The black directed arc is used between a logic

gate variable (Gi or SGi) and its input variables. It does not
have a value but only indicates the input variables of logic
gates.

BXi variable drawn as a double line circle

represents the output of the SGi variable, which is the
corresponding Bi variable with revised state probability
distribution by SGi. The change rates from Bi to BXi is in
the SAi variable between them.
SAi variable drawn as a double line directed arc
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from an SGi to a BXi represents the probability distribution
change variable that changes the state probability distribu-
tion from Bi to BXi according to the state of SGi.

SXi variable drawn as a hexagon denotes the

special Xi variable representing a clinical golden standard.
Its abnormal state directly points to a disease with
confidence 0 < qij ≤ 1, j ≠ 0 (0 indexes the normal
state).

RGi variable drawn as a directed shield represents

the reversal logic gate variable. Its state depends on the
state combination of its output variables. Given the states
of the output variables, the state of RGi becomes known
and can be treated as a special evidence.
Fi variable drawn as a single line directed arc

represents a weighted causal functional variable
from parent variable Vi to child variable Xi or SXi.
Fn;i≡(rn;i/rn)An;i, where n indexes the child variable and i
indexes the parent variable. rn;i > 0 represents the causal
relationship intensity between Vi and Xn or SXn.

rn �
X

i
rn;i.An;i is an event matrix representing the

uncertain functional causality between Vi and Xn or SXn.
Ank;ij is a virtual event and a member of the event matrix
An;i, indicating that Vij causes Xnk/SXnk, where j indexes the
state of Vi and k indexes the state of Xn/SXn. Correspond-
ingly, Fnk;ij is a member of the weighted event matrix Fn;i.
All the variables along with graphical symbols and
functional descriptions are summarized in Table 1.

Conditional weighted functional event variables

Similar to the above/ordinary Fi variable, the conditional
weighted functional variable is drawn as a dashed directed
arc , which is used as the same way as an ordinary Fi,
but with an observable validation condition Zn;i. Zn;i is an
event or a group of events. When Zn;i is observed as true,
the dashed directed arc becomes the ordinary directed arc;
otherwise, it is eliminated.
Similar to the above/ordinary double line directed arc,

the conditional dashed double line directed arc is used
in the same way as the ordinary double line directed arc but
with a validation condition Zn;i. Zn;i is an event or a group
of events. When Zn;i is observed as true, the dashed double
line directed arc becomes the ordinary double line directed
arc; otherwise, it is eliminated. They are also included in
Table 1.

DUCG example and inference method

In the DUCG example shown in Fig. 1, there are three B-
type variables, eight X-type variables, three D-type
variables, one G-type variable, three SG-type variables,
three BX-type variables, one SX-type variable, and one RG-

type variable. In this example, B1, B2, and B3 represent
three disease variables, and X9, X10, and X11 are the three
risk factors of the three diseases, respectively. The state
probability distributions of BX1, BX2, and BX3 can be
calculated according to the state observation of X9, X10,
and X11, either known or unknown. The logics are
specified in SG-type variables.
Usually, Xi, SXi, and RGi are the evidence variables

whose states are to be observed. The observed states are the
observed evidence E. The inference or diagnosis is to
calculate Pr{BXkj|E}, given that the state probability
distribution of BXk has been calculated according to the
states of the risk factors of Bk as described above. Then,
given E = X1,1X2,0X3,1SX4,2X5,0RG6,0RG7,2, the suspected
occurrence probability of BXkj (j ≠ 0) is calculated using
the equation below:

hskj ¼ Pr BXkjjE
� � ¼ PrfBXkjEg

PrfEg : (1)

In DUCG, state 0 usually indexes the normal state.
BXkjE and E in Eq. (1) are expanded as the sum-of-

products composed of only BXi and Ai events with r
parameters. During the expansion, the logic operations
such as inclusions and exclusions are applied. The weights
(rn;i/rn) are also calculated. Given the parameters
bij≡Pr{Bij}, ank;ij≡Pr{Ank;ij}, and rn;i, the two probabilities
of the two sum-of-products of BXkjE and E in Eq. (1) can
be calculated, respectively; thus, hskj can be calculated. The
rank of BXkj according to hskj is the inference or diagnostic
results.

Construction of the DUCG knowledge base with
dyspnea as the chief complaint

A DUCG knowledge base uses the event variables defined
in the above section to represent causalities with
uncertainties among the variables in the domain. The
result is a directed graph called a DUCG. A common
disease spectrum that may cause dyspnea is determined by
our professional clinician team and then a disease pool
including 28 diseases is formed, as shown in Table 2.
Subgraphs were constructed using the DUCG knowl-

edge base editor of the DUCG Cloud Platform. Each
subgraph contains only one B-type variable (representing a
disease), combining the disease knowledge, epidemiolo-
gical data, and clinical diagnostic experience, across
disciplines. Fig. 2 is an example of the subgraph of
chronic obstructive pulmonary disease (COPD) contained
in the DUCG knowledge base editor. All the 28
constructed subgraphs were then combined by fusing the
same variables automatically through the DUCG platform
editor. The result is the DUCG knowledge base about
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Fig. 1 Example of a dynamic uncertain causality graph.

Table 1 Functions of variables in DUCG
Type Symbol Medical meaning

Bi The B-type variable indicates a disease

Xi The X-type variable can represent (1) risk factors, such as smoking and alcoholism; and (2) clinical
indications, such as symptoms, physical signs, laboratory examination, and imaging information

BXi The BX-type variable stands for a disease affected by risk factors

SXi The SX-type variable indicates some laboratory examinations or imaging information through which the
disease can be diagnosed directly

Gi The G-type variable is used to express the logical relationship of clinical indications

RGi The RG-type variable is used to express the effect of combinations of clinical indications on diseases

SGi The SG-type variable is a special logic gate. It is only used to express the logical relationships between risk
factors and diseases

Di The D-type variable represents the default input indicating the unknown cause

Fi The F-type variable indicates the causal relationship intensity between two clinical indications

Conditional Fi The function of the conditional F-type variable is the same as the F-type variable but with an observable
validation condition; if the condition is true, then the variable functions, and vice versa

SAi The SA-type variable is used to represent the influence of risk factors on the probability of disease onset

Conditional SAi The function of conditional SA-type variable is the same as the SA-type variable but with an observable
validation condition
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dyspnea (Fig. 3), which is used to diagnose the possible
disease of any patient with dyspnea as his/her chief
complaint.
The DUCG Cloud Platform was developed by Beijing

Tsingrui Intelligence Technology Co., Ltd. to implement
the DUCG theory applied in disease diagnoses. Any
clinician who is interested in and qualified to test this
platform can contact the second or last author to obtain an
account and password.

Inference and calculation methods

Once the patient’s clinical information (evidence E) is
collected, the DUCG Inference Engine begins the calcula-
tion process. First, the DUCG is simplified based on E
according to the simplification rules 1–10 and 16 [11,13].
Through general graph simplification, the variables and
causal relationships unrelated to the evidence and hypoth-
esis are deleted to narrow the range of hypotheses for
determination and reduce the amount of inference calcula-
tion. According to the commonly used assumption of a
single disease diagnosis, the simplified DUCG is further
decomposed into a group of sub-DUCGs for every Bkj

(j ≠ 0, representing an abnormal state), with each
subgraph retaining only one B-type variable. The subgraph
can be further simplified by applying the above rules.
During the simplification process, the parts that are not
related to the evidence E and the variables for evaluation
will be simplified according to the simplification rules.
Some sub-DUCGs along with their corresponding Bk may
be eliminated during the simplification. The remaining
sub-DUCGs correspond to Bkj, j ≠ 0, and all these Bkj

compose the hypothesis space. If the hypothesis space has
only Bkj, the inference is completed and the disease is
diagnosed as Bkj. If there are multiple hypotheses, then the
probability for each hypothesis must be calculated and
sorted. First, we calculate Pr{E|sub-DUCGkj}. Second,we
calculate

hskj � PrfEjsub-DUCGkjg=
X

k,j≠0

PrfEjsub-DUCGkjg.

Finally, we sort hskj and get the diagnosis results.

Table 2 Diseases causing dyspnea in the DUCG knowledge base

B-type
variable

Description B-type
variable

Description

B1 Carbon monoxide poisoning B15 Pericardial effusion

B2 Metabolic acidosis B16 Hemochromatosis

B3 HCM B17 End-stage tumor

B4 Pulmonary infection B18 COPD

B5 PAH B19 Laryngospasm

B6 Interstitial lung disease B20 Foreign body in air passage

B7 Pulmonary alveolar proteinosis B21 Obesity

B8 PE B22 Scoliosis

B9 Heart failure B23 Pleural effusion

B10 HPS B24 Asthma

B11 DCM B25 Bronchitis

B12 Anaemia B26 Guillain-Barre syndrome

B13 Renal failure B27 Myasthenia gravis

B14 Constrictive pericarditis B28 Psychology

Abbreviation: HCM, hypertrophic cardiomyopathy; PAH, pulmonary artery
hypertension; PE, pulmonary embolism; DCM, dilated cardiomyopathy; HPS,
hepatopulmonary syndrome; COPD, chronic obstructive pulmonary disease.

Fig. 2 DUCG subgraph example of chronic obstructive pulmonary disease.
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Verification of diagnostic model of dyspnea

Electronic hospital records (EHRs) without any identity
characteristics were screened retrospectively from Suining
Central Hospital, a tertiary hospital in Sichuan Province,
China, as a third party to verify the above model. The EHR
system was initiated at the end of 2012, and so the medical
records from January 2013 to December 2018 were
covered. These records were sorted according to the
types of diseases included in the dyspnea disease knowl-
edge base. In each type of medical record diagnosed as the
correlative disease, no more than 10 medical records with
dyspnea as a chief complaint were randomly selected as
test samples (for the same disease, 10 randomly selected
cases were enough to verify the correctness). For relatively
rare diseases less than 10 cases, all were included in the test
to increase the proportion of rare diseases. Note that the
low-quality case records (insufficient information or
incorrect diagnoses) were eliminated from the selected
cases according to the agreement between our expert team
and the third-party test team. The DUCG test platform was
used to verify the diagnostic accuracy of the model by
feeding in the patient’s basic information, medical history,
physical signs, and manual inspections in the case records
by the test team. The DUCG diagnosis results were
compared with the medical records. The coincident
diagnoses were considered as correct; otherwise, it was
considered as incorrect.
The so-called correct means: (1) the ranking first

diagnosis by DUCG is in the record, which includes 158
cases out of the total 195 correct cases; and (2) more than
one diagnosis were suggested by DUCG and all were listed

in the record or agreed on by the test team and the DUCG
knowledge base constructor. The total includes 37 cases
out of 195 correct diagnoses. The other 202 - 195 = 7 cases
were incorrect. Note that some diseases listed in the record
but not in the diagnoses of DUCG could be true because
they were not the causes of the main complaint of dyspnea,
a condition that was discussed and agreed on by the test
team and the DUCG knowledge base constructor.

Results

The AI diagnostic model based on DUCG for the
differential diagnosis of dyspnea was constructed as
described above. The disease set with dyspnea as the
chief complaint was established on the basis of expert
knowledge and epidemiological data. It contained 28
diseases and syndromes. Differential diagnosis approaches
were established and optimized by clinical experts. The
constructed DUCG contained 132 symptoms, physical
signs, and serological and imaging results (Fig. 3). It was
the combination of 28 subgraphs, as illustrated in Fig. 2,
that fused the same variables in different subgraphs. The
DUCG of Fig. 3 was the knowledge base actually used to
diagnose the diseases causing dyspnea. In other words, the
inference and calculation for any diagnosis of actual cases
with dyspnea were based on the DUCG in Fig. 3.
A total of 25 959 records containing the dyspnea

symptom were found in the EHR system, and 202 medical
records with diagnoses confirmed by specialist for tests
were randomly selected according to the above verification
method. After the risk factors, clinical symptoms, signs,
and available examination results were manually entered

Fig. 3 Knowledge graph of the AI diagnostic model of dyspnea database.
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by clicking the state of the corresponding variable shown
on the screen, the DUCG-based AI diagnosis was
executed. The output results were sorted according to the
calculated hskj. Among the cases, 195 were diagnosed
correctly. The diagnosis accuracy rate was 195/202 =
96.5%. The results are listed in Table 3. The table reveals
that 9 diseases had only 10 or less records and 5 did not
have any record, because they were too rare under this
main complaint and could not be found in the EHR system.
As an example of a test, Fig. 4 shows the sorted results

for the tested case, in which B9,1 (heart failure) ranked first
and B15,1(pericardian effusion) ranked the second. Fig. 5 is
the causality diagram explaining why disease B9,1 ranked
first, that is, because it perfectly caused all the abnormal
evidence, and Fig. 6 illustrates why B15,1 (pericardial
effusion) ranked lower, that is, because two abnormal
symptoms X33,1 and X73,1 could not be explained by B15,1.

Discussion

Whether for general practitioners or specialists in respira-
tory or cardiology, dyspnea is one of the most common
chief complaints in practice. However, due to the serious
uneven distribution of health care resources in China,
patients with dyspnea cannot be identified effectively in
resource-limited regions. Misdiagnosis and misuse of
treatments are very common. It will take a long time and
high investment to improve this situation by relying solely
on the training of general and specialized personnel.
With the rapid development of AI research in recent

years, AI application has broadened in the medical field. AI
is gradually driving the deep reformation of the medical
system and forming a new technological revolution. AI
diagnosis and treatment systems can simulate the thinking
and reasoning process of physicians and are superior to

Table 3 Example of a COPD patient’s test result

Variable Disease
Total cases in
hospital

Randomly selected
and tested cases

Correct diagnoses
Diagnostic
accuracy

B1 Carbon monoxide poisoning 58 10 10 100%

B2 Metabolic acidosis 9 9 9 100%

B3 HCM 10 10 9 90%

B4 Pulmonary infection 10 10 9 90%

B5 PAH 559 10 10 100%

B6 Interstitial lung disease 296 10 10 100%

B7 Pulmonary alveolar proteinosis 1 1 1 100%

B8 PE 101 10 10 100%

B9 Heart failure 429 10 9 90%

B10 HPS 0 0 0 0

B11 DCM 151 10 9 90%

B12 Anemia 3871 10 10 100%

B13 Renal failure 1099 10 10 100%

B14 Constrictive pericarditis 7 7 7 100%

B15 Pericardial effusion 300 10 10 100%

B16 Hemochromatosis 0 0 0 0

B17 End-stage tumor 9 9 9 100%

B18 COPD 13 900 10 10 100%

B19 Laryngospasm 0 0 0 0

B20 Foreign body in air passage 40 10 10 100%

B21 Obesity 5 5 5 100%

B22 Scoliosis 9 9 9 100%

B23 Pleural effusion 1469 10 10 100%

B24 Asthma 2294 10 8 80%

B25 Bronchitis 1330 10 9 90%

B26 Guillain-Barre syndrome 0 0 0 0

B27 Myasthenia gravis 2 2 2 100%

B28 Psychology 0 0 0 0

Total 25 959 202 195 96.53%

Abbreviation: COPD, chronic obstructive pulmonary disease; HCM, hypertrophic cardiomyopathy; PAH, pulmonary artery hypertension; PE, pulmonary
embolism; DCM, dilated cardiomyopathy; HPS, hepatopulmonary syndrome.
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human beings in memory, calculation speed, and accuracy.
Therefore, these systems have natural advantages in
decision support. In recent years, relevant theoretical
research results have emerged in the world, including
fuzzy logic, artificial neural network, Bayesian network,
decision tree, and case-based reasoning [14,15]. In the past

decade, AI technology in the field of intelligent medical
diagnosis has developed mainly along the path of machine
learning based on big data. However, this technology kept
the complex diseases requiring logical reasoning diagnosis
an unsolved challenge in the development of a computer-
added diagnosis system. Several main bottlenecks exist in
the development of machine learning technology. First,
existing machine-learning theoretical methods have poor
interpretability themselves. Second, such mainstream
technology only relies on big data and pattern recognition
in structure building and parameter learning, but it is short
of effective knowledge representation and precise diag-
nostic reasoning. In complex situations such as blurred
symptoms, false symptoms, multiple causes, incomplete
knowledge, and causal cycles existing, having no specia-
lized knowledge cannot solve the problem. Third, the
accuracy of the big data machine-learning model is high
only when the test case is similar to training data set. Once
the application scenario deviates, the accuracy will be
much lower than expected. For example, the model trained
by the medical record data from hospital A may lead to
significant errors when validated by the medical record
data from hospital B, unless the quality and format of the
medical record data of hospitals A and B are basically the
same. However, this is usually unrealistic, and significant
diversity exists in the clinical application in different levels
of hospitals in China. DUCG theory can express uncertain
knowledge concisely in the form of a causality graph and
provide concise expression and precise reasoning method.
It can also express complex logical thinking processes and
uncertain causality between disease and clinical manifesta-
tion. The results are highly interpretable and the theory can

Fig. 5 Graph of the causal relationship between the diagnosis heart failure (ranking the first in Fig. 4) and its evidence.

Fig. 4 Sorted diagnoses by DUCG for a test case, according to
hskj. Abbreviation: PE, pulmonary embolism; PAH, pulmonary

artery hypertension; COPD, chronic obstructive pulmonary
disease; HCM, hypertrophic cardiomyopathy.
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effectively solve the contradiction between the require-
ment of standardization, accuracy, and depth labeling
workload of data samples and insufficient data samples in
clinical practice. DUCG theory has been proven to be
effective in fault monitoring, prediction, and diagnosis in
large complex industrial systems, such as nuclear power
plants, spacecraft fault diagnosis, and chemical process
fault diagnosis [6], without relying on big data.
This study is a pilot study in the application of DUCG

theory based on clinical expert knowledge in AI auxiliary
diagnosis. The construction of the model does not depend
on data learning but chooses the chief complaint as the
entry point to cover related diseases. It fits into the scenario
of primary care clinic or first visit in outpatient clinic and
follows the actual inquiring mode of the doctor. The future
model can be optimized and expanded according to the
epidemiological characteristics of patients in different
regions and hospitals at different levels. At the same time,
the goal of covering all common diseases in general
practice can be achieved by constructing knowledge bases
for different chief complaints. Through the validation
conducted in a third-party tertiary hospital, the accuracy
rate of the DUCG in this study reached 96.5% for patients
complaining of dyspnea. Achieving such satisfactory
diagnosis accuracy is probably due to the main advantages
of DUCG theory as follows. First, compared with Bayesian
network and other reasoning methods, DUCG does not
depend mainly on complex and conditional probability,
and the results can be interpreted by clinical language.
Based on the interpretability, users can judge whether the
diagnostic hypothesis is reasonable according to their own

clinical knowledge and experience. Second, traditional
diagnostic models depend heavily on more accurate
probabilistic parameters, but it is difficult to obtain
invariable accurate probabilistic parameters in clinical
practice. The establishment of diagnostic models based on
DUCG theory does not strictly depend on these para-
meters, because only their relative values are meaningful.
Therefore, the DUCG system is robust and easy to
construct.
Note that the disease base in this paper covered only

common diseases with dyspnea as the chief complaint, and
other related rare diseases with very low incidence in the
population were not included. Therefore, further evalua-
tion or optimization and improvement of the model are
necessary. In spite of this, the result of this pilot study
proved that the technology based on DUCG theory is
applicable in practice, which can compensate for the lack
of experience of general practitioners in the differential
diagnosis of dyspnea and provide cost-effective medical
solutions for improving the quality of health services in
China.
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