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Abstract Bone mass is a key determinant of osteoporosis and fragility fractures. Epidemiologic studies have
shown that a 10% increase in peak bone mass (PBM) at the population level reduces the risk of fracture later in life
by 50%. Low PBM is possibly due to the bone loss caused by various conditions or processes that occur during
adolescence and young adulthood. Race, gender, and family history (genetics) are responsible for the majority of
PBM, but other factors, such as physical activity, calcium and vitamin D intake, weight, smoking and alcohol
consumption, socioeconomic status, age at menarche, and other secondary causes (diseases and medications), play
important roles in PBM gain during childhood and adolescence. Hence, the optimization of lifestyle factors that
affect PBM and bone strength is an important strategy to maximize PBM among adolescents and young people,
and thus to reduce the low bone mass or osteoporosis risk in later life. This review aims to summarize the available
evidence for the common but important factors that influence bone mass gain during growth and development and
discuss the advances of developing high PBM.
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Introduction

Osteoporosis is a systemic osteopathy characterized by a
decrease in bone density and quality, the destruction of
bone microstructure, and an increase in bone brittleness
caused by genetic and environmental factors [1]. Bone
mineral density (BMD) is recognized as the most
important predictor of osteoporosis, and fracture is the
ultimate manifestation. Currently, approximately 200
million people worldwide suffer from osteoporosis [2],
and 83.9 million of which are in China [3]. As reported, the
burden of treatment for osteoporosis and osteoporotic
fractures has been rising rapidly. Approximately 2.33
million osteoporotic fractures are estimated in 2010 in
China, which cost $9.45 billion [4].
BMD is the bone mineral content (BMC) in the bone

tissue and a measurable indicator related to bone mass,
reflecting bone strength [5]. Various factors can affect the
accumulation and loss of BMD in bone tissue, and the
perniciousness of bone loss are well recognized in adults,
especially among the elderly. However, the attention to

bone health during childhood and adolescence is not
sufficient as a 10% increase in peak bone mass (PBM) gain
can delay the onset of osteoporosis by 13 years [6], and a
6.4% decrease in bone mass in children period has been
associated with a twofold risk of fracture in adulthood [7].
The process of gaining PBM is influenced by a number

of factors, including genetics and ethnicity, nutrition
(calcium and vitamin D), physical activity, exposure to
risk factors (such as smoking and alcohol intake), and
some diseases and medications. Osteoporosis is the most
common cause of low BMD, but other diseases, such as
osteogenesis imperfecta (OI), can be characterized by low
BMD. Besides osteoporosis, other diseases, such as OI and
osteomalacia, are common causes of low BMD.
OI is a rare connective tissue disorder characterized by

the increased frequency of fractures [8]. About 85% of
patients with OI have an autosomal dominant mutation in
the type 1 collagen coding genes (COL1A1 and COL1A2),
and patients with mild OI may remain undiagnosed until
adulthood and present early-onset or accelerated osteo-
porosis [9]. In addition, osteomalacia, a disorder in which a
newly formed osteoid at the site of bone turnover is not
properly mineralized, can be characterized by reduced
BMD [9]. Therefore, understanding the determinants ofReceived June 25, 2019; accepted December 18, 2019
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bone acquisition from adolescence to young adulthood and
the strategies to optimize PBM are critical. The main
purpose of this paper is to summarize the available factors,
such as genetic factors, dietary factors, chronic diseases
and medications, and other environmental factors (includ-
ing weight, smoking and alcohol consumption, vitamin D,
calcium, and physical activity), that influence bone mass
gain in children, adolescents, and young adults.

Peak bone mass

BMD measurement

According to the World Health Organization (WHO), the
dual energy X-ray absorptiometry (DXA) screening can be
applied to diagnose osteoporosis among postmenopausal
women and men (age > 50 years). The individuals with T-
score at lumbar spine (LS) or hip below – 2.5 can be
diagnosed with osteoporosis, and individuals with T-score
of -1 to -2.5 can be diagnosed with osteopenia or low
bone mass [10]. For children and young adults, the
International Society for Clinical Densitometry has
advocated the use of Z-score, which describes standard
deviations from healthy age- and sex-matched individuals’
BMD, rather than T-score, and the wording “low bone
mass” is for Z-scores less than or equal to – 2.0 standard
deviation [11]. Although radiographic examination is more
frequently applied in the clinical diagnosis of vertebral
fractures, DXA scan can be used to do this assessment. A
study of vertebral fracture assessment (VFA) has used the
DXA scan in 20 children and adolescents and reported a
sensitivity of 83% and specificity of 100% for VFA

compared with the VFA of subjects with lateral spine
radiographs as the gold standard [12]. A more recent study
by Adiotomre et al. reported that the mean sensitivity
values of radiographs and DXA in diagnosing vertebral
fracture are 74% and 70%, respectively, with specificity of
up to 96% and 97%, respectively, in 250 children aged 5–
15 years [13].
Quantitative computed tomography (QCT) can also

assess bone mass but is not as widely utilized as DXA.
QCT can measure cortical and trabecular BMD separately.
The volumetric BMD (as opposed to “areal” DXA-BMD)
and geometric/structural parameters, which contribute to
bone strength, can also be obtained [14]. A limitation is
that the WHO definition of osteoporosis in terms of bone
densitometry (T-score of – 2.5 or below using DXA) is not
applicable. An alternative method of estimating BMD is
derived from quantitative ultrasound (QUS), which usually
consists of two different ultrasound measurement techni-
ques, namely, the broadband ultrasound attenuation and
the velocity of sound, typically at the heel calcaneus [15].
QUS is safe, rapid, and relatively cheap. Thus, QUS may
be used in very large samples, such as approximately
500 000 samples in the UK Biobank.

Timing of PBM accumulation

PBM, the largest amount of bone accumulated at the end of
growth, is a very important predictor of osteoporosis and
fracture risk in the future. Generally, bone mass is believed
to considerably increase during the first 20 years and
reaches a plateau in the late adolescence or young
adulthood in males and females [16,17] (Fig. 1). A
longitudinal data have shown that in women and men,

Fig. 1 Bone mass throughout the life span.
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more than 94% of BMD is acquired at the age of 16 [18].
Puberty is an important period for bone acquisition and
contributes largely to the PBM value [19]. However, the
timing of PBM is still disputed. Other data have suggested
that the bone mineral is still being accumulated until the
third decade of life [20,21].

PBM and fracture risk

Population-based studies have shown that roughly half of
the boys and one-third of the girls would undergo a fracture
by age of 18 and 1/5 would have two or more fractures
[22,23]. Epidemiologic studies have shown that a 10%
increase in PBM at the population level reduces the risk of
fracture later in life by 50% [24]. A large cohort study
including 6213 children with mean age of 9.9 years
followed for two years has shown that the risk of fracture is
related to BMD and BMC. Moreover, a weak inverse
relationship exists between BMD and subsequent fracture
risk (odds ratio (OR) per standard deviation (SD) decrease
= 1.12; 95% CI: 1.02–1.25), and fracture risk is inversely
related to BMC adjusted for bone area, height, and weight
(OR = 1.89; 95% CI: 1.18–3.04) [25]. Additional studies
using DXA and pQCT have also suggested a significant
association between the forearm fracture in children and
the lower areal and among vBMD, cortical area, and bone
strength [26]. A low PBM may lead to higher risk of
osteoporosis and fracture, whereas a high PBM may
reduce or delay the onset of osteoporosis, which provides
great reserves for adults and elderly. Therefore, achieving a
high bone density and bone strength accrual during
childhood and adolescence is more conducive for the
prevention of fractures. In addition, understanding the
factors that influence bone mass and bone microarchitec-
ture early in life is important because poor bone health is
associated with fracture risk in later life.

Factors influencing PBM gain

Bone health in adulthood is largely dependent on bone
density acquired during childhood and adolescence. The
bone mass gain during childhood and adolescence is
influenced by multiple factors, including gender, genetic
factors, ethnicity, and other environmental factors, such as
physical activity, diet (calcium and protein intake),
endocrine status (sex hormones, growth hormone, insu-
lin-like growth factor 1, and vitamin D), and other risk
factors, such as alcohol intake and cigarette smoking
(including passive smoking) [5,24,27–29]. As environ-
mental and behavioral factors account for 20% to 40% of
adult PBM [30,31], the early identification of the factors
associated with poor bone health and the provision of
reliable counseling may help children and teenagers take
action to maximize BMD before their PBM is completed.

Genetics of PBM

Family and twin studies suggest that BMD has a high
heritability, and the estimates range from 50% to 85%
[32,33]. Before the genome-wide association study
(GWAS) is widely carried out, the LRP5 [34] and ESR1
[35] genes have been identified to be associated with BMD
in children and adolescents. Although the GWAS for
osteoporosis and related traits are mostly conducted in the
adult population, some have also been performed among
younger individuals, including children [36–38], teenagers
[39], and premenopausal women [40,41]. The Avon
Longitudinal Study of Parents and Children (ALSPAC)
study has confirmed that the SP7 (Sp7 transcription factor)
[36], nuclear factor kB receptor activating factor (RANK)
[42], and osteoporogeterin (OPG) [42] are associated with
BMD in children. In 2012, a large-scale GWAS has been
conducted in a children cohort (Generation R) in the
Netherlands [37] and determined that WNT16 rs917727_T
is associated with systemic and head BMD in 2660
children. This site is also associated with BMD in adults.
The study by Kemp et al. [43] determined that a subset of
the loci associated with adult BMD are also associated with
BMD in children. The rare variants near EN1, which are
first identified in adults [44], are confirmed to be associated
with high bone mass in children [45]. Recently, Chesi et al.
[38] reported two loci associated with BMD achieving a
genome-wide significant level. These loci are rs7797976
within CPED1 in girls and rs7035284 on 9p21.3 in boys.
The association between CPED1–WNT16–FAM3C and
BMD has been previously reported for other skeletal sites
(skull and total body aBMD) in children of European
ancestry [37]. Importantly, this locus is also associated
with wrist BMD, bone strength, cortical bone thickness,
and fracture risk of forearm in adults [46], PBM in
premenopausal women [41], and bone mass and fracture
risk of European elderly [47,48]. The loci associated with
BMD in childhood are sometimes associated with BMD in
adults (some with sex- and puberty-specific effects)
[38,49], suggesting that the effect of genetic variants on
BMD may act over the whole lifetime. Until now, several
GWAS have successfully identified many variants and
genes in children and young adults (Table 1 and Fig. 2).

Obesity/overweight and bone health

To date, little agreement exists on the effect of overweight
and adiposity on the skeletal development and the
mechanisms underpinning these changes [52]. Under-
standing how the body composition influences the bone
health and development of children and young adults is
critical because childhood and adolescence are important
stages for bone growth. Recently, a systematic review and
meta-analysis of 27 studies, including 5958 subjects aged
2–18 years, have shown that overweight and obese
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Table 1 The bone-related loci identified by GWAS in children and/or young populations to date
Site Population Chromosome Loci Samples References

LL-BMD Children 1p36.12 WNT4 8007 European; 1177 Other;
232 Greater Middle Eastern

[43]

7q31.31 WNT16

9q34.11 FUBP3

12p11.22 KLHDC5/PTHLH

14q32.12 RIN3

SK-BMD Children 1p36.12 WNT4 8007 European; 1177 Other;
232 Greater Middle Eastern

[43]

6q22.32 CENPW

6q23.2 EYA4

7q31.31 CPED1

8q24.12 TNFRSF11B (OPG)

11p14.1 LGR4

11q13.2 LRP5

18q21.33 TNFRSF11A (RANK)

TB-BMD Children 1p36.12 WNT4 8007 European; 1177 Other;
232 Greater Middle Eastern

[43]

2q24.3 GALNT3

7q31.31 CPED1-WNT16-FAM3C 2660 children; 12 066 indi-
viduals

[37]

9q34.11 FUBP3 8007 European; 1177 Other;
232 Greater Middle Eastern

[43]

12p11.22 KLHDC5/PTHLH

13q14.11 TNFSF11 (RANKL)

14q32.12 RIN3

12Q13 SP7 1518 European [36]

UL-BMD Children 1p36.12 WNT4 8007 European; 1177 Other;
232 Greater Middle Eastern

[43]

2q24.3 GALNT3

6q22.32 CENPW

7q31.31 CPED1-WNT16-FAM3C 8007 European; 1177 Other;
232 Greater Middle Eastern

[43]

337 African American or Afro-
Caribbean, 908 European,
126 Hispanic or Latin American,
Other; 481 European

[38]

933 European American; 486 European [50]

13q14.11 TNFSF11 (RANKL) 8007 European; 1177 Other;
232 Greater Middle Eastern

[43]

14q23.3 SPTB 933 European American; 486 European [50]

C-vBMD Children and young
adult

6q25.1 CCDC170 5878 European; followed by
replication in 1052 European

[51]

6q25.1 ESR1

8q24.12 TNFRSF11B (OPG)

Adolescent and
young adult

13q14.11 TNFSF11 (RANKL) 1934 European; replication in
3835 European

[39]

Children and young
adult

5878 European; replication in
1052 European

[51]

T-vBMD Children and young
adult

1q43 FMN2/GREM2 2500 European; replication in
1022 European

[51]

Hip-BMD Children 3p14.1 MAGI1 933 European American; 486 European [50]

FN-BMD Children 14q22.3 TBPL2 933 European American; 486 European [50]

LS-BMD Children 9p21.3 IZUMO3 933 European American; 486 European [50]

LL, lower limbs; SK, skull; TB, total-body less head; UL, upper limbs; C-vBMD, cortical volumetric BMD; T-vBMD, trabecular volumetric BMD; FN, femoral
neck; LS, lumbar spine.
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children have significantly higher BMD compared with
normal-weight children (P < 0.05) [53]. These studies in
children have suggested a positive relationship between
adiposity and BMD, which started to weaken in later
childhood, reversed during adolescence [54,55], and
potentially maintained until early adulthood [56].
A longitudinal study [57] has followed 71 young

females (aged 17–22 years) for six years and found that
weight gainers have higher BMD and greater cortical
thickness at the proximal femur shaft than individuals with
stable weight. Wetzsteon and colleagues [58] followed up
445 children (aged 9–11 years) for 16 months and
identified that absolute bone strength is greater in
overweight children, but the increase in bone strength is
because of the lean mass change and not fat mass. Another
study [59] has also suggested that overweight males have
higher bone quality (total BMD, total area, trabecular bone
volume fraction (BV/TV), and trabecular number at the

radius) compared with normal-weight young males, but the
bone quality of overweight adolescents seems to have
adapted to lean mass and not fat mass. More recent studies
have also supported that lean mass is more important for
optimizing bone strength during growth, whereas fat mass
may negatively affect bone strength in weight-bearing sites
in children and adolescents [60,61].
Leptin, as a multifunctional important cytokine derived

from fat tissue, has an important role in bone metabolism
and development [62]. First, leptin can promote the
differentiation of bone marrow stromal cells (BMSC)
into osteoblastic lineage and inhibit differentiation into fat
[63]. Second, leptin can directly act on osteoblasts,
enhance differentiation and maturation of osteoblasts,
and finally improve bone formation [64]. Third, leptin
can also inhibit osteoclast development, which may be
through the immune system to affect the secretion of
cytokines, stimulate the expression of OPG in peripheral

Fig. 2 Genes identified in GWAS studies using BMD in children and young population.
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blood monocytes, reducing the expression level of RANK
ligand (RANKL) via the RANKL/RANK/OPG system to
inhibit the generation of osteoclasts and bone absorption
[63]. Alternatively, leptin can act on the central hypotha-
lamic pathway and the sympathetic nervous system to
inhibit osteoblast proliferation. In this central pathway,
leptin binds to hypothalamic receptors, inducing an
increase in the sympathetic activity that signals to
osteoblasts via the β2 adrenergic receptors (Adrβ2) [62].
Subsequently, two different downstream pathways,
namely, the c-myc and the PKA-ATF4 pathways, are
activated. In the c-myc pathway, the expression of c-myc is
inhibited, thereby regulating the expression of cyclin D1,
which finally leads to the suppression of osteoblast
proliferation [62]. The RANKL expression is upregulated
via the PKA–ATF4 pathway, which consequently
enhances the bone resorption of osteoclasts [62]. By
contrast, in the arcuate nuclei, leptin signal transduction
upregulates CART expression, which suppresses the
synthesis of RANKL in osteoblasts via an unknown
mechanism.

The effect of physical activity in optimizing PBM

Throughout life, the bone is a living tissue that can respond
to strains produced by muscular activity and mechanical
load [5]. Adolescence is generally considered the best time
to strengthen bones. During this period, the rate of bone
modeling and remodeling is high, and the periosteal
surface is growing rapidly. Physical activity during puberty
increases the bone mass on the bone surface and enhances
bone strength. The effects of physical activity on bone
mass mainly come from the mechanical load from the
direct stimulation of femur and muscle contraction. A
high-magnitude, rapidly applied, and novel loading is most
effective, and the duration is less important when the
threshold number of cycles is reached [65]. In addition,
physical activity can increase the absorption of nutrients,
such as vitamin D and calcium [66]. Most studies have
shown that physical activity is one of the main non-
pharmacological methods to increase and maintain BMD
and geometry [65]. Conversely, skeletal unloading due to
cast immobilization or prolonged bedrest leads to bone loss
[67].
A longitudinal study has shown that physically active

adolescents (aged 8–15 years) have 8%–10% greater hip
BMC at age 23–30 years than less active individuals [68].
A 4-year exercise program in children determined that girls
and boys who added various intensities of physical activity
(40 min/day and 5 days/week) have gained higher lumbar
spine BMC by 7.0% and 3.3%, respectively, and higher
femoral neck width by 1.7% and 0.6%, respectively, than
the control subjects who only have normal physical
education curriculum and duration within normal limits
[69]. Another longitudinal trial study has shown that

children who engaged in school-based exercise interven-
tions for nine months have higher whole body (6.2%), total
hip (7.7%), and femoral neck (8.1%) BMC compared with
the controls [70]. After three years of discontinuation of the
intervention, these benefits persisted with a sustained 7%–
8% increment of BMC in the total hip and femoral neck of
conditioned individuals [70]. A controlled cross-sectional
study conducted among professional baseball players has
shown that the effect of physical activity during youth on
bone strength and bone size is kept throughout life [71].
Janz et al. [72] conducted a 10-year prospective study on
530 participants starting at age 5, with five measurements
at ages 8, 11, 13, 15, and 17 years, and tried to address how
moderate-and-vigorous intensity physical activity (MVPA)
affects bone mass and geometric properties. This study
determined that individuals who experienced the most
MVPA have higher bone mass and better geometry at age
17 years.
The effect of physical activity on BMD or BMC has also

been proven in randomized controlled trials (RCTs) [73–
76]. Fuchs et al. [73] investigated the effect of high-
intensity jumping on the lumbar spine and the hip bone
mass in prepubertal 5.9–9.8 year-old children. The
jumping and control groups have participated in exercise
intervention three times per week during school days. After
seven months, the BMC at lumbar spine (P < 0.05) and
the femoral neck (P < 0.001) and the BMD at the lumbar
spine (P < 0.01) and bone area at femoral neck
(P < 0.001) have significantly increased in the jumping
group [73]. In another RCT [76], a 10 min jumping activity
twice a week for eight months during adolescence seems to
improve bone accrual in a sex-specific manner. The bone
mass of the whole body has increased in boys, whereas the
bone mass at the lumbar spine and hip has improved in
girls.

The effect of socioeconomic status on BMD

Bone mass depends on the acquisition in childhood and
decline in adulthood and can be influenced by socio-
economic conditions throughout life [77]. Socioeconomic
status (SES) is suggested to be associated with a variety of
acute and chronic diseases, including osteoporosis [78,79].
However, the currently available literature has remained
controversial [80–82]. Low SES has a strong and well-
documented association with various adverse health out-
comes and increases the risk of hip fracture in the elderly
[83,84]. However, the association between low SES and
femoral neck BMD, which is the main indicator of hip
fracture risk, is not observed [85,86].
Overall, the findings are more consistent among Indian,

Korean, and Australian women, in which women who
have lower education and/or income usually have lower
BMD [81,82,87]. For men, the results are relatively
inconsistent [81,82,88]. An early study reported that
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osteoporosis is a disease of men with higher SES in New
Zealand [88], whereas another study in Australia has
suggested no association between SES and BMD in men
[82]. In Korean men, an association between low education
and household income and low BMD is observed [81]. In
2013, Karlamangla et al. reported that socioeconomic
advantage in childhood, which is independent of adult
SES, is associated with great bone strength at the femoral
neck [89]. Crandall et al. also reported that socioeconomic
advantage in childhood, not current financial advantage,
and higher adult education level are associated with higher
adult lumbar spine BMD in 729 midlife adults in the
United States [77].

The influence of age at menarche on bone mass

Menarche refers to the first menstrual period of women,
which is the beginning of the female sexual cycle.
Menarche is an important indicator of female puberty
and a sensitive indicator for evaluating female growth and
maturity. The early and delayed age of menarche may
affect the health of adult women. For example, the early
onset of menarche may increase the risk of type 2 diabetes
[90] and breast [91] and endometrial [92] cancers. Studies
have reported that menarche is an important sign of the
rapid increase in BMD [93]. Early adolescence is an
important period of female BMD growth, and women with
early menarche have higher bone mass [93]. However,
another study has shown that late menarche may be
beneficial for adult bone strength when controlling
prepubertal bone strength [94]. Therefore, from a clinical
perspective, the relationship between menarche age and
PBM should be studied.
Late menarche is regarded as a risk factor for

osteoporosis as it possibly alters PBM achievement.
Most studies have reported that late menarche is associated
with lower BMD at several skeletal sites [94–96] and
higher fracture risk for different skeletal sites [97–99].
Also, epidemiological studies have indicated that for the
same reduced lifetime exposure to estrogen, individuals
with late menarche have higher risk of fracture at spine,
proximal femur, and forearm than individuals with early
menopause [97–99]. Chevalley et al. [95] reported that
subjects with later menarche age (14.0 years (0.7 sd)) has
lower aBMD than those with earlier menarche age (12.1
years (0.7 sd)) in total radius, diaphysis, and metaphysis in
124 healthy women aged 20.4 years (0.6 sd), and LATER
vs. EARLIER has shown lower total and cortical
volumetric BMD and cortical thickness (CTh). Interest-
ingly, Šešelj et al. [94] analyzed the data derived from
serial hand-wrist radiographs of female participants and
indicated that late menarche may lead to great bone
diameter and strong bone strength, which may even result
in lower BMC or BMD. The age of menarche also affects
the occurrence of osteoporosis in postmenopausal women.

A study including 243 postmenopausal women has found
that 18% of the participants have osteoporosis, and
individuals with menarche greater than 13 years tended
to have osteoporosis (OR = 4.46; P = 0.035) [100].

The effect of calcium and vitamin D on bone growth

Calcium accounts for 1%–2% of adult human body weight,
and more than 99% of the total body calcium can be found
in bones and teeth [101]. The transepithelial calcium
absorption is initiated with calcium entry into the epithelial
cells from the intestinal luminal through the calcium-
permeable channels, and this process is strongly supported
by vitamin D action [102]. The vitamin D endocrine
system plays an important role in maintaining the
extracellular fluid calcium concentration and bone home-
ostasis [103]. Usually, the vitamin D status is assessed by
measuring the serum 25-hydroxyvitamin D (25-OHD)
concentration, and vitamin D deficiency is diagnosed by
measuring the serum 25-OHD [104]. Calcium and vitamin
D are the main nutritional interventions to prevent and treat
osteoporosis [105]. However, vitamin D deficiency is a
global health problem and considered as common in
elderly, children, and adults [106]. For example, severe
vitamin D deficiency (serum level of 25-OHD below 15
nmol/L or 6 ng/mL) leads to rickets in children and
osteomalacia in adults.
In a 12-month randomized double-blind study, Dibba

et al. assessed the effect of calcium supplementation on
forearm BMC in 80 girls and 80 boys (aged 8.3–11.9
years) who are adjusted for height, weight, and bone width
and determined that the group with calcium supplementa-
tion has higher BMC and BMD at the distal radius and
midshaft compared with the control group [107]. Another
randomized study lasting 13 months identified that the
intervention in boys aged 16–18 years with calcium
carbonate supplementation (1000 mg calcium/day) has
resulted in greater BMC in different sites, including the
whole body, lumbar spine, hip, and intertrochanter,
compared with the control group with placebo [108]. Ho
et al. undertook a 1-year follow-up study among 104
Chinese girls receiving 600 mg calcium/day in 375 mL
soymilk and 95 girls aged 14–16 years as control and
found a percentage increase (45%–113%) in intertrochan-
ter BMD, trochanter BMD, total hip BMD, and total hip
BMC in the supplementation group compared with the
control group [109]. However, another trial in 96 girls,
with mean age of 12 years supplied with 792 mg calcium/day
for 18 months, is observed with gains in BMD and BMC in
total body, lumbar spine, and total hip, but gains in BMC
and BMD do not exist after 42 months, suggesting a short-
term effect [110]. In a 2-year trial of milk intervention with
and without 5 or 8 mg vitamin D3 (cholecalciferol) among
757 Chinese girls, Du et al. reported that individuals
receiving additional vitamin D3 has greater increase in the
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change in total body BMD and BMC compared with those
only receiving milk [111].
In a meta-analysis [112] including six studies with 541

individuals receiving vitamin D and 343 receiving placebo
aged 1 month to 20 years, Winzenberg et al. reported that
vitamin D supplementation affects the BMD increase at the
lumbar spine, but not at the total hip and the forearm.
Individuals with vitamin D deficiency can benefit from
vitamin D supplementation, particularly in lumbar spine
BMD and total body BMC, but the benefit no longer exists
in children and adolescents with normal vitamin D levels
[112]. In a 1-year trial, 179 girls (aged 10–17 years) are
randomly assigned into three groups (oral vitamin D doses
of 200 IU/day or 2000 IU/day and oral placebo). Results
show that hip BMC and bone area have increased in the
high-dose group, and the BMD and/or the BMC at several
skeletal sites have increased significantly in both supple-
mentation groups in premenarcheal girls (P < 0.05), but
no significant change in BMD or BMC in postmenarcheal
girls is observed [113]. Another study performed among 50
Indian underprivileged adolescent girls (aged 14–15 years)
has shown that vitamin D supplementation (7.5 mg
ergocalciferol, 4 times/year) can increase the total BMD
and bone area in individuals who are within 2 years of
menarche, but not in those who are ≥ 2 years postme-
narche [114]. Al-Shaar et al. [115] investigated the effect
of weekly vitamin D3 supplementation (1400 and 14 000
IU) on the hip geometric dimensions in 338 boys and girls
(mean age at approximately 13 years) for over one year and
found that vitamin D supplementation increases aBMD
(7.9% for low doses, 6.8% for high doses, and 4.2% for
placebo) and reduces the buckling ratio of the narrow neck
(6.1% for low doses, 2.4% for high doses, and 1.9% for
placebo). Conversely, no significant change in any
parameter of interest in boys has been observed [115].

The effect of smoking and alcohol on BMD

Tobacco contains a variety of compounds. Most of these
compounds are harmful to humans, and nicotine is the
most abundant and most toxic substance. Nicotine changes
the permeability of the blood vessel wall, hinders the
exchange of substances inside and outside the blood
vessels, leading to ineffective absorption and utilization of
nutrients, such as protein and calcium. Other toxic
substances in tobacco also increase the acidity of the
blood and promote the dissolution of bones [116]. The
pathogenesis of alcohol-induced osteoporosis is not
completely clear, and the effect of alcohol on the bone is
believed to be through direct and indirect actions [117].
The direct effect of alcohol on the activity of bone cells is
the inhibition of the growth of marrow mesenchymal stem
cells and its transformation into osteoblasts [118]. Never-
theless, elucidating the mechanism of the influence of
alcohol on bone metabolism is complicated because the

effects of alcohol on different organs (including bone)
depend on the time profile and the extent of alcohol
exposure.
In a study with 1068 young men (mean age = 18.9 years),

Lorentzon et al. [119] reported that smoking for an average
of four years is significantly associated with lower aBMD
(between – 1.8% and – 5.0%) and lower cortical thickness
(-2.9% to -4.0%) depending on skeletal sites. In another
prospective study of females aged 11–19 years, Dorn et al.
reported that individuals who smoke frequently have lower
rate of BMD accrual at the lumbar spine and the total hip
[120]. A 5-year longitudinal study including 833 young
men aged 18–20 years has shown that the individuals who
started to smoke since baseline have substantially smaller
increases in aBMD at the total body (P < 0.01) and
lumbar spine (P = 0.04) and considerably greater decreases
in aBMD at the total hip (P < 0.01) and femoral neck
(P < 0.01) than individuals who did not smoke at baseline
and follow-up stage [121]. Some studies have investigated
the relationship between alcohol intake and PBM in the
late adolescence and young adulthood stages, and the
results are inconsistent. Some studies suggest that alcohol
intake has a significant negative association with BMD
[121,122], whereas others suggested that alcohol intake
has a significant positive association with BMD [123].
Some studies found no association between alcohol intake
and bone outcomes [120,124]. Lucas et al. observed a
significant association between low BMD (Z-score < – 1)
in late adolescence and having ever smoking and drinking
by age of 13 years (OR = 2.33) after adjusting for
menarche age and sports practice [125]. However, a
study among 723 healthy young male soldiers has shown
that soldiers who had moderate alcohol consumption have
high BMD (P ≤ 0.015) [126].

Secondary causes of bone loss

Many clinical conditions affecting young people (Table 2)
can be associated with the loss of bone mass and quality,
leading to an increased risk of fracture throughout life. In
this review, some common conditions that can lead to bone
loss and their underlying mechanisms are summarized.

Endocrine states

Endocrine states, such as glucocorticoid osteoporosis,
growth hormone deficiency, diabetes, and primary hyper-
parathyroidism, are common secondary causes of osteo-
porosis and low BMD. The main feature in the
pathogenesis of glucocorticoids on bone loss is that
glucocorticoids decrease the number and function of
osteoblasts, leading to the suppression of bone formation
and enhancement of the activity of osteoclasts [127].
During the period of initial exposure to glucocorticoids,
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glucocorticoids can enhance the expression of RANKL
and the macrophage colony stimulating factor, which are
the necessary factors for osteoclast formation, leading to an
increase in bone resorption [127]. In addition, other
indirect actions mediating the increase in bone resorption
and decrease in bone formation are reported. For example,
glucocorticoids decrease the expression of insulin-like
growth factor 1 (IGF-1) and sex steroids, leading to
suppression of bone formation and enhancement of bone
resorption, respectively. Meanwhile, glucocorticoids
reduce calcium absorption from the intestines by inhibiting
vitamin D actions and inhibit renal tubular calcium
reabsorption to enhance bone resorption [127].
The optimal levels of growth hormone, IGF-1, thyroid

hormone, and gonadal sex steroids are essential for the
completion of normal skeletal growth, puberty, and bone
mineral accrual. Growth hormone deficiency is associated
with delayed skeletal maturation and low BMD mainly
through reduced bone formation [128]. Another example
of the endocrine causes of low BMD on the young
individuals is type 1 diabetes mellitus, which is one of the
common endocrine pediatric diseases. The pathogenesis of
diabetes-related osteoporosis is complicated and mainly
includes calcium, vitamin D metabolism, and insulin
abnormalities, resulting in low blood calcium and low
blood phosphorus, which cause the loss of basic materials
for bone formation. At the same time, hyperglycemia may
stimulate the formation of excessive cytokines, such as IL-
1 and IL-6, reduce the OPG/RANKL ratio, further promote
the formation and activity of osteoclasts, and inhibit the
differentiation and mineralization of osteoblasts [129].
Primary hyperparathyroidism is associated with an
increase in the expression of RANKL by cells of the
osteoblast lineage and an increase in osteoclast-mediated
bone resorption [130].

Gastrointestinal and nutritional conditions

Multiple nutrients are needed in bone growth, develop-
ment, and maintenance. Disorders resulting from nutrient
deficiency, especially malnutrition calcium deficiency
during childhood and adolescence, may affect the attain-
ment of normal PBM. Celiac disease, in children, is
associated with bone loss because of nutritional deficiency
and malabsorption [131,132]. Decreased calcium absorp-
tion and an increase in the levels of inflammatory
cytokines, including IL-1, IL-6, and TNF-α, may be
responsible for the increase in bone resorption [133].
Inflammatory bowel diseases (IBDs), consisting of ulcera-
tive colitis and Crohn’s disease, are associated with bone
loss. The mechanisms responsible for the bone loss in IBD
include disease-related inflammatory activity and treat-
ment-related side effects, including glucocorticoid therapy
and nutritional deficiencies, leading to low body mass

index and contributing to hypogonadism [134]. Anorexia
nervosa is associated with weight loss, low BMD, and risk
of fracture [135]. Also, the serum markers of bone
formation are suppressed and the markers of bone
resorption are increased, suggesting that bone formation
is uncoupled from bone resorption [130].

Autoimmune disorders

The immune system and immune factors play an important
role in the development of osteoporosis. For example,
rheumatoid arthritis (RA), ankylosing spondylitis (AS),
systemic lupus erythematosus (SLE), and multiple sclero-
sis (MS) can lead to bone loss. RA is a common rheumatic
disease, and the underlying disease activity and ongoing
use of glucocorticoids can contribute to bone loss and risk
for fractures. Cytokines, such as TNF-α and IL-1, can
promote osteoclastic activity. Increased RANKL/OPG
ratio and elevated bone turnover markers and sedimenta-
tion rate are predictors of rapid and persistent bone loss in
patients with RA [136]. The mechanism of bone loss in AS
is multifactorial. One factor is systemic inflammation,
which increases the expression of RANKL. RANKL
combines with the RANK receptor on the surface of
osteoclast precursor cells, promoting osteoclast differentia-
tion and maturation [137]. Mature osteoclasts secrete
proteolytic enzymes and hydrochloric acid, which play a
role in bone absorption that eventually leads to bone
resorption and bone mass reduction, even osteoporosis
[137]. Osteoclast-inducing inflammatory cytokines, such
as IL-1, IL-6, soluble IL-6 receptor, and TNF-a, are
elevated in patients with SLE and contribute to bone loss
[130]. MS is a chronic inflammatory-demyelinating central
nervous system disease that usually affects young adults
[130,138] and reduces the physical inactivity and the
mechanical load on the bones, which may be the major
contributing factors for bone loss or osteoporosis [139].

Renal diseases

Hypercalciuria is related to low bone density and increased
incidence of fracture and characterized by increased bone
absorption, increased intestinal calcium absorption, and
decreased renal tubular calcium reabsorption, which results
in net calcium loss [140]. Individuals with chronic kidney
disease (CKD) have a high prevalence of Klotho
deficiency and low expression of Klotho, resulting in
increased fibroblast growth factor (FGF23) levels [141].
Klotho deficiency enhances osteoblast activity while
increasing the expression of FGF23 that suppresses
osteoblast differentiation. Thus, the role of Klotho on the
bone at different stages of CKD is still unknown [141].
Renal tubular acidosis is characterized by normal anion
gap and hyperchloremic metabolic acidosis [142]. When
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the hydrogen ion load is greater than the normal daily acid
load, the bone buffers the hydrogen ions, which may result
in a spectrum of metabolic bone disorders ranging from
osteomalacia to osteoporosis and fractures [142]. Defective
renal acidification may lead to an osteoblast-mediated
activation of osteoclasts and a compensatory mobilization
of alkali and calcium from the bone, resulting in bone loss
[130]. In the cortical collecting tubule, calcium reabsorp-
tion is also reduced, resulting in renal calcium unbalance
and bone loss [130].

Drug-induced bone loss

Drug-induced osteoporosis is a common type of secondary
osteoporosis. Glucocorticoids are the most common cause
of drug-induced osteoporosis (See the section of “Endo-
crine states”), and other drugs, such as proton pump
inhibitors (PPIs), heparin, and anticonvulsants, also affect
bone metabolism. PPIs are used for the disorders of the
upper gastrointestinal tract. By increasing gastric pH, PPIs
may decrease calcium absorption and induce negative
effects on skeletal homeostasis [130]. As an effective drug
for the treatment of thromboembolic disorders, heparin
bound to OPG, the decoy receptor for RANKL, allows
RANKL to induce osteoclastogenesis, which leads to
enhanced bone resorption [130]. Anticonvulsants may
cause bone loss, but the mechanisms are not clear.
Anticonvulsants may accelerate vitamin D metabolism
and can lead to low 25-OHD levels, high bone turnover,
and secondary hyperparathyroidism, increasing the risk of
bone loss [143].

Perspectives

PBM is obtained in early adulthood and affected by
puberty developmental status. Genetics has a huge effect
on BMD (especially PBM), but other factors also play very
important roles. Factors, such as heredity, race, gender,
age, and puberty development, are difficult to modify at
present, but other factors, such as weight, nutrition,
lifestyle (such as smoking and drinking), and physical
activity, can be intervened. As environmental and
behavioral factors account for 20%–40% of adult PBM,
optimizing the factors associated with PBM and bone
structure is a very important strategy for improving the
bone accrual and strengthening the bone structure to
decrease the risk of osteoporosis/fracture in later life. As
the primary modifiable factors, diet and nutrition (e.g.,
calcium and vitamin D), physical activity, and exercise
should be given more attention. More studies should be
conducted to investigate the intensity, frequency, duration,
and mode of physical activity in the future. Approximately
11 000 Chinese young individuals aged 15–25 years have

been collected for follow-up to investigate the association
of lifestyle and nutritional intake with bone mass gain.
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