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Abstract Research into medical artificial intelligence (AI) has made significant advances in recent years,
including surgical applications. This scoping review investigated AI-based decision support systems targeted at the
intraoperative phase of surgery and found a wide range of technological approaches applied across several
surgical specialties. Within the twenty-one (n = 21) included papers, three main categories of motivations were
identified for developing such technologies: (1) augmenting the information available to surgeons, (2) accelerating
intraoperative pathology, and (3) recommending surgical steps. While many of the proposals hold promise for
improving patient outcomes, important methodological shortcomings were observed in most of the reviewed
papers that made it difficult to assess the clinical significance of the reported performance statistics. Despite
limitations, the current state of this field suggests that a number of opportunities exist for future researchers and
clinicians to work on AI for surgical decision support with exciting implications for improving surgical care.
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Introduction

In 1978, the cardiovascular surgeon Dr. Frank Spencer
wrote that “a skillfully performed operation is about 75%
decision making and 25% dexterity” [1]. While the exact
split between technical skill and cognitive decisions can be
debated and these domains often overlap, surgical practice
requires complex decision making at each phase of care.
The literature supports the importance of decision making
(in both technical and non-technical aspects of care) in the
outcome of a patient. In one recent study of surgical errors,
cognitive errors were identified as a contributing factor to
over half of the adverse events recorded [2]. Despite the
relationship of the decision-making process to patient
outcome, decision making skills are less emphasized than
technical skills during surgical training, perhaps due to the
difficulty of teaching decision making [3]. Furthermore,
additional research suggests that decision-making skills
vary with surgeon experience [4]. Thus, finding ways to

improve the quality of surgical decision making could help
improve outcomes by optimizing surgical care.
Intraoperative decision making has been well-studied—

though predominantly through structured qualitative
methods such as cognitive task analysis [4,5]. Flin et al.
(2007) presented an excellent framework from which to
consider intraoperative decision making, emphasizing
processes of naturalistic decision making, i.e., the process
of making decision under “conditions of high uncertainty,
inadequate information, shifting goals, high time pressures
and risk, usually working in teams and subject to
organisational constraints.” [6] In this framework, sur-
geons are thought to make decisions through a three-step
process that includes situational assessment, action-taking,
and reevaluation of the action’s consequences.
Artificial intelligence (AI) has been proposed as a

decision-making aid in a wide variety of fields, including
medicine. Over the past 20 years, there has been an
explosion of research in medical AI, facilitated by the
increasing availability of medical data. While interest and
research on AI applications in surgery is increasing [7,8],
much of the focus on medical AI has been in other
specialties such as radiology, pathology, or dermatology
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[9–11]. Based on Flin et al.’s framework, AI could
potentially affect the manner in which surgeons assess a
given situation (e.g., through better data about a clinical
scenario), the types of actions that are taken (e.g., through
decision suggestion), and the process of re-evaluating the
impact of an action.
To better understand the landscape of AI-supported

intraoperative decision making, we conducted a scoping
review that investigated AI technologies intended to
support intraoperative decision making. We summarized
the literature in three broad categories based on the
authors’ cited motivations for applying AI technology to
surgical decision support: (1) increasing the information
available to surgeons, including retrieving similar cases
from a database and compensating for the loss of sensory
input during minimally invasive surgery; (2) accelerating
intraoperative pathology, including tumor margin map-
ping, tumor classification, and tissue identification; and
(3) recommending surgical steps as a form of decision support.

Methods

The Medline (Ovid), IEEE Xplore, Web of Science, and
PubMed databases were searched for papers that included
a keyword from each of three categories: surgery (key-
words: surgery, surgeon, intraoperative, operative, post-
operative complication), decision support (keywords:
decision, decision making, real-time systems, clinical
decision-making, decision support system) and artificial
intelligence (keywords: artificial intelligence, machine
learning, neural network, algorithm, computer-assisted,
computational modeling, biomedical computing, data
mining, optimization, data models, computerized monitor-
ing, expert systems). These keywords were selected based
on an initial overview of the literature from a few prior
review papers on the topic of artificial intelligence in
surgery and related fields [8,12]. While this review is
focused on intraoperative decision making, our initial
search strategy captured titles and abstracts that may have
included preoperative and postoperative decision making
in case such decisions were related to intraoperative

decision support.
Only papers focused on the design or application of AI-

based algorithms for intraoperative decision support for
surgeons were included in the final analysis. Artificial
intelligence was defined as “the study of algorithms that
give machines the ability to reason and perform cognitive
functions.” Papers related to anesthesia, surgeon training,
and surgeon skill evaluation were excluded, as were papers
related to robotic surgery in which the decision support
applications were specific to the operation of the robot (for
instance, warning systems to avoid robotic tool collisions)
rather than on supporting clinical decisions during the
operation.
During the abstract screening phase, papers related to the

preoperative and postoperative phases of surgery were
excluded if they did not apply to intraoperative decision
support. All English language peer-reviewed published
literature and peer-reviewed conference proceeding papers
to May 25, 2019 were eligible for inclusion. Narrative
review papers, editorials, letters to the editor, and abstracts
were excluded, as were any studies involving animals or
fewer than 10 patients. Two reviewers screened articles for
inclusion/exclusion using Covidence (Melbourne, Austra-
lia). Reference lists of included papers were hand-searched
by one reviewer and included if the inclusion criteria were
met. Inclusion and exclusion criteria are summarized in
Table 1.

Results

A total of 2397 titles were identified from the database
search, and 543 abstracts were eligible for screening
(including papers dealing with preoperative and post-
operative phases). Of these, 9 manuscripts dealing with the
intraoperative phase were selected for inclusion. Review of
the citations produced an additional 6 qualifying papers;
reviews of the citations in the additional papers produced
another 6 papers. A total of 21 reviewed papers were
included in the final analysis (Fig. 1).
The papers featured a wide range of surgical subspe-

cialties, including gynecologic surgery, neurosurgery,

Table 1 Inclusion and exclusion criteria for this scoping review
Included Excluded

Artificial intelligence applied to decision support for the surgeon during
the intraoperative phase of surgery

Decision support during the preoperative and postoperative surgical phases
Anesthesia, surgical training, and surgeon skill evaluation when unrelated
to clinical decision support

Studies with at least 10 human patients Studies with fewer than 10 patients

Published prior to May 25, 2019 Animal studies

Peer-reviewed published literature and conference proceedings papers Narrative review papers, editorials, letters to the editor, abstracts

All geographical areas but written in English Languages other than English
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general surgery, ophthalmologic surgery, and endocrine
surgery. Data in these studies were multimodal and
included surgical videos, imaging modalities (e.g., hyper-
spectral imaging, optical coherence tomography, etc.), and
intraoperative variables such as heart rate and blood
pressure. A diversity of artificial intelligence techniques
were used, including convolutional and recurrent neural
networks, support vector regression, support vector
machines, k-nearest neighbors classification, and graph-
based methods. While this review was focused on
intraoperative decision making, initial screening included
preoperative and postoperative decision making in case
such decisions were related to intraoperative decision
support. Though none met inclusion criteria, a list of the
preoperative and postoperative phase papers that were
considered are available in Supplementary Material.
Summarization of these papers was outside the scope of
this review.
Given the diversity of methods and topics, the motiva-

tions cited for the introduction of AI to the surgical
setting were the most unifying features within the reviewed
body of work. The papers summarized here have been
grouped by the three main motivations we identified:
(1) providing extra information to surgeons during opera-
tions, (2) accelerating intraoperative pathological diag-
noses, and (3) direct recommendation of surgical steps in
cases where experts capable of making those judgments
are scarce or unreliable (Fig. 2). In the summaries, we
focus on four areas in each paper: motivation, methods,
data set characteristics, and evaluation process.

Increasing the information available to surgeons
during operations

Two main approaches for providing extra information to
surgeons intraoperatively were identified in this body of
work. Two papers suggested methods to augment the
limited sensory information available to surgeons during
minimally invasive surgery [13,14]. Seven papers pro-
posed algorithms for retrieving similar cases from a
database using surgical video and images [15–20].
While minimally invasive surgery has many benefits for

patients, the format can limit the sensory information
available to surgeons compared to open surgeries. To
address this challenge, Udelsman et al. (2014) used
preoperative and intraoperative parathyroid hormone
(PTH) levels to predict the probability of a cure during
minimally invasive parathyroidectomy surgery [13]. Dur-
ing this procedure, the targeted approach of the minimally
invasive technique focuses on a single adenoma that is
localized preoperatively through imaging studies. In some
patients, multiple adenomas may exist that may not have
been identified preoperatively; thus, markers such as PTH
can help surgeons determine whether all adenomas
responsible for hyperparathyroidism have been resected.
Udelsman et al. mathematically transformed the PTH level
data and fed the results into a final stage logistic regression
model to produce predicted probabilities of cure. They
tested the model on an unscreened population of 100
patients, none of whom had indications of remaining
hyperparathyroidism in either short-term or long-term
follow-up. The model correctly predicted a cure in 78 of 81
(96.3%) patients with single adenoma and 17 of 19
(89.4%) patients with multiple adenomas.
Another application of AI to augment the intraoperative

information during minimally invasive surgeries came
from Harangi et al. (2017), who developed an artificial
neural network (ANN) to distinguish the uterine artery
from the ureter during laparoscopic hysterectomy [14].

Fig. 1 Modified PRISMA diagram for this scoping review.

Fig. 2 Motivations cited by reviewed papers for developing artificial
intelligence-based intraoperative decision support systems.

Allison J. Navarrete-Welton and Daniel A. Hashimoto 371



During laparoscopic surgery, there is minimal tactile
feedback from the instruments and palpation of specific
structures with one’s hands is not possible; therefore,
identifying anatomic structures can become more difficult.
In this study, a human would review an endoscopic image
captured during laparoscopic hysterectomy and then draw
a line over an anatomic structure of interest. The subimage
along the line would then be fed into the ANN (a modified
GoogLeNet architecture), which would classify the sub-
images as either uterine artery or ureter. Harangi et al. used
2500 images taken from 35 patient videos. After data
augmentation, they created a training set of 8000 images
and a testing set of 2000 images, on which they obtained
94.2% accuracy.
Seven papers focused on case retrieval, where AI

techniques were used to present surgeons with images or
video of cases similar to the case being actively reviewed
or performed. Several motivations were cited for using
case retrieval as an intraoperative aid. Quellec et al. (2011)
suggested that automated case retrieval could help provide
intraoperative warnings or recommendations based on
real-time surgical video [21]. Focusing on the relatively
new field of probe-based confocal laser endomicroscopy
(pCLE), André et al. (2009) noted that “the taxonomy of
pathologies for pCLE is still under active construction by
the physicians” and suggested that retrieving cases with

existing annotations and corresponding histopathological
diagnoses could help surgeons make real-time decisions,
such as whether or not to biopsy tissue [17].
Six of the case retrieval papers focused on pCLE. Four

of the pCLE papers, published between 2009 and 2014,
were published by Barbara André’s group and utilized a
colonic polyp data set from Mayo Clinic in Jacksonville,
FL [15–18]. The other two pCLE papers were published by
Yun Gu of Shanghai Jiao Tong University using a breast
tissue data set [19,20]. An overview of the data set
characteristics and algorithm performance measurements
for the pCLE case retrieval papers are presented in Table 2.
André’s work on pCLE case retrieval focused on

methods for representing surgical videos and images. To
identify similar cases, the surgical videos and images must
be represented in a numerical form that allowed for the
calculation of a distance metric (i.e., similarity) between
cases. In 2009, André first used the Bag of Visual Words
(BoW) method from computer vision to represent pCLE
images [17]. In this method, established feature descriptor
algorithms such as Scale-Invariant Feature Transform
(SIFT) were used to extract visual features from the
images, and “visual words” were identified through k-
nearest neighbors clustering that grouped the extracted
features from the data set. Taking the clinical context into
account, André et al. selected feature extraction methods

Table 2 Data set characteristics and algorithm performance on pCLE case retrieval
Paper Data set Data set processing Data set distribution Validation Performancea

André et al. 2009 [17] 54 patients; colonic
polyps

1036 images; videos
discarded if histology
and pCLE diagnoses
did not match

Roughly equal
(2 classes)

Leave-n-out cross
validation (patient
held-out)

80.1% weighted k-NN
classification accuracy
(benign vs. pathological)

André et al. 2010 [15] 68 patients; colonic
polyps

121 single-polyp videos Roughly equal
(2 classes)

Leave-one-patient-out
cross-validation

94.2% weighted k-NN
classification accuracy
(benign vs. pathological)

André et al. 2012 [16] 66 patients; colonic
polyps

118 single-polyp videos Unspecified
(8 binary classes)

30 � 3-fold cross-
validation (patient
segregated)

96.7% AUC for the
highest-performing
semantic concept
(“elongated crypt”)
49.4% Kendall τ rank
correlation coefficient
(Likert similarity scale)

Kohandani Tafresh
et al. 2014 [18]

66 patients; colonic
polyps

118 videos (mostly
single-tissue)

Unbalanced (35 benign,
83 neoplastic)

Leave-one-patient-
out cross-validation

89.9% k-NN classification
accuracy
48.8% Spearman ⍴

correlation coefficient
(Likert similarity scale)

Gu et al. 2016 [19] 50 patients; breast
tissue

Unspecified Unspecified (3 coarse
classes, 8 sub-classes)

10-fold cross validation
(not patient-segregated)

96.6% SVM classification
accuracy (coarse class)

Gu et al. 2017 [20] 45 patients; breast
tissue

700 pCLE mosaics,
144 matched with
histology images

Unspecified (3 coarse
classes, 8 sub-classes)

10-fold cross validation
(not patient-segregated)

89.2% top-1 retrieval
accuracy (coarse class)
96.2% top-5 retrieval
accuracy (coarse class)

aPerformance of the main algorithm described in the Methods section of each paper, not the tested baseline algorithms.
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that were likely to register the blob-like shapes of goblet
cells and crypts that physicians use to make colonic polyp
diagnoses. André et al. also adopted the method to be
translation and rotation invariant but not scale invariant,
since the size of the features could inform a diagnosis.
In 2010, André et al. published an approach to

improving this method through mosaicing [15]. Mosaicing
refers to the process of combining multiple subsequent
frames from a pCLE video related by viewpoint changes
into a single image with an expanded field of view. In
2012, André et al. evolved the representation of pCLE
mosaics from visual words into “semantic signatures”
intended to reflect diagnostically relevant information [16].
To do so, André et al. identified eight binary “semantic
concepts” that physicians use for in vivo colonic polyp
pCLE diagnoses and then used the signed Fisher’s criterion
to estimate the expressive power of each visual word in the
images, where the visual words were extracted with the
BoW method. Using these Fisher weights, they trans-
formed the visual words into semantic signatures that
represented each video. A distance adjustment was then
made to further distinguish the “very similar” videos from
the other pairs, where the identification of “very similar”
videos in the training data set came from expert ratings of
pCLE video pairs using the four-point Likert scale (“very
dissimilar,” “rather dissimilar,” “rather similar,” or “very
similar”). The 2012 paper also proposed visualizing each
pCLE video as an intuitive “star plot” with eight vertices,
where the edge lengths corresponded to the presence or
absence of the eight binary diagnostic concepts.
Finally, in 2014, researchers from the same group

presented a semi-automated method to speed the process of
building a case retrieval query, noting that manual query
construction was time-intensive and required expert
knowledge [18]. To automate the query process, the
algorithm proposed by Kohandani Tafresh et al. first
temporally segmented the video based on the kinematic
stability of the clips based on the assumption that the
endoscopist spends more time in meaningful regions. The
endoscopist was then intended to manually select a subset
of the clips for case retrieval, which was accomplished
using André et al.’s previously published methods. The
overall goal of this work was to assist endoscopists in
identifying colonic polyps by presenting them with prior
similar cases of confirmed polyps, to assist them in
deciding whether polypectomy was indicated.
Gu et al. (2016) built on the André group’s work on

pCLE video feature representation with the innovation of
incorporating information from histology images into the
pCLE mosaic representations, a method known as multi-
modal embedding [19]. The group utilized a mapping
function to transform visual features extracted from breast
tissue pCLE mosaics into a latent space by maximizing the
semantic correlation between the mosaics and histology
images. Feature extraction was accomplished using the

SIFT, Texton, and histogram of oriented gradients (HoG)
methods. To incorporate semantic meaning, the mapping
function was trained using both coarse labels (neoplastic
vs. non-neoplastic) and fine labels (i.e., tissue type and
lesion characteristics) created by histopathological analy-
sis. In 2017, the same group presented a novel graph-based
approach for learning the pCLE features [20]. This method
was intended to circumvent the difficulty of maintaining
one-to-one pCLE-histology registration in the training set,
since identifying the tiny pCLE field-of-view on the
histological slide was time-consuming and difficult. In the
graph-based method, only some of the pCLE mosaics had
been directly paired to histology images. These registered
mosaic-histology pairs formed “anchor nodes” in the graph
while the unregistered histology images formed “patch
nodes.” Directed edges were created between nodes if the
second node belonged in the k-nearest neighbors of the
first, where the edge weight was the Euclidean distance
between the visual features extracted by SIFT. For each
anchor node, an n-order directed cycle was found,
generating n positive pairs of pCLE mosaic-histology
images matches. Negative pairs were found by calculating
the geodesic distance (accumulated edge weights) along
the shortest paths from each anchor node to each patch
node and identifying those pairs whose geodesic distance
was larger than a threshold. Gu et al. then mapped the
pCLE and histology images to a latent feature space, where
the mapping function was learned to preserve the positive
and pair distances.
Evaluating the success of case retrieval algorithms was

not straightforward. One approach was to use classification
as a proxy evaluation method, although this was an
imperfect measure of case similarity and was further
complicated by the availability of different classifiers. For
instance, the André group used k-nearest neighbors (k-NN)
classification (i.e., majority vote of the top-n) [15,17,18],
while Gu et al. (2016) used a Support Vector Machine
(SVM) with the learned image features as input [19].
Another approach was to find the percentage of the top-n
retrieved cases that belong to the starting case class [20]. A
third approach was to measure the correlation of the
algorithmic distances with expert judgments of case
similarity [16,18].
For the single non-pCLE intraoperative case retrieval

paper, Quellec et al. (2011) developed a fast method for
retinal surgery video retrieval [21]. They did so by
representing video clips as a single feature vector averaged
from vector representations of individual video frames.
After dimensionality reduction, the fixed vector length
allowed fast calculations of inter-case distances within the
video clip database. The algorithm was tested on 23
epiretinal membrane surgery videos divided into 69 clips
that each contained one of three surgical steps. The area
under the receiver operating characteristic (ROC) curve
was assessed on a test set comprised of half the data set,
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with an evaluation metric of the percentage of the five
“closest” retrieved videos that showed the same surgical
step as the test case.

Accelerating intraoperative pathology

Eight papers demonstrated potential for AI to provide an
intraoperative pathological recommendation using one of
four imaging modalities (Table 3). Three of the four
modalities — pCLE, hyperspectral imaging (HSI), and
optical coherence tomography (OCT)— are relatively new
imaging methods for which clinical interpretation is still
evolving (though OCT has been studied extensively in
ophthalmology). However, all three have potential to be
used for “optical biopsy” (in vivo diagnostic imaging),
which could circumvent the need for the current time-
consuming model of resection and frozen histopathologi-
cal examination. The fourth modality, contrast-enhanced
ultrasound (CEUS), has been clinically established in some
fields. However, the researchers chose to focus on less-
established neurosurgical applications of CEUS. The
papers are summarized here, grouped by imaging modality.
Two papers attempted to localize residual glioblastoma

tumor remaining after resection using intraoperative

ultrasound (US) images. Both included CEUS, a technique
in which a hyperechoic contrast agent is injected
intravenously and the resulting distribution of the contrast
agent is then recorded on US. The greatest concentrations
of contrast agent appear in the regions of highest perfusion,
which suggests the presence of tumor.
Ritschel et al. (2015) classified residual tumor regions

by first fitting an equation modeling the distribution of
contrast over time to the images and then running a
classification algorithm using the equation parameters
found through the fitting process [22]. They tested four
different equations (gamma variate function model, bolus
kinetic function model, bolus method model, and com-
bined sigmoid function) and three different classifiers
(linear discriminant analysis, soft-margin SVM with a
Gaussian and soft-margin SVM with an ARD kernel). In
addition, for each parameter, Ritschel et al. presented an
image of the brain surface with colors to reflect the value of
the parameter. This allowed surgeons to visually interpret
the results. The data set consisted of 16 patients, but as no
data acquisition protocol was agreed upon before the
operations, three of the cases were discarded for part of the
study due to problems with data acquisition (e.g., changing
parameters during the reading, loss of surface contact).

Table 3 Summary of papers with the aim of accelerating intraoperative pathology
Paper Imaging modality Aim Method

Tumor margin mapping (n = 3)

Ritschel et al. (2015) [22] CEUS Localize glioblastoma tumor residuals Latent Dirichlet analysis, support vector
machine

Ilunga-Mbuyamba et al. (2017) [23] CEUS Localize glioblastoma tumor residuals Data fusion

Fabelo et al. (2019) [31] HSI Map locations of glioblastoma tissue,
normal tissue, hypervascularized tissue,
and background material

Support vector machine, convolutional
neural network/deep neural network
joint architecture

Tumor classification (n = 3)

Wan et al. (2015) [25] pCLE Distinguish between glioblastoma and
meningioma

Feature descriptors, bag-of-visual-words
dimensionality reduction, support vector
machine

Kamen et al. (2016) [26] pCLE Distinguish between glioblastoma and
meningioma

Feature descriptors, sparse coding with
locality constraint to reduce dimensionality,
support vector machine

Li et al. (2018) [27] pCLE Distinguish between glioblastoma and
meningioma

Convolutional neural network, long
short-term memory neural network

Tissue identification (n = 4)

Couceiro et al. (2012) [28] pCLE Classify low or high probability of
inflammatory bowel disease, based on
intestinal crypts

Feature descriptors, support vector machine

Halicek et al. (2017) [29] HSI Classify normal or cancerous thyroid and
aerodigestive tract tissues

Convolutional neural network

Halicek et al. (2018) [30] HSI Distinguish thyroid carcinoma from
normal tissue

Convolutional neural network

Hou et al. (2019) [32] OCT Distinguish metastatic lymph nodes
from normal lymph nodes

Artificial neural network
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The algorithms were trained in two ways. First, the
classifiers were trained using a leave-one-patient-out
method. To provide the labels, three tumor and three
non-tumor regions were manually identified 1 cm adjacent
to the tumor border. The lowest classification error rate was
produced using the combined sigmoid function, while the
SVMs and the LDA did not produce significantly different
results in this case. Second, on the 13 cases without data
acquisition errors, the SVMs were trained on two tumor
and two non-tumor regions from a single patient and then
tested on the two other regions from the same patient. This
was meant to simulate training on a patient during an
operation. The authors suggested that the training process
on four samples could be completed quickly enough
(approximately 3 s) to be accomplished intraoperatively.
The within-patient training method was used to segment
the images, which achieved a mean precision of 0.71 with a
standard deviation of 0.13 compared to manual segmenta-
tion completed by one neurosurgeon.
Ilunga-Mbuyamba et al. (2017) approached the same

problem using a data fusion approach in which they
combined the 3D CEUS images with 3D B-mode US
imaging [23]. First, both sets of images were segmented to
identify the border of the resection cavity in the B-mode
images and the high-perfusion likely tumor residual
regions in the CEUS images. Segmentation was accom-
plished using the Otsu thresholding method to identify
different intensity classes (3 classes for B-mode, 4 classes
for CEUS); in each case, the highest intensity class was
preserved. The resulting images were then fused and the
intersection of the high-intensity regions was classified as
tumor residual. This was based on the expert knowledge
that tumor residuals should be both found at the border of
the resection cavity and supplied by denser-than-average
vasculature. This study used a 23-patient data set, 19 of
which contained residual tumor and four of which did not.
Because this was a rules-based method based on expert
knowledge without any need for algorithmic training, the
method was evaluated on the entire 23-patient data set
although experiments undertaken to set the ideal number
classes for the thresholding algorithms were done on the
full data set.
To test the algorithm, four neurosurgeons and scientists

with more than seven years of experience with intraopera-
tive brain tumor US manually segmented the images, aided
by postoperative magnetic resonance imaging. The authors
did not specify if input from multiple experts was used on
each image; if this was the case, no statistics on variability
between expert judgments were included. To qualitatively
evaluate the method, they used the Overlap coefficient
proposed by Dollar et al. [24] with a threshold of
Overlap ≥ 0.5 to consider the method a success. With
this qualitative metric, they recorded successful tumor
residual identification in 15 of the 19 patients with tumor

residuals and false positives in 5 of the 23 patients,
including 2 of the patients without any tumor residuals. On
a voxel-wise basis, of the 15 patients in which success was
achieved according to the Overlap coefficient, the average
accuracy was 0.9507, average AUC was 0.7351, and
average error was 0.0493. The authors argued that the
Overlap coefficient was an appropriate metric because of
the uncertainty underlying the manual annotations. They
also noted that using shape descriptors, unprocessed 2D
US images (unavailable at their institution) rather than the
processed 3D images, or a semi-automatic method in
which the surgeon manually annotates the tumor resection
cavity could improve the segmentation scores.
Three papers reported algorithms that could distinguish

between glioblastoma and meningioma in pCLE images
and videos [25–27]. All three used the same data set from
Merheim Hospital in Germany. Wan et al. (2015) [25] and
Kamen et al. (2016) [26] used the full data set with 86
glioblastoma patient videos and 29 meningioma patient
videos. Citing data ownership reasons, Li et al. (2018) [27]
used a subset of the data with 16 glioblastoma videos and
17 meningioma videos. The videos were taken on excised
stained brain tissue and histopathological analysis served
as the ground truth. Both Wan et al. and Kamen et al.
extracted image features using existing feature descriptor
methods such as SIFT and then encoded the features into a
reduced dimensionality representation. For the encoding
method, Wan et al. (2015) modified the existing BoW
method (see discussion in “case retrieval” related section
above) while Kamen et al. (2016) developed a sparse
coding method that incorporated a locality constraint. Wan
et al. classified each video frame using an SVM. Kamen et
al. also used an SVM, but instead used the majority vote
prediction of surrounding frames (i.e., frames within a
certain time range) to produce the final label. Li et al.
instead used CNN and LSTM models to interpret the
image and video data. Of the feature descriptor and coding
method combinations tested by Wan et al., the Oriented
FAST and Rotated BRIEF (ORB) feature descriptor with
the Linear Locality Constraint coding method achieved the
best performance, reported as 90% accuracy (no details of
the validation or testing method were published). Kamen et
al.’s locality-constrained sparse coding method produced
an 84% accuracy on a test data set, the highest accuracy of
the methods tested although it came at a significant
computational cost. Li et al.’s best model achieved a
99.49% accuracy on the test set, using a 67% training, 17%
validation, and 17% test set.
The fourth example of intraoperative pCLE pathology

AI came from Couceiro et al. (2012), who classified low
and high probability cases of inflammatory bowel disease
(IBD) [28]. Couceiro et al.’s method took advantage of the
diagnostic importance of intestinal crypt shapes. First,
possible crypts were segmented using a frequency-based
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approach to identify symmetric objects and an ellipse-
fitting equation. After normalization and affine transforma-
tion to account for variation in endoscope perspective,
image features were extracted using SIFT, texture analysis,
and hand-crafted methods. An SVM was then used to
determine whether or not each segmented object was a
crypt. Once the crypts were detected, the images were
represented as feature histograms and fed into a second
SVM to determine whether or not the image suggested
disordered or ordered crypt arrangement, which corre-
sponded to high or low probability of IBD pathology,
respectively. The data set consisted of a roughly equally
distributed data set of 192 images from 18 patients. 10-fold
cross-validation was used. For crypt detection, recall was
high (0.99) but precision was very low (0.33 for the non-
pathological and 0.07 for the pathological data subsets),
indicating over-detection. Using the hand-crafted features
achieved higher performance than the texture analysis
methods and similar performance to the SIFT descriptors.
On image classification, Couceiro et al. achieved 0.89
accuracy compared to 0.71 accuracy using the BoW
method discussed above.
Three papers focused on HSI [29–31]. Two related

papers from Halicek et al. used convolutional neural
networks to distinguish between hyperspectral images of
head and neck cancers. In both cases, the imaging was
done ex vivo on fresh surgical specimens. In 2017, Halicek
et al. reported 80% accuracy at distinguishing cancerous
from normal tissues in a database of thyroid and
aerodigestive tract hyperspectral images [29]. When the
data set was divided according to tissue type, the CNN
achieved 77% accuracy on aerodigestive tract tissues and
90% accuracy on thyroid tissues. The data set consisted of
88 excised tissue samples from 50 patients, 29 of whom
had squamous cell carcinoma and 21 of whom had thyroid
carcinoma. A head-and-neck specialized pathologist
created the gold standard labels. A leave-one-patient-out
external validation scheme was used. In 2018, Halicek et
al. used a modified CNN architecture to again distinguish
thyroid carcinoma from normal tissue [30]. They reported
a 92% accuracy using an 11-patient data set with a leave-
one-out validation scheme.
Fabelo et al. (2019) compared the abilities of an SVM

and a multi-step deep learning framework to distinguish
between four classes in HSI images: glioblastoma tumor
tissue, normal tissue, hypervascularized tissue (i.e., blood
vessels), and background (i.e., bone/dura/skin/surgical
material) [31]. First, three HSI spectral channels (wave-
lengths) were selected to create a gray-scale blood vessel
map. Second, a training data set of 20 manually-segmented
images, augmented by eight using rotations and reflec-
tions, was used to train a 2D-CNN to identify brain
parenchymal regions; on an eight-image test set, a Dice
similarity coefficient of 86.5% was achieved. Third, a 1D-
DNN then classified the hyperspectral data into the four

classes. Finally, the four-class map was merged with the
blood vessel map and parenchymal map to create the final
product. The authors compared this methodology to the
existing spatial-spectral classification algorithm. The
spatial-spectral algorithm relied on an SVM classifier
after principal component analysis (PCA) was used to
reduce the dimensionality of the hyperspectral cubes.
Various kernel methods for the SVM were tested, as was a
binary classification task (tumor vs. normal tissue) on a
subset of the data. The data set was comprised of tumor
images from 6 patients, normal and hypervascularized
images from 16 patients, and background images from 15
patients. Bootstrapping was used to balance class distribu-
tion and obtain a confidence range. On the binary
classification test, the 1D-DNN achieved the highest
performance with 94% accuracy calculated with leave-
one-patient-out cross-validation.
Finally, one paper used AI to classify OCT images. Hou

et al. (2019) used an ANN to distinguish metastatic lymph
nodes from normal tissues in thyroidectomy patients on
images of resected neck tissues taken using OCT [32].
Texture features were extracted and then ranked by the
ratio of in-class to between-class scatter. The 14 top-ranked
features were used as input for the ANN with results
demonstrating 90.1% accuracy from a data set of 573
images from 28 patients.

Recommending a surgical step

While the technologies discussed above were crafted with
the intent of providing surgeons with more context and
information to incorporate into their intraoperative deci-
sion making process, two papers framed their work as
capable of making a direct recommendation for an
intraoperative decision. In one case, the researchers were
motivated by an interest in mitigating the shortage of
experts in a particular surgery and thereby expanded access
to surgical care [33]. In the other case, the proposal to rely
on algorithmic rather than human judgment arose partly in
response to the difficulty of training experts capable of
interpreting a nuanced intraoperative signal and partly in
response to the need to mitigate certain human factors that
can negatively impact surgeon decision making [34].
Fan et al. (2016) developed a model that uses a set of

non-surgical factors affecting spinal cord function to
predict the amplitude of the somatosensory evoked
potential (SEP) during spinal surgeries [34]. Lowered
SEP amplitudes can indicate spinal trauma during surgery,
but the SEP amplitude may also drop in response to
anesthesia and other variables that vary in the operating
room context without reflecting spinal trauma (a “false
alarm”).When a SEP amplitude below 50% of the baseline
is detected, the common practice is to terminate the
operation, awaken the patient from anesthesia, and assess
their neurological function. If the low SEP was due to a
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false alarm, the patient now has to undergo induction of
anesthesia again to complete the operation. Although
human experts can interpret the SEP with greater nuance,
Fan et al. argued that such experts are hard to train and are
also vulnerable to fatigue (with corresponding inattention)
and emotion. By predicting the SEP, the algorithm created
a dynamic SEP baseline that could potentially help
decrease the number of prematurely truncated spinal
surgeries. To create the baseline prediction, Fan et al.
developed a method called Multi-Support Vector Regres-
sion. Using training data from non-traumatic and non-false
alarm surgical cases, the authors combined several Least
Squares Support Vector Regression models separately
trained on sub-datasets, which were created through a
clustering and resampling process from the training data.
The clustering and resampling process was intended to
make the models more robust to noise. Fan et al. proposed
using a SEP amplitude three standard deviations below the
dynamic baseline as the threshold for indicating spinal
trauma, where the standard deviation of the SEP amplitude
was determined using variability within the training data.
The training dataset included 10 successful (true-negative)
surgeries, four false alarm (false-positive) cases, and one
trauma (true-positive) case. The algorithm was trained via
a leave-one-out methodology on the 10 successful
surgeries; each testing round was completed on the left-
out successful case as well as the false alarm and trauma
cases. The multi-support vector regression model achieved
the best performance with a low amplitude warning rate of
6.79% on the false positive cases, 3.27% on the successful
cases, and 71.43% on the trauma case compared to
respective warning rates of 30.42%, 5.70%, and 50% using
the baseline method.
Tian et al. (2015) developed a system named VeBIRD to

track and classify cataract grade on videos of phacoemul-
sification surgeries [33]. They proposed that the system
could eventually be used to control the amount of
ultrasonic energy released to emulsify the cataracts, a
decision currently made by experienced ophthalmological
surgeons. Tian et al. noted that this method could help
increase access to phacoemulsification surgeries, espe-
cially in small and rural hospitals that lack experienced
specialists. Eye detection was accomplished using ellipse
detection with a modification of the Hough transform to
increase robustness to noise and shape distortion. Aversion
of the tracking-learning-detection algorithm was used for
probe-tracking and an SVM classified the cataract grade.
Using a 50-50 split of 2000 annotated frames, the authors
reported a 92.3% accuracy at eye detection and 96.3%
classification accuracy on cataract grade. No steps were
taken to segregate the frames by patient, and the probe-
tracking performance was only evaluated on 5 videos. The
relationship between cataract grade and ultrasonic energy
release was left for future work.

Discussion

This scoping review found that research into artificial
intelligence for intraoperative decision support is still in its
infancy. No AI method or surgical specialty yet dominates
the field, nor is it likely that any single topic or method will
emerge as the dominant methodology, given the complex-
ity and diversity of surgery and the rapid evolution of
surgical AI. Successfully integrating the proposed AI tools
into the operating room will depend on the ability of
researchers to identify clear points in the surgical decision
making process where the insertion of technology could
helpfully augment human capabilities. Additionally, in
some papers we observed misalignment between the
application of AI technologies and current clinical practice
standards that could limit the safety and efficacy of such
technologies in real-world implementation. Our analysis
also uncovered key methodological shortcomings in
several papers that hinder fair evaluation and interpretation
of the algorithms and the data on which they were trained
and tested.
With regard to the papers that cited the goal of directly

influencing decisions about the next surgical step [33,34],
it is important to note that the described technologies
would not accomplish decision support by explicitly
directing the next step; rather, the potential role of these
technologies was to provide additional data on which a
surgeon could act. These studies demonstrated that the
utilization of machine learning to analyze complex data
streams such as SEP and surgical video could provide
surgeons with access to valuable — otherwise potentially
inaccessible or less interpretable— data to incorporate into
their decisions. This suggests that a framework of decision
augmentation rather than automation is likely to be the
first, and perhaps most effective, route to achieving
incorporation of AI into surgical decision making.
For AI technologies seeking to influence surgical

decision making, explainable AI, algorithms that provide
evidence to support their predictions, will be a critical
component of translating research to clinical applications
[35]. Conceding judgment to an algorithm without under-
standing its interpretations or implications for patients does
nothing to improve access to quality surgical care. Without
some explanation of an AI system’s predictions/recom-
mendations, physicians would be asked to place blind trust
in the algorithmic recommendations, without human
clinical experience and judgment to contextualize the
recommendations. Ritschel’s approach on residual tumor
classification using CEUS was an example of providing
data to neurosurgeons in an explainable manner (i.e.,
presenting color maps reflecting the different probabilities
of predictions) that allows for decision augmentation for
responsible clinical practice [22].
Some of the papers rationalized their focus on new
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imaging modalities as a way to help physicians make
correct diagnoses despite a lack of expertise in the imaging
modality at hand [16,25,27]. Exploration of new imaging
modalities (pCLE) or new applications of existing
modalities (e.g., OCT, CEUS) may lead to new under-
standings of disease pathology, which could be an
important basis for the development of new therapies.
Research should focus on settings where AI can expand
human capabilities or overcome systemic limitations.
Finally, from a methodological standpoint, developing
these technologies using established imaging modalities
would allow researchers to have more confidence in their
algorithms’ performance. For instance, the expert-created
similarity scores fundamental to the case retrieval algo-
rithms would be more reliable if pCLE images were more
thoroughly understood.
Notably, during the title review phase of our review

process, a number (n = 24) of intraoperative AI-related
titles were found on topics that were not directly related to
surgical decision making. Specifically, 16 papers on
surgical tool tracking and eight papers on surgical phase
detection were identified with decision support-related
keywords. While these topics may have downstream
applications in surgical robot development, surgical
simulation, or surgeon training, they did not meet inclusion
criteria for current decision support in the real-time
operating room setting. For instance, identification of a
tool on the screen during laparoscopic surgery may be
unlikely to affect decision making with that tool as the
surgeon has selected the tool based on decisions made
before it ever appears on the screen; however, tool
identification could play a role in downstream selection
of instruments or in inventory management.
For researchers who aim to help surgeons perform

operations more safely and efficiently in real-time, careful
analyses of surgical workflows and decision making
processes could help identify points where technological
supplementation could be useful [6,36]. The majority of
papers identified in this review focused on improving
surgeons’ situational assessment by providing additional,
quantitative data to assist in making decisions on which
action to take (e.g., additional dissection or selecting an
area of resection). Some of these applications can also help
with re-evaluation (e.g., providing data on possible
margins). We would suggest that while more work in
assisting situational assessment should be encouraged, a
particular area of need is in assisting surgeons with
decision making for actions.
Flin et al.’s framework describes the intraoperative

decision making process of surgeons as being intuitive,
rule-based, comparative, or creative, where creative
thinking is particularly applicable to rare, high pressure
situations where novel decisions must be made on limited
data [6]. AI technologies can be investigated to assess the
potential for intervention and augmented decision making

in each of these types of decision processes, and
researchers may find that different surgeons respond best
to different types of decision-support based on the clinical
scenario at hand. There is anecdotal interest within the
clinical community in improving access to data for
scenarios where creative decision making is needed —
rare clinical scenarios where the cost of an imperfect
decision can be high (e.g., bile duct injury). However,
generating sufficient data for AI to be helpful in these
scenarios requires greater access to data.
While recognizing that this field is still in its infancy, we

noted several methodological shortcomings across this
body of work. First, most of the algorithms were developed
and tested on small data sets taken from single institutions.
No analysis was done to determine whether the data sets
were representative of the patient populations the
researchers intended to treat. Larger, multi-institutional
training data sets — while recognizing the difficulty in
developing or accessing such data sets — could help
improve the accuracy and generalizability of these
machine learning algorithms.
Second, most groups did not account for the uncertainty

and variability of medical diagnoses and decision making
because they relied on single experts to produce the gold
standard. Within other areas of medical AI development, it
is common practice to involve multiple physicians in
labeling the data sets and reporting inter-observer
variability [7,37–39]. As an example, Hashimoto et al.
(2019) found that expert surgeons annotating video within
the same surgical practice differed on their conceptualiza-
tion of steps of laparoscopic sleeve gastrectomy [7].
Without a clinically applicable ground truth, the reported
statistics for algorithm performance are difficult to
compare or translate to the clinical setting.
Similarly, quantified error analysis will be important for

directing future research and helping physicians interpret
the outputs of AI tools. Most of the papers that we
reviewed overlooked the question of error analysis. In
contrast, Tian et al. noted that most of the errors made by
VeBIRD were between adjacent cataract grades, which
they suggested was also a source of disagreement among
expert surgeons [33]. While this was an important
assertion, the failure to quantify this assertion or compare
it to inter-expert variability made it impossible to
determine how closely VeBIRD approximated human
expert judgment.
Third, only some researchers segregated the training and

test data by patient. This poses the risk of artificially
inflating algorithm performance, since the training and test
data sets were not independent. In fact, Halicek et al.
(2017) found that adding a known tissue type sample from
the test patient into the training data set would significantly
increase the classifier’s performance, and Ritschel et al.
(2015) proposed training an algorithm using a small data
set (4 samples) of known tumor and known non-tumor
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tissue from the same patient during the operation [22,29].
While obtaining a known sample from a patient might be a
valid way to achieve more accurate results in the research
and development setting, it may be impractical in some
applications within the clinical environment. For instance,
Halicek’s proposal required adding an additional invasive
procedure (a biopsy) into the preoperative workflow if it
was not already performed. The benefits of the technology
would need to be carefully weighed against the additional
risks incurred by the patient. While Ritschel’s proposal is
less invasive, a balance would need to be struck between
training time and sufficient performance. While these
proposals are interesting, it is unlikely that patient-specific
training will be workable in all surgical scenarios. Such
tools need to clearly specify their approaches, applications,
and proposed integration into the clinical workflow.
Outside of these special cases, the training and test data
should be segregated at the patient level, and cross-
validation methods should be used to determine hyper-
parameters in order to avoid overfitting.
This review has several limitations. First and foremost,

we conducted a scoping review with the intent of better
understanding the variety of technologies that have been
investigated for AI-based intraoperative decision support.
By design, scoping reviews do not compare different
methods or results so no determination was made about
which approaches, if any, might be better or worse than
another. We maintained strict inclusion/exclusion criteria;
thus, some papers may have been missed. Disappointingly,
two papers on interesting intraoperative decision support
applications were excluded from our review because they
did not specify the number of patients in their database.
While simply recording the number of images may be
sufficient in other fields, patient-level information should
be included for medical computer vision studies to better
understand how generalizable results might be to a wider
patient population. While we ultimately limited ourselves
to intraoperative applications for this work, we identified a
significant number of preoperative and postoperative
decision support AI studies. Analyses of these studies
will be important for gaining a more complete under-
standing of the current state of research on AI-based
surgical decision support.
Despite these limitations, our review highlighted several

key findings that we hope can help guide the future of
research in AI-based decision support. Much of the
intraoperative AI research has thus far been focused on
technology without immediate translational applications in
surgical decision support. We also identified important
methodological shortcomings, including frequent failure to
segregate training and testing data at the patient level and a
general lack of attention to the applicability of the data sets
that were used to represent the patient populations of
interest. Interestingly, much of the image- and video-
related research focused on newer imaging modalities that

are not yet widespread in clinical practice. While these
studies provide novel approaches and applications to AI-
based decision support, more research is needed in well-
established and frequently utilized imaging modalities to
maximize clinical impact.
This review also further highlighted the need to create

large, multi-institutional data sets with standardized
annotation and data storage frameworks. Currently, most
surgical data sets are sourced from single institutions using
proprietary annotations, and few of these data sets are
easily combined. While some nationwide efforts such as
the American College of Surgeons National Surgical
Quality Improvement Program (NSQIP) provide the
framework for multi-institutional, standardized data cap-
ture of health record information, significant effort is still
required to create data sets of surgical images and videos.
Such an effort will require addressing important funda-
mental concerns on data privacy, ownership, and ethical
use [40]. From a logistical perspective, an agreed upon
framework or standards of annotation and data storage
need to be developed to allow concatenation or combina-
tion of data sets across institutions. Researchers will need
to consider whether or not their population of interest is
actually included (and accurately represented) in their
selected data set so data transparency (with prioritization of
patient privacy) will need to be addressed. Ultimately, if
AI-based intraoperative decision support is to be imple-
mented clinically, collaboration across institutions will
likely be required to provide the large and balanced data
sets necessary to ensure that the benefits of the technology
will be both equitable and reliable.

Conclusions

The goal of intraoperative AI should be the improvement
of patient care. In this review, we uncovered several papers
that did an excellent job of finding a suitable point of
intervention within the surgical workflow where the
addition of AI could provide value to the patient. However,
the field is in its infancy, and future work can be structured
to maximize the potential for clinical applicability. Future
research should focus on ensuring that data sets are
representative of the patient populations of interest, have
appropriate and clinically applicable ground truth, and are
validated in ways that are representative of clinical use.
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