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Abstract The huge communities of microorganisms that symbiotically colonize humans are recognized as
significant players in health and disease. The human microbiome may influence prostate cancer development. To
date, several studies have focused on the effect of prostate infections as well as the composition of the human
microbiome in relation to prostate cancer risk. Current studies suggest that the microbiota of men with prostate
cancer significantly differs from that of healthy men, demonstrating that certain bacteria could be associated with
cancer development as well as altered responses to treatment. In healthy individuals, the microbiome plays a
crucial role in the maintenance of homeostasis of body metabolism. Dysbiosis may contribute to the emergence of
health problems, including malignancy through affecting systemic immune responses and creating systemic
inflammation, and changing serum hormone levels. In this review, we discuss recent data about how the microbes
colonizing different parts of the human body including urinary tract, gastrointestinal tract, oral cavity, and skin
might affect the risk of developing prostate cancer. Furthermore, we discuss strategies to target the microbiome for
risk assessment, prevention, and treatment of prostate cancer.
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Introduction

Prostate cancer has been reported as a worldwide important
kind of cancer. Based on the reports of Cancer Research
UK, this neoplasm is the most common form of non-skin
cancer among men. It has been reported that 1 276 106 new
cases were added to the prostate cancer patients all over the
world [1]. The prevalence of prostate cancer is increasing
worldwide, even in Asian countries including Iran [2–5].
Cancer is a complex multifactorial disease that involves

multiple genetic, immunological, environmental and
physiologic factors, leading to the complexity of the
treatment. There are several risk factors considered for
prostate cancer such as age, ethnicity, family history and
environmental factors (diet and lifestyle), as well as
microbial (viral and bacterial) infections and inflammation.
Current reports suggest that prostate infections and
bacterial communities within the host are associated with

chronic inflammation and immunological responses, lead-
ing to prostate carcinogenesis [6,7].
There are 10 trillion to 100 trillion microbial cells in the

human body including bacteria in the gut and the genes
they harbor, which are called microbiota and microbiome,
respectively [8]. The human-associated microbiota and its
effect on the development of cancer is an interesting topic.
The microbiome imposes an effect on the entire process of
carcinogenesis from initiation to progression and even
therapeutic consequences. This effect may be direct, such
as the role of Helicobacter pylori in gastric cancer or
indirect, through changes in metabolism and/or immune
system settings. For example, a pathogenic shift in the
intestinal microbial content may increase the risk of
diseases, such as obesity, diabetes, and cancer via affecting
the hormones [9–12].
In this review, we discuss recent data about how the

microbes colonizing different parts of the human body
including urinary tract, gastrointestinal tract, oral cavity,
and skin might affect the risk of prostate cancer
development. Furthermore, we discuss strategies to target
the microbiome for risk assessment, prevention, and
treatment of prostate cancer.

Received March 22, 2019; accepted October 31, 2019

Correspondence: Solmaz Ohadian Moghadam,

s-ohadian@sina.tums.ac.ir

REVIEW
Front. Med. 2021, 15(1): 11–32
https://doi.org/10.1007/s11684-019-0731-7



Microbes and genome instability

Specific microbes cause genome instability and have a
serious effect on tumorigenesis through the production of
tumor-promoting metabolites such as hydrogen sulfide and
superoxide radicals and some microbial toxins including
colibactin, Bacteroides fragilis toxin and cytolethal
distending toxin (CDT). CDT is produced by numerous
species associated with colorectal cancer, gastric cancer,
and gallbladder cancer, such as Salmonella typhi, Escher-
ichia coli, and H. pylori [13,14]. Moreover, some bacterial
species including Campylobacter jejuni, Shigella dysen-
teriae, Hemophilus ducreyi, Helicobacter hepaticus, and
Salmonella enterica can produce CDT, which has DNase
activity and causes DNA double-strand breaks and
apoptosis. The superoxide radicals produced by Enter-
ococcus faecalis are also known to be involved in
colorectal cancers by creating double-strand DNA breaks
[15–17].

Microbes and immune response

Infiltration of different immune cell populations, including
neutrophils, macrophages, dendritic cells (DCs), adipose
cells, T cells, B cells and natural killer (NK) cells is
increased in tumor microenvironment. Leukocytes com-
prise more than 50% of tumor masses [18].
Microbes have been shown to regulate immunity

processes. For example, Fusobacterium nucleatum and
H. pylori can suppress the activity of T cells. The presence
of T cells in cancerous tissues is associated with an
increased overall survival among patients and a more
effective response to treatment [19]. Microbes may cause
tumor growth by changing the expression of growth
hormones. For example, E. coli strains produce genotoxin
colibactin which causes tumor growth by increasing
production of growth factors [20]. Otherwise, some
infectious agents such as the influenza A virus, Staphylo-
coccus aureus, and Streptococcus Group A induce growth
of tumor cells and metastases by utilizing transforming
growth factor β (TGF-β) [21–23]. TGF-β is a multi-
functional regulatory cytokine controlling several aspects
of cellular function, including differentiation, cellular
proliferation, migration, apoptosis, angiogenesis, immune
surveillance, and survival. It also has tumor suppressor role
by inhibition of epithelial cell proliferation. However, loss
of autocrine TGF-β activity may cause malignant progres-
sion of some epithelial cells, suggesting a prooncogenic
role for TGF-β in addition to its tumor suppressor role [24].
The normal human prostate tissue contains various types

of immune cells including lymphocytes, which are either
stromal or intraepithelial. Immune effector cells such as
DCs and macrophages are also present in the prostate.

Other immune cells including basophils, neutrophils, and
eosinophils are rare in healthy prostate tissue but increased
in inflamed regions [25–27]. Inflammatory changes in the
prostate microenvironment accompanied by prostate
infection cause epithelial barrier disruption and consequent
progression of prostate cancer. It has also been shown that
urinary tract microbiome alteration could lead to prostate
infection. Several studies have looked at the role of
inflammation and infection in the development of prostate
cancer. Generally, the prostate tumor microenvironment is
rich in inflammatory cells. It seems that with the
progression of prostate tumors, number of anaerobic
bacteria is increased due to the oxygen depletion [28,29].

Microbes and inflammation

Relationship between inflammation and cancer was
hypothesized by Virchow over 150 years ago upon his
discovery of leukocytes in cancerous tissues [30]. Up to
10% – 20% of cancers are attributed to chronic inflamma-
tion involving microbes [31]. Inflammation can contribute
to development of cancer in various organs, including
liver, colon, bladder, lung, pancreas, and prostate [30].
Current molecular evidences from animal and human
studies implicated the regulatory role of chronic inflamma-
tion in prostate cancer development and progression to
advanced metastatic disease [30–33].
Microbes colonize the human body shortly at birth [34]

and are involved in homeostasis, immunity education, and
host defense. Each organ favors the survival and growth of
specific collection of microbes [32]. Microbiome have an
important immunoregulatory role in healthy individuals.
Activation of myelopoiesis in the bone marrow by
commensal bacteria has been shown more than three
decades ago, suggesting the role of microbiota in the
induction of host immune system [35]. For instance, in
vitro experiments have shown that the deficiency of bone
marrow resident myeloid cell populations make them
susceptible to Listeria infections. Re-colonization of germ-
free mice with microbiota restores the immunity against
Listeria [36].
Homeostasis depends on the integrity of the epithelial

barrier colonized by the commensal microflora protecting
the host. The balanced symbiotic relationship between the
host and its microbiome could be distracted due to
environmentally induced dysbiosis [37]. An altered
microbiota, termed dysbiosis, could lead to loss of
epithelial barrier integrity [38].
The extracellular matrix (ECM) is a three-dimensional

network of extracellular macromolecules, such as laminin,
collagen, fibronectin, and proteoglycans, that provides
structural and biochemical support to adjacent cells. It has
a critical role in regulation of cell survival in normal and
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tumorigenic growth through the regulation of cell com-
munication, proliferation, differentiation, and survival
[39].
Inflammatory cascade has an important effect on the

tumor immune microenvironment. In chronic inflamma-
tion, several cytokines are produced by inflammatory cells,
such as tumor necrosis factor (TNF), interleukin-7 (IL-7),
interleukin-2 (IL-2), RANTES, and macrophage inflam-
matory protein-1b (MIP-1b). Moreover, chronic inflam-
matory cascade causes activation of growth factors
including fibroblast growth factor (FGF) and TGF-β
[40]. The release of soluble inflammatory mediators into
the ECM results in activation of surrounding stromal cells
and promotes formation of reactive stroma [41,42] (Fig. 1).
The reactive stroma represents an inflammatory cytokine-
rich microenvironment contributing to prostate tumor
progression and is associated with poor outcome in
clinically localized prostate cancer [42]. Generally, normal
cells detached from the ECM are not able to survive and
proliferate, and undergo a form of apoptosis termed
anoikis. Anoikis is a variant of programmed cell death
that occurs due to a lack of extracellular connections to the
ECM and adjacent cells [43]. Following inflammation-
mediated disruption of ECM, anoikis-resistant cells invade

and migrate to distant sites and prostate cancer metastasis
occurs [33].
Growth factors, DNA-damage-promoting agents, and a

micro-environment rich in inflammatory cells are known
as the other hallmarks of cancer. Host cells release several
chemical signals in response to tissue damage, which
stimulate activation and migration of leukocytes (neutro-
phils, monocytes, and eosinophils) to the damaged area
[44]. Moreover, it was suggested that inflammation due to
tissue injuries increases the proliferative capability of cells
in the involved area, leading to carcinogenesis [45].
Neutrophils are the first leukocytes recruited to the sites
of infection or tissue injury followed by monocytes
[46,47]. Chemokines direct the recruitment of particular
leukocyte effector cells, leading to the progression of the
inflammatory response [44]. The dysregulation of cyto-
kine/chemokine may result in chronic inflammation and
subsequent subversion of cell death and/or repair programs
and eventually, contributes to cancer pathogenesis [44].
Several chronic inflammatory diseases contributing to
cancer, are due to either altered microbiome or the
involvement of specific microbes [48]. Gut microbiota is
capable of establishing a proinflammatory or antitumor
milieu through the modulation of host physiology and

Fig. 1 Schematic representation of the effect of microbiome dysbiosis on prostate cancer development.
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functioning of immune cells [49]. Recent evidence
suggests a role for inflammation and tissue microbes in
prostate cancer [28]. Generally, intraprostatic inflammation
is detected in prostate biopsies [50]. In addition, chronic
inflammation in benign prostate tissue is associated with
high-grade prostate cancer [51]. The high prevalence of
chronic inflammatory infiltrates in histopathological exam-
ination of the prostate from radical prostatectomy (RP)
specimens, prostate biopsy, and transurethral resection of
the prostate (TURP) suggests a potential link between
chronic inflammation and prostate cancer [52]. Prostatitis
can be caused by a variety factors including microbial
pathogens such as non-sexually transmitted organisms (E.
coli and Propionibacterium acnes) [53,54], as well as
sexual transmitted organisms (Neisseria gonorrhea and
Chlamydia trachomatis) [55,56]. Apart from the causative
factors for prostatitis (specific pathogen or environmental
factor), inflammation can be considered as a ubiquitous
factor associated with increased incidence of prostate
cancer among patients with prostatitis [57]. Inflammatory
cells result in enhanced vascularity, DNA damage, and
ECM degradation to form a nurturing growth microenvir-
onment [46]. Chronic inflammation of the prostate can be
caused by persistent infection. Thereby, DNA damage
occurs due to constant production of oxygen and nitrogen
species produced by leukocytes [58].
Inflammation of prostate, is characterized by an

increased number of inflammatory cells in the prostate
tissue [59]. The tumor microenvironment in prostate tumor
frequently contains inflammatory cells. It has been
suggested that inflammatory changes in the microenviron-
ment of prostate along with infection of prostate infection
are associated with epithelial barrier disruption and
stimulation of prostate cancer development [28]. Numer-
ous signaling factors and biological events influenced
inflammation in the prostate microenvironment, linking
inflammation to prostate cancer progression and metas-
tasis. These associations provide promising potential
therapeutic targets. Currently, several researches have
suggested the association of antiinflammatory agents and
reduced prostate cancer risk [33].
Microbial-induced inflammation contributes to cancer

progression by stimulation of cytokine and chemokine
production that stimulates cell proliferation and/or apop-
tosis inhibition [60]. Numerous studies have shown the
association of microbiome composition with modulation
of tumor-promoting inflammatory cytokines [61]. A
diverse microbial flora in healthy individuals results in
production of inflammatory cytokines including TNF-α,
IL-6, IL-1β, interferon g (IFNγ), IL-17, and IL-22 by
myeloid and lymphoid cells [62]. Thereby, tumor progres-
sion is influenced by these cytokines through different
mechanisms, including recruitment of suppressive immune
cells into the tumor microenvironment via TNF-α, IL-6,
IL-1β or tumor immune surveillance via IFNγ and IL-17

[61]. TNF is a cytokine involved in systemic inflammation
[63]. It has been shown that TNF is a mediator of cancer-
associated chronic inflammation and stimulates tumor
growth and progression [63]. Nuclear factor k B (NF-κB)
is a protein that regulates transcription of DNA, cytokine
production, and cell survival. It induces the expression of
various proinflammatory genes involved in cell growth,
angiogenesis, and metastasis [64]. Increased expression of
NF-κB have been found in prostate tumor cells [64]. It may
stimulate cell proliferation in prostate tumor cells by
regulating the expression of genes involved in cell cycle
controlling (such as c-myc, cyclin D1, and IL-6) [65]. In
addition, NF-κB transcription factors regulate the expres-
sion of angiogenic factors, including vascular endothelial
growth factor (VEGF) and IL-8 [65]. Constitutive NF-kB
activation in prostate cancer cells has been associated with
invasive behavior of prostate cancer tumors [64].
In the tumor microenvironment, immune cells respond

to lipopolysaccharide (LPS), flagellin, and other bacterial
components and products by producing several cytokines
such as IL-23 and IL-17 [66]. LPS is a characteristic
component of Gram-negative bacteria. It is a ligand for
TLR4 and stimulates the production of proinflammatory
cytokines [66]. In addition, it has proangiogenic effects
[67]. It also stimulates myeloid cells to produce reactive
oxygen species (ROS) which result in DNA damage and
mutation leading to cellular transformation [68]. Moreover,
other bacterial components including flagellin and pepti-
doglycan affect systemic inflammation through the ligation
of TLR5 and TLR2, respectively [66,69]. Microbial
metabolites such as hydrogen sulfide (H2S], N-nitroso
compounds, and polyamines have also direct effects on
DNA including microsatellite instability [70]. On the other
hand, the microbial products have the potential to suppress
cancer progression. For instance, it has been reported that
3-ethylbutyrolactone, kynurenic acid, and 3-methylade-
nine from Lactobacillus johnsonii decrease the gene
damage and inflammation that is beneficial in cancer
prevention [71].
In summary, the complex relationship between inflam-

mation, the microbiome, and cancer is yet to be elucidated.
Precise defining the roles of microbes and inflammation in
cancer can offer unique opportunities for improved
management and prevention of cancer in the future.

Microbiome and prostate cancer

Gut microbiome and prostate cancer

The microbiome and its inflammatory and carcinogenic
effects are organ specific [72]. Gut microbiome make up
about 99% of the total microbial mass of the human body
and has local and distal effects. The gut microbiome is
better known than microbiome of other parts of the body
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[72]. The human is constantly exposed to microbiome as
an environmental factor. Recent studies have shown the
association between microbiome alteration and carcino-
genesis in the colon, liver, and pancreas [38]. These
carcinogenic alterations are due to mechanisms including
stimulating inflammatory responses mediated by micro-
organism-associated molecular patterns (MAMPs) and
genomic instability as described above. Inflammatory
responses mediated by microbiota occur both locally and
systemically via proinflammatory cytokines, such as IL-
17, IL-23, TNF-α, and IFNγ [73].
The introduction of next generation sequencing (NGS)

of bacterial 16S rRNA has led to better identification of gut
microbiome particularly anaerobes that comprise the
majority of the human gut microbiome. The human gut
microbiome consist of 1013–1014 organisms and 3 � 106

genes [74]. The bacterial microbiome has several functions
and its content is dependent on the individual’s diet,
geography, initial infant colonization as well as the
individual’s immune system [75].
There are four phyla of bacteria predominantly compri-

sing human gut microbiome including Firmicutes, Bacter-
oidetes, Proteobacteria, and Actinomycetes, of which, the
first two constitute about 90% of total bacteria. Firmicutes
are mostly Gram-positive anaerobic clostridia, streptococci
and enterococci, and Bacteroidetes is composed of Gram-
negative bacilli. Bacteroides thetaiotamicron and Bacillus
fragilis are recognized as examples of this phylum with the
ability to digest complex carbohydrates. Actinobacteria
represent Gram-positive bacteria with a high G+ C
content in their DNA with the example of Bifidobacteria.
They are the first microbes colonizing the human
gastrointestinal tract and are known as probiotic organ-
isms. In addition, Proteobacteria represent a diverse group
of Gram-negative bacteria including E. coli and Klebsiella
species [75,76].
Estrogens are considered as important agents for

treatment or prevention of prostate cancer. First, the
association of androgens with prostate cancer was shown
by Huggins and Hodges [77]. Then it was shown that
estrogen has an indirect antiandrogenic effect by feedback
inhibition of hypothalamic luteinizing hormone (LHRH),
stimulating the release of luteinizing hormone (LH) from
pituitary [78]. Studies have shown that exogenous
estrogens such as the non-metabolized diethylstilbestrol
(DES) can inhibit telomerase, resulting in inhibition of
prostate cancer cell division [79,80].
It has been suggested that gut microbiome via a group of

gut bacteria whose products can metabolize estrogens
(defined as estrobolome) have major influence on level of
circulating estrogens, and consequent risk of developing
estrogen-driven cancers, including prostate cancer [81–
83]. Typically, circulating estrogens are hepatically con-
jugated via glucuronidation and producing glucuronides
(conjugated estrogens), which do not bind to estrogen

receptors (ERs). Dysbiosis of gut microbiome can promote
deconjugation and recycling of estrogens via secretion of
β-glucuronidase enzyme. Deconjugated estrogens (active
forms) can bind to ERs, result in cell proliferation and
tumor development [83–86] (Fig. 1).
Therefore, it is rational that patients with prostate cancer

may have altered gut microbiome in comparison to healthy
individuals. In this respect, it has been demonstrated that
there is a significant variation of microbiota among
different patient populations. In a recent study, Bacteroides
massiliensis was more prevalent among prostate cancer
patients, and Faecalibacterium prausnitzii and Eubacter-
ium rectale were more prevalent in benign controls. The
differences in the gut microbiota of prostate cancer patients
compared to benign controls suggest an important role in
the pathobiology of prostate cancer and need further
investigation (Table 1) [87]. B. massiliensis is a member of
the Bacteroides species [87]. F. prausnitzii is a Gram-
positive, rod-shaped, anaerobic bacterium and belongs to
the phylum Firmicutes utilizing acetate to produce butyrate
[88]. E. rectale is a member of Firmicutes phylum and
produces butyrate [89].
Butyrate is a type of fatty acid and has important

benefits, including antiinflammatory and antitumorigenic
properties. Butyrate functions as an antitumor agent by
inducing apoptosis and inhibiting cell proliferation [90].
An in vivo study has demonstrated that F. prausnitzii
resulted in a reduction in proinflammatory cytokine
secretion (TNF-α, IL-12) and increase in antiinflammatory
cytokine secretion (IL-10) [91]. Moreover, Bacteroides
and Faecalibacterium sp. are harbor genes encoding β-
glucuronidase, which is essential for estrogen metabolism.
However, the Eubacterium sp. do not have these genes
[92]. β-glucuronidase function leads to increase the
circulating levels of free estrogens and react with the
host’s DNA and make mutations leading to prostate cancer
[82] (Fig. 1).

Metabolic pathways of gut microbiome and prostate
cancer

Life style is considered as one of the important factors
associated with prostate cancer, which greatly affects the
microbiota of the intestine. Reduction of the intestinal
microbial diversity would make an increase in the number
of the bacteria causing systemic inflammation and may
lead to increased risk of tumorigenesis [93,94] (Fig. 1).
Intestinal bacteria are well recognized for their important
role in production of active biological agents including
folate, riboflavin (vitamin B12), biotin (vitamin B7), and
arginine, contributing in development and progression of
cancer. Association of folate and the risk of prostate cancer
is the most widely studied of these to date, followed by
biotin and arginine [95,96].
Fecal microbiome is a reflection of the intestinal
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microbiome. Some studies focused on the systemic effects
of fecal microbiome, in order to examine their metabolic
pathways and to achieve an appropriate diet for prostate
cancer patients [28,29,97] (Table 1). Evaluation of
microbiome metabolic pathways can provide an insight
into the modifiable risk factors of prostate cancer. A study
examined various bacterial components in fecal micro-

biome to consider the metabolic pathways associated with
prostate cancer [98]. The analysis showed high frequency
of bacteria associated with carbohydrate metabolism
pathways and lack of bacteria producing B vitamins.
Epidemiological studies have shown the protective effect
of folate against cancers including intestinal and cervix
cancers [98–101].

Table 1 Studies evaluating the microbiome in prostate cancer patients
Samples Method Findings

Pre-biopsy urine
samples (before
cancer diagnosis)

16S rDNA
sequencing

A higher prevalence of proinflammatory bacteria associated with urogenital infections (prostatitis, bacterial
vaginosis, and urinary tract infections) in biopsy proven prostate cancer men (Streptococcus anginosus,
Anaerococcus lactolyticus, Anaerococcus obesiensis, Actinobaculum schaalii, Varibaculum cambriense,
Propionimicrobium lymphophilum) [29]

Voided urine, EPS1,
seminal fluid of
patients with
prostate cancer
and BPH2

16S rRNA
gene sequencing
with PCR-DGGE
analysis

Significant microbial difference in EPS of patients with prostate cancer compared to BPH ones, suggesting
the role of dysbiosis in the pathobiology of prostate cancer
The prostate cancer group had a considerably increased number of Bacteroidetes bacteria, Alphaproteo
bacteria, Firmicutes bacteria, Lachnospiraceae, Propionicimonas, Sphingomonas, and Ochrobactrum,
and a decrease in Eubacterium and Defluviicoccus compared to the BPH group [155]

Rectal swab of
patients prior to
undergoing
transrectal biopsy
of prostate (before
cancer diagnosis)

16S rRNA
gene sequencing

Abundance of the proinflammatory species (Bacteroides and Streptococcus) in prostate cancer patients
Bacteria associated with carbohydrate metabolism pathways in prostate cancer group were significantly
higher than non-cancer groups, whereas bacteria associated with folate, biotin, and riboflavin were less
abundant [98]

Tumoral,
peritumoral,
and non-tumoral
prostate tissue
after RP3

UDPS4 of
16S rRNA

Microbial composition varies according to the nature of the tissue
In all types of samples, the major phylum was Actinobacteria (dominant genera: Propionibacterium),
followed by Firmicutes and Proteobacteria
Staphylococcus spp. were more represented in the tumor/peri-tumor tissues [97]

Fecal samples of
healthy male and
men with localized,
biochemically
recurrent and
metastatic
prostate cancer

16S rDNA
sequencing

Significant difference in alpha diversity in gut microbiome of prostate cancer patients compared to
non-cancer individuals
Significant difference in gut microbiome composition of patients receiving oral ATT5 [246]

Fecal swab,
voided urine
(after prostatic
massage) before
performing the
biopsy

16S rRNA
NGS6

The urinary microbiome composition of prostate cancer patients differs from non-cancer patients
An increased abundance of the Veillonella, Streptococcus, and Bacteroides, and a decreased abundance of
Faecalibacterium, Lactobaccili, and Actinetobacter in cancer patients
An increased abundance of Bacteroides in fecal samples of prostate cancer patients [195]

Prostate tumor
tissue of
prostate biopsy
and post-RP
tissue samples
after RP

Host-derived
whole-genome
sequencing

Presence of a core, bacteria-rich, prostate microbiome (Enrichment of the Proteobacteria) [196]

RP tissue samples Shotgun
metagenomic
sequencing

Non-sterile prostatic tissue in prostate cancer patients
Escherichia, Propionibacterium, Acinetobacter, and Pseudomonas constituting the core of the
prostate microbiome
No significant difference between the microbiome and local progression of prostate tumor
Correlated expression of Pseudomonas genes and human small RNA genes providing primary evidence
that Pseudomonas infection may inhibit metastasis [197]

The Swedish
Twin Registry

Data retrieving
from national
registries,
between 1963
and 2004

Significant association of periodontal disease due to proinflammatory Gram-negative bacteria with an
increased risk of prostate cancer [260]
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Folate plays a significant role in the synthesis of
nucleotides and DNA methylation. In vivo studies have
shown that folate deficiency causes substitution of uracil
with thymine in DNA, the instability of DNA, and the
higher mutation frequency [100]. According to a research
report, folate producer microbiota is more abundant in non-
cancer than in cancer patients [98]. It seems that folate
supplements source increases the risk of prostate cancer,
but natural sources of folate have protective effects.
Therefore, it has been suggested that men with high-
grade prostate cancer use probiotics instead of supple-
ments. Furthermore, although riboflavin has received less
attention than folate, it is a cofactor of methylenetetrahy-
drofolate reductase and there is a synergy between the
protective function of folate and riboflavin [98,102].
Mammalian cells are not capable of producing biotin and
are dependent to the gut microbiome. The deficiency of
this vitamin has been reported in men with prostate cancer.
LASSO analysis has shown a lack of biotin-producing
microbiome among patients with prostate cancer that can
indicate the importance of this vitamin [102]. In vitro
studies have shown that biotin supplementation enhances
mRNA encoding cytochrome P450 1B1 (CYP1B1) in
human lymphocytes, and may have similar effects on non-
lymphoid cells [103]. Therefore, it should be noted that,
like other B group vitamins, supplementation with a highly
concentrated biotin can have adverse effects [103].

Oral microbiome and prostate cancer

There are more than 700 different bacterial species in the
human oral cavity recognized as oral microbiome [104].
Recent studies have shown that inadequate oral hygiene
has led to a destruction of the oral microbial population,
resulting in an increase in the number of oral pathogens
[105] (Fig. 1). The association of oral pathogens with
various diseases including cardiovascular diseases
[106,107], preterm birth [108], as well as pancreatic
cancer [105] has been shown previously. The important
question is that how oral bacteria get to the prostate. And
how can they contribute to inflammation or carcinogen-
esis? As mentioned, chronic inflammation could be a risk
factor for prostate cancer. In addition, prostatitis is an
inflammatory status for the prostate. Several studies have
shown the spread of pathogenic bacteria from the oral
cavity to other parts of the body in a variety of diseases,
including prostatitis. Etiopathogenesis is similar in chronic
prostatitis and periodontitis. Periodontitis is a chronic
inflammation and is caused by oral pathogens and causes
the loss of soft tissue attached to the teeth [109,110]. Some
prostatitis categories, as well as periodontitis, are due to
Gram-negative bacteria, increased proinflammatory cyto-
kines, and decreased antiinflammatory cytokine [111,112].
Several systemic diseases are associated with periodontitis,
including blood disorders and atherosclerosis [113,114].

(Continued)
Samples Method Findings

Prostatic fluid
samples of
prostate
cancer patients
and non-prostate
cancer people

16S rRNA
gene sequencing

Beneficial role of microbiome in maintaining the microenvironment stability of the prostate
Significant difference of several species (genera Alkaliphilus, Enterobacter, Lactococcus, Cronobacter,
Carnobacterium, and Streptococcus) between the cancer group and non-cancer group [198]

TURP7 and/or RP
specimens from
prostate cancer
patients and TURP
specimen from
BPH patients

PCR screening
primer

Significant increase of Mycoplasma genitalium infection in prostate cancer patients in comparison with
the BPH patients [261]

Prostate tissue
from patients
with prostate
cancer or BPH

Immuno-
histochemistry,
PCR, and DNA
sequencing

Presence of H. pylori DNA in prostatic tissue of prostate cancer and BPH [262]

Fecal swab from
prostate cancer
patients

DNA sequencing Significant difference between gut microbiome of prostate cancer patients compared to controls
Higher abundance of Bacteriodes massiliensis in prostate cancer patients in comparison with benign
controls
Higher abundance of Faecalibacterium prausnitzii and Eubacterium rectalie among controls compared to
cancer patients [87]

Pre- and post
transrectal biopsy
urine, and fecal
samples

16S rRNA gene
NGS5

Alteration of urinary microbiome after prostate biopsy, suggesting introduction of fecal bacteria into the
urinary tract through prostate biopsy [263]

1EPS, expressed prostatic secretions; 2BPH, benign prostatic hyperplasia; 3RP, radical prostatectomy ; 4UDPS, ultradeep pyrosequencing ; 5ATT, androgen
receptor axis-targeted therapies; 6NGS, next-generation sequencing; 7TUR, transurethral resection of the prostate.
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The relationship between periodontitis and systemic
diseases might be due to the dissemination of bacteria
and their toxins throughout the body or immune deficiency
[10]. For example, the presence of oral bacteria was shown
in synovial fluid of patients with rheumatoid arthritis.
Moreover, several studies have shown the association of
periodontitis with increased prostate-specific antigen
(PSA) [115,116]. There is also a correlation between
PSA levels and coexistence of chronic prostatitis and
periodontitis [115]. Higher levels of serum PSA may also
be associated with aggressiveness of prostate cancer
[117,118].
Oral infectious diseases can cause inflammation

throughout the body by increasing C-reactive protein
(CRP) as well as proinflammatory cytokines such as TNF,
IL-1, and IL-6, which may accordingly cause prostate
inflammation [119]. In addition, inflammatory responses
may destroy the integrity of the prostate epithelium and
result in release of PSA to the blood stream [115].
Detection of oral bacterial DNA in prostatic secretions of
men with both prostatitis and periodontitis conditions,
indicates an association between these diseases and the
potential role of inflammatory processes [120]. Thus,
elimination of the oral infection foci is an essential prostate
health priority [116]. Porphyromonas gingivalis was
prevalently isolated from prostatic secretions. This bacter-
ium has the ability to produce Arg-gingipain to destroy
collagen [121]. This bacterium can enter into epithelial
cells through binding to erythrocytes [122]. The associa-
tion of P. gingivalis with pancreatic cancer has already
been shown [109,123]. P. gingivalis has also the potential
to invade the human immune system via destroying
signaling pathways [124,125].
To date, no study have addressed the relationship

between oral microbiome and prostate cancer risk that
warrants further research. However, oral microbiome
might be associated with prostate cancer, or at least
inflammatory condition which increases the risk of prostate
cancer.

Urinary microbiome and prostate cancer

For a long time it was thought that the urinary tract is
sterile [126]. Recent studies indicated a typical urinary
microbiome, which is distinctive from the gut microbiome
[127–129]. One of the concerns about urinary microbiome
was the possibility of sampling contamination. To rule out
this concern, highly advanced molecular techniques such
as 16S rDNA sequencing were used [127].
The recent discovery of the existence of urinary tract

microbiome has highlighted the role of the microbiome in
prostate cancer [126]. Since the urinary tract is very close
to the prostate and can contaminate it, urinary microbial
studies are important in identifying prostate diseases
[130,131]. Several studies have reported the isolation of

various microbial strains, including Corynebacterium,
Streptococcus, Veillonella, Prevotella, Anaerococcus, Pro-
pionibacterium, Finegoldia, and Staphylococcus, from the
urine of adult males [132–134]. P. acnes is one of the most
commonly isolated bacteria from male urine, and is a
proinflammatory bacterium. Association of P. acnes with
prostatitis in animal models as well as human prostate
cancer has been studied previously [29,53,135–139].
Chronic prostatitis is most commonly caused by uropatho-
genic strains of E. coli and enterococci [140]. Prostatitis
due to E. coli and P. acne strains may cause morphologic
changes and hyperplasia. These changes have also been
associated with decreasing the expression of tumor
suppressor NKX 3.1 in the prostate [53]. According to
studies, proinflammatory bacteria such as Streptococcus
anginosus, Anaerococcus lactolyticus, Varibaculum cam-
briense, and Propionimicrobium lymphophilum have been
found to be more common in patients with cancer
[141,142], which suggests that inflammatory bacteria are
likely to cause prostate inflammation for the development
or progression of prostate cancer [28].
Using advanced molecular techniques such as polymer-

ase chain reaction (PCR) and 16S rRNA sequencing, it has
been suggested that some unchangeable host factors such
as the expression of specific receptors, and the mother-to-
child bacterial transmission during the first few months of
life are contributed to the colonization and survival of
these bacteria in urinary tract without causing infection
[143–146]. Although studies are different in terms of
sample collection, inclusion criteria, methodology, etc., all
of them have shown that human urinary microbiome vary
according to age, sex, and disease [128,129,134]. The male
urinary microbiome is mainly composed of the genus
Corynebacterium, Staphylococcus, and Streptococcus
[29,129,147]. Urinary microbiome alteration may occur
for various reasons, including puberty, type of sexual
behavior, urinary incontinence, and antimicrobial agents of
prostatic secretions [145,146]. Dysbiosis affects immune
molecules as well as response to treatment of urinary
tract infections [148,149]. In this regard, changes in the
frequency and diversity of microbiome have been shown in
individuals with neurogenic bladder dysfunction (NBD),
interstitial cystitis (IC), urinary incontinence, and sexually
transmitted infections (STIs) [132–134,144,148,150]. It is
also possible that difference between urinary microbiome
of men and women is responsible for the difference in the
incidence and survival rate of bladder cancer between the
sexes [151].
Inter-individual variation in urinary microbiome com-

position affects susceptibility to infection with STIs such
as C. trachomatis and N. gonorrhoeae [133]. Studies also
have shown the elevated PSA levels associated with STIs,
which could be a sign of prostate involvement [152,153].
The history of inflammatory STIs can increase the risk of
developing prostate cancer [57]. Moreover, the association
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between male urinary microbiome and prostate problems
including prostatitis, benign prostatic hyperplasia (BPH) as
well as prostate cancer has been explored previously
[29,154,155]. Additional studies are needed to investigate
the effect of urinary microbiome composition on progres-
sion of prostate cancer.

Prostate microbiome

There are many studies on the microbial composition of
various parts of the body [156–159], but little studies have
been done on microbiome of healthy tissue of prostate as
well as prostate tumor tissues [136,160]. It has not yet been
elucidated whether there is prostate microbiome. Using the
16S rDNA PCR has not shown any bacteria in a healthy
prostate. Some studies have shown the presence of bacteria
in prostate cancer tissues [97,136,160–162]. One of the
concerns about the presence of microbiome in the prostate
is treatment of false positive results due to contamination,
which must be minimized by using aseptic methods, as
well as negative controls [163,164].
In the study of Sfanos et al., in which negative control

was also used, bacterial DNA of various species has been
isolated from prostatectomy tissues. In this study, tissue
cores of prostate were negative for bacterial DNA. Hence,
it was concluded that there is no flora in the prostate and
microorganisms in the focal regions are likely to be
associated with prostate inflammation and are bacterial
remnants within the macrophages. Using 16S sequencing,
most of the strains were related to the normal flora of
urethra (Acinetobacter spp., Prevotella spp., Actinomyces
spp., Streptococcus spp., Pseudomonas spp.) or urinary
tract infections (UTIs) (Escherichia spp., Pseudomonas
spp., and Enterococci spp.) that highlighted the theory of
colonization of the prostate by urine flora [136].
As mentioned above, inflammation plays an important

role as stimulant for carcinogenesis. A change in bacterial
populations, may lead to an increase of cancer risk by
increasing inflammatory responses [53,135,165]. Some
bacteria are known to have potential for creating
inflammation in the prostate, including Enterobacteriaceae,
such as E. coli and Pseudomonas, as well as the bacteria
causing STIs [166,167].
In another study using ultradeep pyrosequencing

(UDPS), the microbiome associated with the nontumor,
peri-tumor, and tumor tissue of prostate was evaluated
[97]. In that study, existence of prostate specific micro-
biome was reported and the dominant isolated bacterium
was P. acne. Moreover, nontumor regions of prostate were
considered as healthy prostate samples, and thus there were
no confounding factors such as diet and lifestyle. High
prevalence of Lactobacillales in nontumor regions as a
normal microbiome of prostate was reported, which may
play a role in maintaining the health of the prostate [97].
In summary, considering the antibacterial properties of

prostatic fluid [168,169], and the impact of the urinary
microbiome as well as skin and gut microbiome on the
prostate, and finally according to all studies that have been
done so far, there is no evidence to prove the definite
existence of prostate microbiome. In all the studies that
have been done so far, there are limitations that make it
difficult to interpret their results. Further studies are needed
in order to gain insight into characterization of the prostate
tumor microenvironment.

Skin microbiome and prostate cancer

P. acnes is an anaerobic Gram-positive bacterium found in
sebaceous follicles of the human skin, and its strains cause
inflammatory diseases through their hemolytic, cytotoxic,
and immunostimulatory activities. This bacterium was
abundantly isolated from patients with prostate cancer
[135,170]. It has been reported that P. acnes strains
involved in prostate cancer were different in surface
properties from strains associated with skin disorders.
Studies have shown a powerful inflammatory activity of
P. acnes in prostate tissue. In vitro studies on RWPE1 cells
infected with P. acnes showed activation of NF-κB, the IL-
6-Stat3, and the COX2-PGE2 pathways and increased
transcriptional activation of IL-8, VEGF genes [171].
P. acnes infection results in the continuous degradation
of IκBα (major NF-κB inhibitor) and subsequent activation
of NF-κB, leading to positive regulation of genes involved
in development and progression of prostate cancer
[171–174]. Furthermore, increased level of IL-6 in the
serum of prostate cancer patients is associated with
advanced metastases. IL-6 activates the JAK/STAT
signaling pathway. Persistent activation of Stat3 transcrip-
tion factor contribute to increase tumor growth and
proliferation. VEGF and COX-2 are also important
molecules in angiogenesis [172–174].

Molecular pathological epidemiology (MPE)
in the context of prostate cancer

MPE is a discipline combining epidemiology and
pathology. The goal of pathology and epidemiology is
clarifying etiology of disease, and MPE intends to achieve
this aim at molecular, individual, and population levels.
Generally, MPE employs tissue pathology resources and
data available in epidemiological studies. Molecular
epidemiology includes MPE and conventional molecular
epidemiology as well as traditional disease designation
systems [175]. In MPE, interrelationships between expo-
sures including environmental, dietary, lifestyle and
genetic factors; cellular or extracellular molecules altera-
tions (molecular signature of disease); and evolution and
progression of disease are evaluated [176].
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Application of molecular signatures to improve the
value of standard clinical-pathological parameters has
affected clinical practice in several cancer types including
prostate cancer. The molecular signatures indicative of
disease grade and predictive of subsequent behavior could
expedite the optimal treatment choice for prostate cancer.
In this context, genome, immunity, and microbiome can be
analyzed to identify new biomarkers for potential clinical
utilities. The concept of MPE in clinical medicine is
equivalent to precision medicine and personalized medi-
cine [177]. Epidemiology provides analytical frameworks
to evaluate the association of exposure (endogenous or
exogenous factor) and incidence of a disease or its outcome
[178]. It aims to identify patterns and determinants of
health and disease conditions [178]. Conventional epide-
miological researches comprise quantitative and qualita-
tive study designs and examine association of an exposure
and a disease entity in population-based cohorts. For
example, genome-wide association studies (GWAS) impli-
cate scanning markers across the genomes of numerous
people to find genetic variations associated with a specific
disease [178]. Currently, due to the emerging of molecular
diagnostic tests in the field of infectious disease, molecular
pathology has become a major subfield of pathology.
Therefore, MPE has been emerged as an interdisciplinary
integrative scientific discipline which analyses complex
interplay between molecular pathological signatures,
environment, lifestyle factors, disease occurrence and
progression, by using large populations [178–180]. MPE
can be considered as the next step of GWAS, termed
“GWAS-MPE approach.” It has demonstrated to be a
promising approach to identify biomarkers for precision
medicine [179,180].
As mentioned before, dysbiosis can have carcinogenic

effects. Therefore, analyses of the microbiome in various
body sites as well as pathologically transformed tissue
(tumor) provide a basis for better understanding the cancer
etiologies and their population impact. These analyses
should be integrated into MPE, which is recognized as
microbiology-MPE [178,181]. Microbiology-MPE affords
a valuable approach to evaluate the interpersonal hetero-
geneity of the carcinogenic process related to the dysbiosis
and to provide evidence for the role of microbiome in the
processes of tumor development and progression [181].
In epidemiology, the term “exposure” designates any

factor that may (or may not) associate with cause, prevent,
or influence an outcome of interest [178]. In microbiology-
MPE study, the microbial profile can be considered as an
exposure or outcome variable. For instance, in cancer
research, the microbial profile in non-cancerous tissue or
biospecimen obtained before cancer diagnosis can be
evaluated as an exposure associated with disease incidence
as an outcome [178]. However, the detection of a certain
microorganism may show either causal association with
the tumor or can occur as a result of tumor development

[178]. There are microbiology-MPE studies that have
evaluated microbiome profile in prostate cancer patients
and provided new insights into prostate cancer etiologies
(See previous sections). Several studies have reported the
association of microbial agents with prostate tumors (Table
1). In these studies, the composition of microbiome of
different parts of human body, their interactions with the
host and effects on host health have been widely
considered. These studies have been carried out using
advanced molecular techniques such as PCR-based
targeted detection, sequencing and qPCR, and pyrosequen-
cing. Their findings indicated differences in the diversity
and abundance of microbes in healthy individuals and
cancer patients [132,150,155,182,183]. Studies related to
microbiome of different parts of the body associated with
prostate cancer are discussed in their respective sections in
this article (Table 1).
A current study used an array-based metagenomic

analysis to define the prostate tumors microbiome in
comparison with non-cancerous prostate tissues [184].
They defined the microbiome signatures associated with
prostate cancer. They also suggested increased recombina-
tion activity in the tumor showing the viral and bacterial
sequences integration into the somatic chromosomes of
tumor cells. These integrations may affect host genes
related to oncogenic activities in tumor cells [184].
Moreover, they compared the microbiome of cancerous
prostate tissue with tissue from BPH patients and reported
diverse and distinct prostate tumor microbiome in
comparison with that of the controls [184]. Viral signatures
including oncogenic human papillomavirus 18 (HPV18),
Epstein-Barr virus (EBV), human cytomegalovirus
(HCMV), and JC virus (JCV) in prostate cancers, were
also reported previously [182,185,186].

Target the microbiome for risk assessment,
prevention and treatment of prostate
cancer

Cancer is a complex disease influenced by an interplay
between host genetic diversity, immunology, and environ-
mental factors. Despite genetic factors being involved in
cancer, several studies have shown the influence of
microorganisms on cancer biology [187]. In addition to
metabolism-related genetic profiles, gut microbiome and
its related metabolic properties also can potentially be
important in cancer risk including prostate cancer [188].
There are some comprehensive review articles available on
interactions between intake and species of gut microbes
[189,190].
A biomarker is indicative of the severity or the presence

of a particular disease, or pharmacologic responses to a
therapeutic intervention [191]. A cancer biomarker refers
to either a biological molecule secreted by a tumor or it can
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be a particular response of the body that is a sign of the
presence of cancer. Cancer biomarkers are used as
diagnostic markers to detect the presence of cancer, and
prognostic markers to anticipate how well the body
responds to a treatment [192]. Some of these markers
have created paradigm shifts in personalized treatment of
cancer [192]. Theranostics is a newly defined field of study
intended to combine particular targeted therapy based on
specific targeted diagnostic tests. It provides an evolution
from conventional medicine to a contemporary persona-
lized and accurate medicine approach. Today’s biomarker
will be tomorrow’s theranostics for risk-stratification and
treatment personalization [193]. Current researches are
focused on the human microbiome as a potential early
detection biomarker for diseases [194]. Some metage-
nomic markers have also potential for cancer diagnosis.
Current evidences suggest that carcinogenesis proceeds by
microbial factors. Therefore, several studies have exam-
ined the probability of profiling microbiome for cancer
diagnosis [29,97,98,138,155,195–198]. These studies have
brought much hope in the possibility of microbiome
manipulation to improve treatment efficacy and to reduce
side effects (Table 1). Despite promising preliminary data,
clinical use of these metagenomic markers needs to be
supported by further studies [192].
Several factors including aging, lifestyle changes (in

diet, exercise, nutrition, and stress), medications, and
gastrointestinal pathogens can affect the microbiome
composition with consequent change of inflammatory
and pathophysiological states of various organs and tissues
[199]. Lifestyle factors may influence prostate cancer
susceptibility [200]. Consumption of meat [201], dairy
products [202], eggs [203], and fish oil [204] has been
studied in relation to prostate cancer risk. However, few
studies have been performed on the interactions between
how intake and metabolic factors influence cancer risk
[188]. The performed studies are mostly limited to the
characterization of genetic variation effect on metabolism
or intake [205–207]. For instance, previous studies
examined the effect of a single-nucleotide polymorphism
(rs4988235) on the lactase (LCT) gene and the effect of
arachidonic acid metabolism gene polymorphisms on
prostate cancer risk [206,207].
Microbiome composition exists in a precise balance that,

if disrupted, dysbiosis occurs which has been considered as
etiology of several cancers, including prostate cancer
[208]. During dysbiosis, a decrease of Lentisphaerae,
Bacteroides, and Parabacteroides has been seen. This
condition can cause an increase in the serum levels of
TNF-α, IL-8, IL-1β, and CRP [209].
Antibiotics cause the death of pathogens as well as the

death of commensal bacteria that modulate gut microbiota
composition [210]. The microbiome alteration depends on
the antibiotic class, dose, and duration of antimicrobial
exposure, their pharmacological action, and targeted

bacteria [210]. There are some evidences that antibiotic-
caused dysbiosis can increase the frequency of some
cancers including prostate cancer which is increased by
using penicillin, suggesting a link between the microbiome
and carcinogenesis [211].
Moreover, gut microbiome metabolism impacts on

digestion of dairy product, affects the composition of
bioactive fatty acids in adipose tissue of host [212], and
contributes to the production of carcinogenic metabolites
and inflammation [213]. There are several metabolic
pathways encoded among various microbes. These path-
ways may encode some rare functions including specific
nutrient exploitation, antibiotic resistance, heavy metal
utilization/resistance and the production of hormones, such
as androgens [214,215]. Since our diet contains atypical
compounds, the microbiome capable of utilizing them are
rapidly enriched [216]. This microbial composition shift
could have significant consequences for the host; for
instance, intended medications may be modified or
inactivated by the microbiome or may become toxic to
the host [216].
Gut microbiome affects the host’s digestive process by

enzymatic actions [188]. Some gut microbes contribute to
the digestion of phenolic compounds from tea, coffee, and
other plant-based diet sources into biologically active
metabolites. Resveratrol belongs to a class of polyphenolic
compounds and has potential antiinflammatory effects by
modification of eicosanoid synthesis and inhibiting
cytokines such as PTGS2, IL6, and TNF [217]. Hepatically
conjugated estrogens excreted into the intestinal tract by
bile can be deconjugated by bacterial β-glucuronidases,
which leads to their reabsorption into the circulation
[218,219]. A previous study showed that the intestinal
microbial richness and alpha diversity affects the total
urinary estrogen levels as well as risk for estrogen-related
conditions [218]. Therefore, it was suggested that the gut
microbiome should be considered as a biodynamic system
interacting with its living environment and associates with
disease risk [220].
In addition, gut microbiome can impact prostate cancer

risk due to the presence of isoflavone-metabolizing, equol-
producing bacteria. Equol, a nonsteroidal estrogen, may
influence prostate cancer susceptibility. Slackia sp. strain
NATTS, classified in the Coriobacteriacea family, belong-
ing to the Slackia genus, is a newly identified human
intestinal bacterium with a high equol-producing activity.
It is capable of degrading one of the daidzeins in soy
isoflavones into equol with high efficiency [221]. These
can emphasize the role of microbiome in prostate cancer
risk [221]. The first step to determine the influential role of
gut microbiome in prostate cancer development is to
evaluate key differences in the microbial profiles of men
who do and do not progress aggressive disease [188].
Chemoprevention of prostate cancer has gained great
interest in recent years. It has been suggested that
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incapability to convert daidzein to equol in the intestine
due to lack of equol-converting bacteria in the intestinal
environment can be considered as a risk factor for prostate
cancer susceptibility. Therefore, using the NATTS strain
bacteria to improve the intestinal environment as well as
administration of S-equol-containing supplement can be
considered as preventive options for prostate cancer [220].
Nowadays, immunotherapy is one of the successful

treatment options for metastatic diseases. The main focus
of cancer immunotherapy is on the modulation of T cells
that are present in normal and cancerous prostate tissues
[222,223]. Evidences suggest that the gut microbiome
composition can have a significant effect on modulation of
immunotherapy response and toxicity. Therefore, re-
educating and/or diversifying the gut microbiome through
using probiotics and prebiotics before or in combination
with immunotherapies can lead to a better response rate
[224–226].
Current studies have reported that some bacteria might

increase the effect of some traditional anticancer drugs and
immunotherapy drugs. Local and systemic effects of gut
microbiome on cancer is through various mechanisms that
involve the innate and adaptive immunity, endocrine and
neural pathways, bacterial products and toxins, modulation
of the systemic inflammation, and the oxidative stress
[199]. Since the extensive effect of microbiome on human
health, microbiome composition differences between
patients can be considered as a factor to decide who
would benefit from a specific treatment modality [187]. In
addition, the presence or absence of particular bacteria as
well as their metabolites may affect the prevalence,
severity, and treatment of a tumor and can serve as
prognostic biomarkers [187]. In the foreseeable future, gut
microbiome may be used as a biomarker to segregate
healthy and cancer patients. Currently, cellular targets for
improving chemotherapies and targeted therapies are the
matters of interest. Therefore, microbial drug targets have
the potential to improve the harmful side effects of
chemotherapy as well [187].
Studies on animal models have shown that the gut

microbiome has effect on antitumor activity of agents, such
as cyclophosphamide [224] as well as anti-PDL1 [226] and
CTLA-4 blockade immunotherapies [141]. Furthermore,
animal model studies have shown that apoptotic activity of
platinum-based antineoplastic compounds in the tumor
cells is decreased in the absence of commensal microbes
[224,227].
Human microbiome can affect a patient’s response to

immune checkpoint inhibitors (ICIs) that mainly target the
immune system rather than the patient’s tumor [216]. ICIs,
such as programmed cell death protein (PD-1), have been
reported effective in patients with advanced melanoma,
non-small cell lung cancer (NSCLC) and renal cell
carcinoma (RCC). The use of ICIs, such as monoclonal
antibodies targeting PD-1 and its ligand (PD-L), promotes

the memory T lymphocyte-mediated immune responses
via suppressing the interaction of T inhibitory receptors
with cognate ligand on tumor cells [228,229]. PD-1/PD-L1
ligand belongs to the superfamily of CD28/B7 and
PD-1/PD-L1 signaling pathway inhibits the T cell
mediated immune responses [230,231]. Studies have
shown that the agents targeting PD-1 are useful in men
who have received androgen deprivation therapy (ADT)
with androgen receptor antagonist (enzalutamide) [232].
One study reported that antibiotic treatment before anti-
PD-1 therapy had reduced the survival of patients
compared to those who had not received antibiotics [28].
Antibiotic administration can also impair therapeutic
outcomes of some chemotherapy drugs such as cyclopho-
sphamide, highlighting the importance of the microbiome
in patients’ response to these immune modulating agents
[233].
A study on metastatic melanoma patients showed that

the patients who responded to anti-PD-1 therapy had more
diverse gut microbiome than non-responders [189]. Fecal
microbiota transplantation (FMT) from healthy donors
with a diverse microbiome profile could improve patient’s
response to anti-PD-1 therapy. Moreover, antibiotic
treatment for common infections including dental, pul-
monary, and urinary has been shown to reduce signifi-
cantly progression-free survival (PFS) and overall survival
in patients treated with ICIs [228].
Microbes play an important role in pharmacokinetics,

toxicity, and mechanism of action of chemotherapy as well
as local and systemic immune responses. For example,
Mycoplasma hyorhinis converts Gemcitabine into its
deaminated inactive form [234]. Currently there is no
approved second-line therapy for metastatic hormone-
refractory prostate cancer (MHRPC) after docetaxel failure
[235]. Metronomic administration of the cyclophospha-
mide has been shown preclinically to be an effective
inhibitor of angiogenesis [236], and induces a decrease in
circulating regulatory T cells, leading to the restoration of
NK cell cytotoxicity, and proliferation of peripheral T cells
[237]. Human clinical trials (Phase II) showed that
cyclophosphamide administered in metronomic schedule
has significant activity in HRPC [238–240]. In addition,
data from a study that assessed the efficacy and tolerance of
metronomic cyclophosphamide administration in HRPC,
suggested that metronomic cyclophosphamide/predniso-
lone chemotherapy might be advantageous for patients
with docetaxel-resistant HRPC [235].
Cisplatin is a platinum (II) compound that represents

clinical activity against several solid tumors, and was
shown to have potential in management of castration-
resistant prostate cancer (CRPC) [241]. The efficacy of
alkylating antineoplastic agents (cyclophosphamide and
cisplatin) can be affected by the microbiome. The
efficiency of these compounds has been shown a great
decrease in germ-free mice [242]. This efficacy reduction
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was also shown in other animal models receiving
antibiotics to eradicate bacteria in the gut [243]. Moreover,
chemotherapy can damage the diversity and health of gut
microbiota by reducing the abundance of advantageous
bacteria (e.g., Lactobacilli and Bifidobacteria), while
increasing pathogenic bacteria (e.g., Clostridia and Enter-
obacteriaceae) [226]. Diversity is identified as an important
factor for a healthy microbiome. Studies have shown that
gut microbiome could be changed by castration or pelvic
radiotherapy [183,244].
Abiraterone acetate (trade name: Zytiga) and enzaluta-

mide (trade name: Xtandi) are antiandrogen medications
used in the treatment of prostate cancer. Abiraterone
acetate targets the biosynthesis of testosterone and
enzalutamide directly binds to the androgen receptor
(AR). Both of them are administered orally and have
poor solubility, so they are in exposure of gut microbiome
for a considerable time. This maximizes the probability of
microbial modification. The acetate portion of abiraterone
acetate can be a source of carbon for microorganisms
[216].
There are two important pathways of drug metabolism.

First, the drug may be modified into more active form or
into inactive form by microbiome. Second, the microbiome
may produce metabolites to decrease the drug’s efficacy,
such as the regulation of testosterone in prostate cancer. In
the absence of endogenous production of testosterone, this
may act as a harmful mechanism in the context of prostate
cancer patients. A previous study showed that a human gut
bacterial species (Clostridium scindens) converts gluco-
corticoids into androgens. The implication is that not only
the host endocrine system but also gut microbiome, may be
the source of androgens [214].
Although the most microbiome studies have been done

on the gut, chemotherapeutic agents may also affect
microbial population of other sites of the human body
[220].
Soy bean-derived products are considered as factors for

reducing prostate cancer risk. Among these products, soy
isoflavones and their interaction with gut microbiome has
gained more attention [220]. Animal studies suggest that
the gut microbiome is affected by circulating androgen
levels and castration [244]. A previous study assessed the
compositional profile of the gut microbiome in men with
and without prostate cancer and with and without treatment
with androgen receptor axis-targeted therapies (ATT) [29].
They reported that alpha diversity of the gut microbiome in
men without prostate cancer is greater than the men with a
prostate cancer diagnosis. They also found that men taking
oral ATT had a different gut microbiome composition than
men taking GNRH agonists/antagonists alone [29]. Studies
of rodent models have shown that chemotherapy- and
immunotherapy-caused dysbiosis of gut microbiome
[225,245] could subsequently affect the local inflammatory
environment in the intestinal tract, systemic inflammatory

effects, and/or the administered cancer therapies efficacy
[246]. Steroid biosynthesis takes place in prokaryotes
[247] and some bacterial species are able to metabolize
estrogen and androgen precursors and to catabolize them,
so affect systemic levels of these hormones [214]. On the
other hand, hormone levels can affect the microbiome
[244]. The species capable of steroid/hormone biosynth-
esis were significantly more abundant in the gut flora of
men taking oral ATT [246]. This finding may show an
alternative mechanism for the production of steroid
metabolites that could affect treatment response to oral
ATT [246]. Moreover, overrepresentation of certain types
of bacteria including Ruminococcaceae and particularly
Akkermansia muciniphila was seen in the fecal micro-
biome of men taking oral ATT [246]. A series of human
studies in melanoma patients have indicated the associa-
tion between the presence of these same species (Rumi-
nococcaceae, Bifidobacteriaceae, and Akkermansia
muciniphila) and positive response to anti-PD-1 immu-
notherapy [229,248]. These studies may show that the gut
microbiome has an important role both for therapeutic
efficacy and as a target that could be modulated to improve
treatment response. This influence may contribute to the
variation in the effectiveness of immunotherapies [246].
Collectively, regarding the importance of gut micro-

biome content for the effectiveness of treatment as well as
increasing the treatment response, therefore it is possible to
reduce the toxicity and increase efficacy of chemotherapy
by using symbiotics (combination of prebiotics and
probiotics). The introduction of various useful bacteria as
probiotics with anticancer properties forms the subject of
many current studies [249].
Both probiotics and prebiotics have important roles in

maintaining microbiota composition. Probiotics are micro-
bial food supplements that may improve the gut micro-
biome balance and can increase the host’s immune
response through numerous mechanisms [250]. They can
stimulate the immunity by increasing the mucosal barrier
function, enhancing the mucosal antibody production, and
increasing the epithelial integrity and direct antagonism of
pathogenic microorganisms [251]. One study has shown a
relationship between the efficacy of CTLA-4 blockade and
microbiota composition (B. fragilis and/or B. thetaiotao-
micron and Burkholderiales) [252]. A previous in vivo
study demonstrated the role of commensal Bifidobacterium
in increasing antitumor immunity. They reported alteration
of innate immune function and improved antitumor
activity through an antigen-independent fashion. Oral
administration of the Bifidobacteria alone or in combina-
tion with anti-PD-L1 immunotherapy in melanoma murine
models led to a decrease in tumor growth [226].
Additionally, the antitumor activity of cisplatin could be
restored by Lactobacillus acidophilus. Also this bacterium
reduces the side effect of platins including nephrotoxicity
[249].
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Probiotics such as lactobacilli are found in dairy
products [253]. A previous study showed that the
production of tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL) was induced by lactobacilli in
human immune cells [254]. Treatment with lactobacilli
also have facilitated NK activity through TRAIL produc-
tion against prostate cancer cells. TRAIL is an endogenous
cytokine that induces apoptosis in tumor cells [254].
L. acidophilus and L. salivarius are commonly used for
probiotic supplementation. L. acidophilus may help
digesting lactose and L. salivarius can help kill Listeria
[255,256].
Prebiotics are a type of fibers that are nonviable and

indigestible compounds inducing the quantity and activity
of specific gut microbiota including Bifidobacteria and
Lactobacilli [257]. They are considered as a potential
treatment option and have also been proposed as a
supplement to repair chemotherapy-induced gut dysbiosis
[258]. Prebiotics have a positive effect in rebalancing the
gut microbiota and can stimulate the host to respond
appropriately to immunotherapies [259]. Some of the
prebiotics such as phytoestrogens downregulate the COX-
2 mediated inflammation and have been shown to have
preventive roles in cancer [199].
Fiber presents in many fruits and vegetables and is

fermented by gut bacteria into short-chain fatty acids such
as butyrate which has tumor suppressive properties [258].
A fiber-poor diet and rich of fat alters the microbiome-
associated metabolites, such as vitamins B7 and B12
correlating with enhanced inflammatory state. Prolonged
calorie restriction diets leads to an increase in Lactoba-
cillus species [199]. In addition, the role of short-chain
fatty acids produced by bacterial fermentation of fibers has
been shown in protection against cancer development
[187]. Therefore, using fiber-rich foods and prebiotics may
help to decrease global cancer burden in the long run [187].

Conclusions and future perspectives

Recently, the role of the human microbiome in health and
disease is highly regarded. There are several studies
exploring the potential role of the microbiome that inhabit
the human body (including gut, urinary, and skin) and
prostate cancer. However, it is still blurred whether the
human microbiome is causative or contributory to prostate
cancer. It is noteworthy that the data at this time suggest the
probable role of microbiome on this disease. The exact
mechanisms of microbial involvement in prostate cancer
development described in this review remain to be fully
understood. The studies published so far utilizing mole-
cular approaches to characterizing microbial diversity have
radically changed our view of the human microbiome,
consequently raising many questions about the human
microbiota relationship and its relevance to cancer.

Metagenomic analysis of whole microbiota composition
and function could provide insight into these questions.
Advanced molecular analysis suggests significant dif-

ferences in the gut microbiome of men with prostate cancer
in comparison to benign controls, which may associate in
the pathobiology of prostate cancer.
Overall, microbiome is linked to prostate health and

disease and future investigations are needed to discover
whether the human microbiota and/or their metabolites can
be considered as novel biomarkers and therapeutic targets
for prostate cancer. The mechanisms by which the human
microbiome modulates carcinogenesis, including systemic
inflammatory state, ability to affect systemic hormone
levels, metabolism and genotoxicity, can provide oppor-
tunities to target the microbiome for diagnostic, preventive,
and therapeutic strategies. Moreover, microbiology-MPE
evaluating microbiome profile can provide new insights
into the tumor-immune-microbiome interaction from
human tissue and population-based data, so suggesting
targeted microbiome-modulating strategies for prevention
and treatment of prostate cancer.
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