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Abstract Diabetes mellitus is one of the major public health problems worldwide. Considerable recent evidence
suggests that the cellular reduction–oxidation (redox) imbalance leads to oxidative stress and subsequent
occurrence and development of diabetes and related complications by regulating certain signaling pathways
involved in β-cell dysfunction and insulin resistance. Reactive oxide species (ROS) can also directly oxidize certain
proteins (defined as redox modification) involved in the diabetes process. There are a number of potential
problems in the clinical application of antioxidant therapies including poor solubility, storage instability and non-
selectivity of antioxidants. Novel antioxidant delivery systems may overcome pharmacokinetic and stability
problem and improve the selectivity of scavenging ROS. We have therefore focused on the role of oxidative stress
and antioxidative therapies in the pathogenesis of diabetes mellitus. Precise therapeutic interventions against ROS
and downstream targets are now possible and provide important new insights into the treatment of diabetes.
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Introduction

Diabetes mellitus is a chronic disease characterized by
hyperglycemia resulting from decreased insulin secretion
or insulin resistance, which leaves the body incapable of
responding fully to insulin. The worldwide diabetes
mellitus epidemic affected 425 million people in 2017,
and the number of people with diabetes is expected to
increase to 629 million by 2045 (International Diabetes
Federation, 2017). There are three widely accepted major
forms of diabetes including type 1 diabetes mellitus
(T1DM), type 2 diabetes mellitus (T2DM) and gestational
diabetes mellitus (GDM), among which T2DM accounts
for approximately 90% of all cases of diabetes [1–3]. In
addition, there are other less common types including
monogenic diabetes, an inherited form of diabetes [4], and
cystic fibrosis-related diabetes (CFRD). CFRD is a unique
type of diabetes that is common in patients with cystic
fibrosis (CF). If not well managed, all cases of diabetes
may develop diabetic complications which are the major
causes of high mortality and disability.
Increasing studies suggest that oxidative stress plays a

pivotal role in the pathogenesis and progression of
diabetes. Oxidative stress was observed in experimental
diabetes as early as 1982 [5], and has been found to play an
important role in all cases of diabetes mellitus (particularly
T2DM) and the pathogenesis of diabetic complications.
Nevertheless, the precise underlying mechanisms are not
yet fully understood. T2DM is associated with increased
oxidative stress resulting from several abnormalities,
including hyperglycemia, inflammation and dyslipidemia
[6,7]. In turn, elevated reactive oxide species (ROS) can act
as a second messenger and regulate the biological function
of various proteins including IκB kinase β (IKKβ), protein
kinase C (PKC) and Kelch-like ECH-associated protein 1
(Keap1) through interaction with cysteine residues (termed
“redox sensors”) of these proteins [8,9]. This dynamic
modification of intracellular redox sensors by ROS is
defined as redox modification, similar to other posttransla-
tional modifications such as protein phosphorylation,
acetylation, or ubiquitination, which plays an important
role in the development of diabetes [10]. Redox modifica-
tion of these proteins can activate alternative downstream
signaling pathways which play critical roles in impaired
insulin secretion and insulin resistance, facilitating the
development of diabetes and diabetic complications.
Because of the intimate and complicated association

between oxidative stress and diabetes, multiple attempts
have been made to improve the health of patients with
diabetes by dietary antioxidant supplements, such as
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enzymatic antioxidants-like mimics, vitamin C, and
vitamin E. However, the clinical failure of antioxidant
therapies to date is controversial, and, even worse, some
studies show that antioxidants may be harmful and even
increase mortality due to non-selective scavenging of
ROS. Excessive clearance of ROS may impair some
essential intracellular signaling and metabolic functions
associated with ROS. On the other hand, increasing studies
are suggesting that antioxidant inefficiency may also be
mainly due to its poor solubility, permeability, storage
instability, first-pass metabolism or gastrointestinal degra-
dation [11]. Thus it is necessary to develop novel delivery
approaches for antioxidants and specific drugs targeting
oxidative stress and redox modification. In addition,
physiologic approaches (such as healthy diet, physical
activity) have been a prerequisite of managing and
preventing diabetes and end-organ damage.

Overview of diabetes mellitus

Diabetes mellitus is characterized by the elevation of
glucose in blood (hyperglycemia) due to insufficiency in
production and/or action of endogenous insulin [12].
Insulin is an essential hormone secreted by β-cell of
pancreas, prompting cells to absorb glucose from the
bloodstream. A relative or absolute deficiency of insulin
resulting from β-cell dysfunction and insulin resistance
(IR) causes hyperglycemia. Without the belated manage-
ment, abnormal glycemic regulation may augment the risk
of microvascular complications (neuropathy, retinopathy,
and nephropathy), macrovascular complications (angina,
stroke, coronary artery diseases (CADs), myocardial
infarction, congestive heart failure and peripheral artery
disease (PAD)) and both micro- and macrovascular
complication (diabetic foot) [13–15]. In addition, some
evidence suggests subjects with diabetes mellitus have
increased risk of physical and cognitive disability, cancer,
tuberculosis and depression [16–21].

Type 1 diabetes mellitus

T1DM or IDDM (insulin-dependent diabetes mellitus) is
considered to be an autoimmune disease in which β-cells
are destroyed. This most commonly happened in children
and adolescents. The precise mechanisms of T cell-
mediated β-cells destruction remain largely unknown, but
genetic susceptibility (class II HLA alleles) and environ-
mental triggers (some dietary factors, viral infection and
toxins) have been implicated [22–25]. When the sympto-
matic onset of T1DM is perceived, more than 85% of β-cell
mass has been destructed, leading to deficiency of insulin
and subsequent elevation of blood glucose. Importantly,
hyperglycemia enhances the production of ROS which in
turn lowers insulin secretion and action [26].

Type 2 diabetes mellitus

T2DM, also known as insulin-independent diabetes
mellitus (NIDDM), is characterized by hyperglycemia
caused by several pathological processes such as decreased
secretion of insulin, abnormal incretin effect and excessive
cell glucagon production and insulin resistance (IR). The
prominent defect of T2DM is insulin resistance that
impairs the action of insulin. In the early stages of
T2DM, increasing production of insulin is indispensable to
maintain the blood glucose level to overcome IR. Never-
theless, with the progression of T2DM, enhanced insulin
secretion fails to compensate for insulin resistance [27]. It
has been reported that obesity, overweight, genetic
component (myosin heavy chain genes), sedentary life
style and old age are possible relevant factors for type 2
diabetes [28–30]. Furthermore, compelling evidence has
shown that oxidative stress results in more severe T2DM
by decreasing both insulin secretion and function and
causes many microvascular and macrovascular complica-
tions due to the damage of DNA, proteins and or lipids
[31].

Gestational diabetes mellitus

GDM refers to the slight hyperglycemia which is first
detected during the second and third trimesters of
pregnancy (International Diabetes Federation, 2017).
Pregnant women with GDM and their offspring both
have a higher risk of developing type 2 diabetes [32–35].
GDM is a metabolic complication of pregnancy and is
characterized by glucose intolerance and insulin resistance
associated with hormone secretion from the placenta,
obesity, family history, increased inflammation, and
oxidative stress in the placenta and fetus [36–38]. Recent
studies have shown that the decompensation for oxidative
stress may play a critical role in GDM by decreasing
insulin sensitivity index [39,40].

Free radicals and antioxidants

Free radicals are metabolic byproducts and ephemeral
reactive chemical entities containing one or more unpaired
electrons. There are various forms of free radicals such as
ROS including hydroxyl (•OH), superoxide (O2

• –), hydro-
gen peroxide (H2O2), and hydrochlorous acid (HOCl) as
well as RNS (reactive nitrogen radicals) including nitric
oxide (NO), nitrogen dioxide (NO2), and the non-radical
peroxynitrite (ONOO–) [41], all of which are implicated in
diabetes and diabetic complications (Fig. 1). Low to
moderate levels of free radicals are necessary to regulate
multiple cellular physiologic activities (such as responses
to anoxia, anti-infection, and mitosis) [42], while excessive
levels of ROS and RNS lead to oxidative stress and
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subsequent damage of biomacromolecules. For example,
inhibiting phosphorylation sites of endothelial nitric oxide
synthase (eNOS), a major nitric oxide synthase (NOS),
may drive eNOS to produce superoxide instead of NO,
which leads to the elevation of cellular ROS and vascular
dysfunction in T2DM [43]. Furthermore, NO reacts with
O2

• – to produce ONOO–, which is implicated in diabetes
by causing DNA damage/binding [44] and flow mediated
dilation disruption [45]. Indeed, under normal physiologic
conditions, there are many potential antioxidant defenses
against mass-produced ROS, including enzymatic antiox-
idants such as superoxide dismutase (SOD), glutathione
peroxidases (GPx), catalases (CAT), and non-enzymatic
antioxidants (e.g., vitamins, metal ion chelators, glu-
tathione). Nevertheless, once the balance between ROS
and antioxidants is destroyed, oxidative stress will result.

ROS sources

Mitochondrial sources of ROS

ROS are produced mainly by the mitochondrial electron
transport chain (ETC) during normal metabolic processes,
defined as mitochondrial ROS (mtROS). The formation of
mtROS arises from the transportation of one-electron of a
redox donor to molecular oxygen (O2) to produce O2

• –

[46]. A number of factors, including hypoxia, mitochon-
drial dysfunction and substrate availability, may elevate the
production of mtROS by regulating the redox state of the
ETC. Complex I (NADH-ubiquinone oxidoreductase) and
complex III (ubiquinol-cytochrome C oxidoreductase) are
pivotal reductases within ETC, and these two complexes
represent major sites of superoxide generation. There are

Fig. 1 The sources of ROS/RNS and their harmful effects. ROS/RNS arise from mitochondrial electron transport chain or/and non-
mitochondrial pathways. When cells and tissues are exposed to hypoxia, inflammation and immune response, particularly hyperglycemia,
and high free fatty acids, the generation of ROS/RNS will be elevated. The overproduction of ROS/RNS leads to oxidative stress that
regulates important cell signaling pathways which govern cell proliferation, inflammation, and cell survival. Abbreviations: NOX,
nicotinamide adenine nucleotide phosphate oxidase; NADPH, nicotinamide adenine nucleotide phosphate; O2

• –, superoxide; HO,
hemeoxygenase; XO, xanthine oxidase; COX, cyclooxygenases; iNOS, inducible NOS; eNOS, endothelial NOS; NOS, nitric oxide
synthase; ONOO–, peroxynitrite; NO, nitric oxide; ETC, electron transport chain; CI, complex 1; MAO, monoamine oxidase; α-GD, α-
glycerophosphate dehydrogenase; H2O2, hydrogen peroxide; ROS, reactive oxygen species; RNS, reactive nitrogen species; JNK, c-jun
N-terminal kinase; PKC, protein kinase C; IKKβ, IκB kinase β; PI3K, phosphatidylinositide 3-kinase; PARP-1, poly (ADP-ribose)
polymerases; NF-kB, nuclear transcription factor κB; Nrf2, nuclear factor E2-ralated factor 2; FOXO, forkhead box protein O.
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also other mitochondrial ROS-producing sites, including
monoamine oxidase [47], p66Shc [48], α-Glyceropho-
sphate dehydrogenase [49], electron transfer flavoprotein
(ETF), ETF quinone oxidoreductase (ETF dehydrogenase)
[50], and aconitase [51].

Non-mitochondrial sources of ROS

While mitochondria are the major source of ROS, there are
many non-mitochondrial sources of ROS, including, but
not limited to, nicotinamide adenine nucleotide phosphate
oxidase (NOX), eNOS, xanthine oxidase (XO), lipoxy-
genases, cyclooxygenases (COXs), monoamine oxidases,
hemeoxygenases (HO) and cytochrome P450 reductase
(CYPOR) [52–55]. In particular, NOX and eNOS play
significant roles in ROS generation relevant to the origin
and development of diabetes and vascular diseases. NOX
comprises 7 family members that produce ROS by
catalyzing the electron transfer from nicotinamide adenine
nucleotide phosphate (NADPH) to O2 [56–59]. ROS
generation induced by the elevated levels of NOX is
associated with diabetes and its vascular complications.
Knockdown of NOX1 and NOX4 decreases diabetes
mellitus–accelerated atherosclerosis through diminution of
ROS production [60]. eNOS represents the constitutive
NOS form in many cell types, particularly endothelial
cells, and catalyzes the generation of NO (which regulates
vascular tone and normalizes vascular function) in
physiologic conditions [61]. On the other hand, low
tetrahydropterin/dihydropterin (BH4/BH2) ratios and ele-
vated asymmetric dimethylarginine (ADMA) concentra-
tions can result in eNOS uncoupling which increases the
production of superoxide with diminished synthetic
activity of NO [62]. The diminished bioavailability of
NO leads to dysfunction of the endothelial progenitor cells
(EPCs) which maintain blood vessel function by differ-
entiating into mature endothelial cells and promoting the
repair of the damaged endothelium [63]. Thus NO
diminution plays a key role in diabetes related vascular
complications, and numerous hypotheses suggest that
supplementary NO donors (such as dietary nitrate and
citrulline malate) are a potential means of alleviating the
risk of diabetic vascular complications in people with
diabetes.

Antioxidants

An antioxidant is a chemical substance responsible for
regulating redox state by restraining and/or retarding the
oxidation of other substrates including fat, oil, and food
(Table 1) [64]. These beneficial molecules have high
efficiency and defend against free radical-induced oxida-
tive stress by three major mechanisms: (1) ROS scaven-
ging agent: facilitating the diminution of ROS;

(2) Chelating agent: inhibiting the generation of free
radicals by complexing metals; (3) Phenolic agent:
preventing the propagation reaction by exchanging protons
with free radicals [65]. The catalytic antioxidants (SOD,
CAT and GPx) scavenge ROS by catalyzing the reduction
of O2

• –, the breakdown of H2O2 or lipid hydroperoxides to
H2O and lipid alcohols [66–68]. Vitamin C can also act as a
ROS scavenger by donating an electron to a substrate such
as O2

• – [69]. Besides ROS scavenging agents, chelating
agents (such as proteolysis-induced peptides, carnosine
and anserine) play a critical role in preventing the
generation of ROS by complexing some metals (including
Fe, Cu, and Mg) [70]. These trace elements promote the
production of ROS such as •OH which is produced by Fe2+

-catalyzed the Fenton reaction (Fe2++H2O2!•OH+ OH–

+ Fe3+). In addition to ROS scavengers and active iron
chelators, vitamin E, a phenolic agent, can donate a
hydrogen atom from the phenolic group located on the
chromanol to lipid peroxide radicals in membranes and/or
LDL [71]. The oxidized vitamin E is relatively stable and
does not mediate further oxidative chain reaction.
Furthermore, some other antioxidants, such as vitamin D,
vitamin B9, coenzyme Q10 (CoQ10), N-acetylcysteine
(NAC), and lipoic acid (LA), modulate the levels of ROS
indirectly [27,72].

Oxidative stress in diabetes mellitus

Sustained hyperglycemia leads to ROS overproduction by
enhancing mitochondrial oxygen consumption, damaging
mitochondrial function, or activating NOX that are
evolutionarily conserved ROS-producing enzymes. The
increased generation of ROS or a declined activity of
endogenous antioxidants, or both, results in oxidative
stress which is a potent culprit in diabetes mellitus by
inducing β-cell dysfunctions and insulin resistance. In
addition, oxidative stress is closely related with diabetic
complications which are responsible for both the death and
long-term disability of patients with diabetes.

Role of oxidative stress in β-cell dysfunction

The central feature of diabetes mellitus is impaired insulin
secretion that is associated with overstimulation of β-cells
by chronic hyperglycemia or free fatty acids (FFA) [73]
(Fig. 2). Increasing evidence suggests that hyperglycemia
and high FFA-induced ROS/RNS accumulation could
more easily impair β-cell function due to the subnormal
expression of antioxidants (SOD, CAT, GPx) in β-cells
[74]. Chronic exposure of β-cells to oxidative stress
inhibits insulin secretion by opening ATP-sensitive K+

channels and suppressing calcium influx, which results
from the ROS-induced overproduction of cyclin-depen-
dent kinase inhibitor p21 [75]. In addition, excessive long-
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chain acyl CoA will be generated in the process of
increased β-cell fatty acid metabolism which can keep β-
cell ATP-sensitive K+ channels open to suppress ATP
generation and insulin secretion [76]. Long-term exposure
of β-cells to elevated FFA drops the mitochondrial
membrane potential and leads to uncoupled proteins-2
(UCP2) accumulation, which can also open β-cell ATP-
sensitive K+ channels to inhibit insulin production [77].
Oxidative stress may also decrease the transcriptional

activity of insulin genes by reducing the nuclear
accumulation of pancreas duodenal homeobox factor 1
(PDX-1, a key transcription factor responsible for main-
taining β-cell function) [78]. Recent studies have demon-
strated that oxidative stress-induced JNK activation and
enhanced nuclear translocation of forkhead box protein O1
(FOXO1, a key driver of metabolic disease) can suppress
the binding of PDX-1 to DNA [79,80]. It has been reported
that ROS overproduction reduces insulin secretion by
suppressing the expression of MaFA, a member of the
fundamental leucine zipper family of transcription factors
involved in the transcription of insulin genes [81]. By
contrast, poor insulin secretion can be improved by
inhibiting p38 MAPK-mediated MafA loss in db/db mice
[82]. These results suggests that ROS may activate p38
MAPK to promote the degradation of MaFA and then have
impact on β-cell function and insulin generation [83]. In
addition, β-cells can also be damaged and even undergo
apoptosis under chronic oxidative stress-mediated inflam-
mation in which nuclear transcription factor NF-kB is
activated through IL-1R signaling to promote the expres-
sion of the Bcl-2 family proapoptotic members [84,85]. In
summary, free radical overproduction may cause β-cell
dysfunction and even apoptosis by regulating important

intracellular signaling pathways, such as p38 MAPK, JNK,
and NF-kB.

Role of oxidative stress in insulin resistance

When the levels of blood glucose are elevated, insulin will
interact with insulin receptor in certain tissues (skeletal
muscle, adipose tissue, and liver) and subsequently
activate insulin signaling to promote glucose uptake and
metabolism. Thus the interruption of insulin signaling is
implicated in insulin resistance which plays a critical role
in the occurrence and development of diabetes mellitus.
Under normal physiologic conditions, binding of insulin

to the insulin receptor leads to tyrosine-phosphorylation of
insulin receptor substrates (IRS). The tyrosine-phosphory-
lated IRS proteins then activate the phosphatidylinositol-3-
kinase (PI3-kinase) p110 catalytic subunit by interacting
with the p85/55/50 regulatory subunit of PI3-kinase [86].
The activated PI3-kinase can subsequently activate 3-
phosphoinositide-dependent kinase (PDK1) and promote
generation of phosphatidylinositol-3,4,5-triphosphate
(PIP3) which causes the phosphorylation of Akt on
Thr308 via the PDK1 kinase. The phosphorylated Akt
can activate the AS160 (TBC1D4 which is a GTPase
activating protein for Rab14) and TBC1D1 by phosphor-
ylating their Rab-GTPase domain to promote GLUT4
translocation and glucose uptake.
Indeed, millimolar ROS concentrations play an impor-

tant role in promoting signal transduction of insulin by an
NADPH oxidase-dependent mechanism under physiologic
conditions. Insulin stimulation elicits a short-term and low-
dose ROS by mediating the generation of H2O2. Moderate
ROS, as the key messenger, modulates the enzymatic

Table 1 Antioxidants
Major antioxidants Main functions References

Enzymatic antioxidants

SOD Catalyzes 2O2
• – + 2H+�O2 + H2O2 [66]

CAT Catalyzes 2H2O2 ! O2 + H2O [67]

GPx Catalyzes the breakdown of H2O2 and lipid hydroperoxides to H2O and lipid alcohols [68]

Vitaminic antioxidants

Vitamin C Scavenges free radicals [69]

Vitamin E Scavenges lipid peroxide radicals in membranes [71]

Vitamin D Modulates the expression of antioxidants [155]

Vitamin B9 Inhibits NOX4/Vav2/NLRP3 signaling [156]

Other antioxidants

GSH Scavenges free radicals [157]

CoQ10 Improves mitochondrial dysfunction [158]

NAC Reduces glutathione [159]

LA Cofactor for pyruvate dehydrogenase complex [160]

Trace elements Involves in redox cycling reactions [27]

SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase; NOX4, nicotinamide adenine nucleotide phosphate oxidase 4; NLRP3, nucleotide
binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3; CoQ10, coenzyme Q10; NAC, N-acetylcysteine; LA, lipoic acid.
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targets (including protein tyrosine phosphatases) and
increases the basal tyrosine phosphorylation level of both
the insulin receptor and its substrates [87]. However,
hyperglycemia-mediated ROS overproduction and elevated
FFA can lead to insulin resistance by impairing insulin
signals (Fig. 3) and activate proinflammatory signaling
proteins (mainly in adipose tissue). There are several
serine-threonine kinase pathways activated by oxidative
stress, such as p38 MAPK, JNK, and IKKβ/NF-kB.
These kinases increase serine-phosphorylation of IRS
and lead to IRS degradation that impairs insulin signaling
pathways [88–90]. However, insulin resistance can be
alleviated by inhibiting the activation of p38 MAPK,
JNK1, and IKKβ [88,91,92]. All these findings are
consistent with the connection between oxidative stress
and insulin resistance. Other targets within insulin
signaling pathways are also involved in insulin resistance
due to redox imbalance. For example, ANG II (angiotensin
II)-induced ROS accumulation leads to insulin resistance
of L6 myotubes by preventing the tyrosine phosphoryla-
tion of Akt/GSK-3 [93]. Interestingly, recent evidence

indicated that elevated ROS promote the translocation of
GLUT4 to lysosomes rather than sarcolemmal membrane
by activating casein kinase-2 (CK2) which can suppress
the trans-Golgi by enhancing the activity of the retromer
complex [94].

Role of oxidative stress in diabetic vascular
complications

Oxidative stress has been implicated in the pathogenesis
and progression of diabetic vascular complications,
including neuropathy, retinopathy, nephropathy, and
cardiovascular disease [95]. Unlike other cells (skeletal
muscle cells, adipocytes, and liver cells), the vascular
endothelial cells show a lower-capability to decrease
glucose uptake when extracellular glucose levels increase
[96]. These result in endothelial intracellular hyperglyce-
mia and subsequent damage by hyperglycemia-induced
oxidative stress. Hyperglycemia-induced ROS overpro-
duction is involved in vascular endothelial dysfunction by
four major mechanisms (Fig. 4): an increase in intracellular

Fig. 2 Oxidative stress and pancreatic β-cell dysfunction. Oxidative stress mainly influences β-cell function from two perspectives:
reducing insulin secretion and promoting β-cell apoptosis. On the one hand, ROS overproduction suppresses insulin production and
secretion by opening ATP-sensitive K+ channels and inhibiting insulin genes transcription. On the other hand, oxidative stress induces β-
cell apoptosis by activating p21, JNK, p38 MAPK, and NF-kB. Abbreviations: NOX4, nicotinamide adenine nucleotide phosphate
oxidase; KATP, ATP-sensitive K

+ channels; VGCC, voltage-gated calcium channels; p21, a cyclin-dependent kinase inhibitor; JNK, c-jun
N-terminal kinase; p38 MAPK, p38 AMP-activated protein kinase; NF-kB, nuclear transcription factor κB; FOXO1, forkhead box protein
O 1; PDX1, pancreas duodenal homeobox factor 1; MaFA, musculoaponeurotic fibrosarcoma protein A; INS, insulin genes.
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advanced glycation and end products (AGEs) and their
receptors; elevated glucose flux through the polyol path-
way; activation of PKC; and enhanced activity of the
hexosamine pathway.
Initially, intracellular hyperglycemia suppresses the

activity of GAPDH which is a critical glycolytic enzyme.
However, this inhibition can be alleviated by preventing
mitochondrial superoxide overproduction with MnSOD
[97]. Thus intracellular hyperglycemia may decrease
GADPH activity by mediating ROS overproduction. The
low activity of GADPH elevates the levels of upstream
proteins (the glycolytic intermediates) leading to enhance-
ment of these four major pathways [98].
Advanced glycation end products (AGEs) are generated

by non-enzymatic glycosylation reaction in which amino

groups of proteins are glycated by the products of glucose
and free fatty acid oxidation [99]. Hyperglycemia enhances
this non-enzymatic reaction to elevate the generation of
AGEs which promote structural change of some plasma
proteins and then activate AGE receptors (RAGE). The
binding of AGEs to RAGE in various cell types (e.g.,
endothelial cells, smooth muscle cells, macrophages,
monocytes, and lymphocytes) contributes to NOX-induced
ROS generation, leading to the activation of NF-kB [100].
The activation of NF-kB induces inflammation and
thrombosis of vascular endothelia cells by further promo-
ting the transcription of several genes, including endothe-
lin-1(ET-1, an endothelium-derived potent vasocon-stric-
tor), vascular adhesion molecular-1 (VCAM-1),
intercellular adhesion molecule-1 (ICAM-1), vascular

Fig. 3 Oxidative stress and insulin resistance in skeletal cells. Glucose traverses the membrane of muscle cells by a facilitative diffusion
process which relies on the GLUT4 glucose transporter translocation from intracellular storage depots to the sarcolemmal membrane and
T-tubules upon muscle contraction. The GLUT4 translocation is modulated by insulin through the activation of a complex cascade of
signaling events. Under oxidative stress due to sustained hyperglycemia, elevated FFA inhibits glucose transportation by impairing insulin
signals. ROS decreases insulin sensitivity by activating casein kinase-2 (CK2) which promotes the translocation of GLUT4 to lysosomes
rather than the sarcolemmal membrane. Abbreviations: NOX, nicotinamide adenine nucleotide phosphate oxidase; IR, insulin receptor;
IRS-1/2, insulin receptor substrates-1/2; H2O2, hydrogen peroxide; O2

• – , superoxide; ROS, reactive oxygen species; JNK, c-jun
N-terminal kinase; IKKβ, IκB kinase β; CK2, casein kinase-2; GLUT4, glucose transporter 4; PI3K, phosphatidylinositide 3-kinase; PIP2,
phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol-3,4,5-triphosphate; PDK1, 3-phosphoinositide-dependent kinase;
mTOR2, mechanistic target of rapamycin 2; TBC1D1/2, Tre-2/BUB2/cdc 1 domain family 1/2.
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endothelial growth factor (VEGF), tissue factor (TF),
macrophage inflammatory protein-1 (MIP-1), thrombomo-
dulin, IL-1, IL-6, and TNF-α [101]. In addition, high
glucose decreases eNOS levels of vascular endothelia cells
by inhibiting the transactivation of the transcription factor
hypoxia-inducible factor-1α (HIF-1α), thus reducing the
levels of NO, a critical regulatory factor for normalizing
vascular function [102]. The decreased levels of NO thus
perturb endothelial function and vascular homeostasis.
The polyol pathway is one of the most important

processes in carbohydrate metabolism in which aldose
reductase reduces glucose to sorbitol by NADPH [98]. The
increased concentrations of intracellular glucose consume
a large amount of NADPH which is the essential cofactor
for constantly producing reduced glutathione (GSH).
Decreased regeneration of GSH causes oxidative stress
due to the overproduction of ROS because GSH plays a
significant role in scavenging ROS. The elevated ROS play

detrimental roles in diabetic end-organ damage, particu-
larly oxidative stress-mediated endothelial dysfunction.
Many tissues (nerve, glomerulus, and vascular) express
aldose reductase and can be damaged by diabetic
hyperglycemia. In diabetic dogs, an aldose reductase
inhibitor prevented diabetes-induced nerve conduction
velocity defect [103]. This study indicated that the polyol
pathway may play an important role in the pathogenesis of
neuropathy.
PKC is a serine-threonine protein kinase consisting of 15

isoforms, which phosphorylate multiple target proteins to
modulate cell growth, proliferation, senescence, and
apoptosis. The activity of PKC can be regulated by several
elements, such as Ca2+ ions, phophatidylserine, and
especially diacylglycerol (DAG) which can activate 9
isoforms of PKC [104–106]. In diabetic patients, hyper-
glycemia promotes the de-novo synthesis of DAG from
the intermediate product of glucose metabolism, triose

Fig. 4 Oxidative stress and vascular endothelial dysfunction. There are four major mechanisms associated with vascular endothelial cell
dysfunction, including the PKC, AGEs/RAGE, polyol and hexosamine pathways. The PKC and hexosamine pathways diminish the
generation of NO which is a critical regulatory factor to normalize vascular function. The polyol and AGEs/RAGE pathways elevate the
levels of ROS in endothelia cells and then activate NF-kB which induces the inflammation and thrombosis of vascular endothelia by
enhancing several genes expression including VEGF, VCAM-1 and ET-1. Abbreviations: eNOS, endothelial nitric oxide synthase; O-
GLcNAC, O-N-acetylglucosamine; NO, nitric oxide; PKC, protein kinase C; ROS, reactive oxygen species; AGE, advanced
glycosylation end products; RAGE, receptor for advanced glycosylation end products; UDP-GlcNAc, uridine diphosphate N-
acetylglucosamine; G-6-P, glucose 6 phosphate; F-6-P, fructose 6 phosphate; DAG, diacylglycerol; GFAT, glutamine fructose-6-
phosphate aminotransferase; GADPH, D-glyceraldehyde-3-phosphate dehydrogenase; GSH, glutathione; NF-kB, nuclear transcription
factor κB; VEGF, vascular endothelial growth factor; VCAM-1, vascular adhesion molecular-1; ET-1, endothelin-1.
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phosphate. The increased generation of DAG leads to the
excessive enhancement of PKC activation. The high-
activity PKC induces the overproduction of ROS by
inhibiting the glycolytic enzyme GAPDH, which in turn
increases the availability of triose phosphate to generate
DAG [107,108]. The activation of PKC leads to
endothelial dysfunction, increases vascular permeability,
and inhibits angiogenesis by many mechanisms, including
activating JNK, extracellular regulating kinase 1/2 (ERK1/
2) [109], and NF-kB [110], and diminishing NO genera-
tion by suppressing insulin-stimulated expression of eNOS
[111,112].
The hexosamine biosynthetic signaling pathway (HBP)

aggravates hyperglycemia-induced diabetic complications
by reducing NO production and promoting the possible
transcription of some tissue growth factors (TGF-α and
TGF-β1). Initially, glutamine fructose-6-phosphate amino-
transferase (GFAT), the rate-limiting enzyme of this
pathway, catalyzes the conversion of fructose 6-phosphate
to glucosamine 6-phosphate. Subsequently, glucosamine
6-phosphate is metabolized to uridine diphosphate N-
acetylglucosamine (UDP-GlcNAc), which is the primary
substrate for post-translational modifications of several
proteins including eNOS by generating O-GlcNAc at
serine and threonine residues. Hyperglycemia and high

free fatty acid oxidation enhances HBP by increasing
fructose 6-phosphate production. Enhanced HBP impairs
endothelial function since O-GlcNAcylation restrains the
phosphorylation of Akt/eNOS in endothelial cells and then
decreases NO production [113]. Thus inhibition of HBP
may be a potential therapeutic target for diabetic vascular
complications.

Redox modification of proteins associated
with diabetes

The physiologic and pathophysiological effects of ROS are
modulated by reversible and irreversible redox modifica-
tions of proteins [114,115] (Fig. 5). Because of its chemical
characteristics, ROS can modify several amino acids,
including cysteine, methionine, and tyrosine. Among these
amino acids, cysteine residues are the most readily
modified in response to ROS because of a highly reactive
thiol group [116]. Different ROS induce diverse thiol
reactions, including S-glutathiolation, disulfide bonds
[117], and S-nitrosylation [118]. Overproduction of ROS
is implicated in the redox modification of cysteine residues
within some proteins (IKKβ, PKC, and Keap1) involved in
the development and progression of diabetes and related
complications.

Fig. 5 Patterns of redox protein modification. The highly reactive thiol groups of proteins are easily oxidized to sulfenic acid (RSOH) by
ROS, or are oxidized to S-nitrosylation in response to RNS. Sulfenic acid (RSOH) has the capacity to react with nearby thiols to form
intramolecular or intermolecular disulfide bonds due to its highly reactive nature. Sulfenic acid (RSOH) can also react with GSH to
generate S-glutathiolation. These redox proteins modifications are reversible and these reaction products can be restored into free thiols by
cellular reductants. However, sulfenic acid (RSOH) can also be further oxidized to irreversible products (including RSO2H and RSO3H).
Abbreviations: ROS, reactive oxygen species; RNS, reactive nitrogen species; GSH, glutathione.
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Redox modification in the regulation of IKKβ/NF-kB

Oxidative stress activates the IKKβ/NF-kB pathway which
may cause pancreatic β-cell dysfunction and inflammation
associated with diabetic vascular complications. Without
NF-kB-activating stimuli, NF-kB are sequestered in the
cytoplasm as a latent form by IKKβ. When IKKβ is
degraded due to tissue factors such as TNF-α, untethered
NF-kB is translocated into the nucleus and activates the
transcription of genes relevant for inflammation and cell
survival [119,120]. Recently, anecdotal evidence suggests
that ROS promotes the degradation of IKKβ via redox
modification of cysteine. For example, H2O2 has been
shown to induce IKKβ cysteine oxidation and suppress the
activity of IKKβ, but the cysteine sites involved remain
unclear [121]. Kapahi and coworkers found that arsenite
oxidized Cys179 of IKKβ and inhibited IKKβ activity,
suggesting Cys179 may be a potential redox sensitive site
[122].

Redox modification of PKC

As discussed above, the activation of PKC can induce the
overproduction of ROS, and in turn ROS can oxidize
cysteine residues of specific PKC isoforms leading to
activation of PKC and downstream signaling associated
with diabetic complications [123]. Recent studies found
that the N-terminal regulatory domain of PKC contains
zinc thiolates whose oxidative modification can enhance
PKC activity by the absence of Ca2+ and phospholipid
auto-inhibition effects [124]. On the other hand, further
studies suggest that chemopreventive antioxidants (such as
vitamin E) interact with cysteine residues within the
C-terminal catalytic domain and then inhibit cellular PKC
activity [124,125]. These results suggest redox modifica-
tion of PKC may be of pivotal importance in the
pathogenesis and development of diabetic complications,
and targeting PKC redox modification holds great potential
for the treatment of diabetes mellitus.

Redox modification in the modulation of the
Nrf2/Keap1/ARE pathway

The Nrf2/Keap1/ARE pathway plays an important role in
the regulation of cellular redox homeostasis. Nrf2 (nuclear
factor E2-ralated factor 2) represents a master transcription
factor, which regulates the antioxidant response element
(ARE) sequence and promotes the expression of antiox-
idants including HO-1, NADPH dehydrogenase [quinone]
1 (NQO1), CAT, and SOD. As a component of the cullin-3
based ubiquitin E3, Keap 1 (Kelch-like ECH-associated
protein 1) inhibits the transcriptional activity of Nrf2 by
inducing Nrf2 ubiquitination and subsequent proteosomal
degradation under homeostatic conditions. Under stress

conditions, the sensor cysteine residues of Keap1 are
modified and the ubiquitination process of Nrf2 is
suppressed. It has been reported that the Keap1 possesses
five cysteine sensors (Cys151, Cys226, Cys273, Cys288,
and Cys613) whose oxidative modifications weaken the
interaction between Keap1 and cullin-3, probably through
intramolecular or intermolecular disulfide bridges forma-
tion [115,126–129]. Liberated Nrf2 binds to the ARE and
induces the transcription of its target genes such as HO-1,
NQO-1, CAT, and SOD to protect cells from various
stresses (ROS/RNS). Therefore, the Nrf2/Keap1/ARE
pathway has emerged as a potential therapeutic target for
many diseases associated with oxidative stress, including
diabetes. Studies by Uruno et al. in Keap1 knockdown
mice with diabetes suggest that Nrf2 overexpression can
ameliorate insulin resistance [130]. In addition, a plethora
of evidence indicates that many natural-occurring sub-
stance can activate Nrf2 by modification of Keap1 cysteine
residues to alleviate diabetes and prevent diabetic end-
organ damage. For example, sulforaphane (SFN) found in
cruciferous vegetables has renoprotection effects in
streptozotocin (STZ)-induced diabetic mice [131]. Another
example is curcumin (CUR) in turmeric which can also
induce modification of Keap1 cysteine residues and
reduces the number of prediabetic patients who may
develop T2DM [132]. Taken together, these results suggest
that targeting modification of Keap1 cysteine residues may
be a promising therapeutic strategy for diabetes by
modulating the Nrf2/Keap1/ARE pathway.

Therapeutic approaches for diabetes:
controlling oxidative stress

Given oxidative stress and diabetes go hand in hand, a
number of tentative diabetic therapeutic strategies targeting
oxidative stress have recently been attempted using
antioxidant supplementation, such as enzymatic antiox-
idants-like mimics (SOD/CAT/GPx mimetics), vitamins
(A, C, E), β-carotene, flavonoids, selenium, zinc, NAC,
and CoQ10. However, such management of antioxidants
has not shown any benefit for diabetes and diabetic
complications in human clinical trials [133,134]. The poor
performance of antioxidants supplements may result from
their poor solubility, permeability, stability, and specificity
[11]. For example, dietary CoQ10 is poorly bioavailable as
it has poor solubility because of its hydrophobicity and
large molecular weight and rarely reaches the mitochondria
[135]. However, when CoQ10 is formulated with a novel
carrier, delocalized lipophilic cation (DLC), it can be
effectively delivered to mitochondria and has a higher
efficiency [136]. Thus novel delivery systems for anti-
oxidants are essential to enhance the effects of these
supplements in the treatment of diabetes. Furthermore,
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lifestyle management and precise pharmacological inter-
ventions alleviate diabetes and related complications by
targeting oxidative stress. We next discuss several precise
therapeutic approaches targeting redox modification. Such
therapies will change our concepts of general antidiabetic
treatment (Table 2).

Exercise and dietary control

T2DM is most common in the aged population, while
younger people may become predisposed to the disease
due to obesity, physical inactivity, and poor diet (Interna-
tional Diabetes Federation, 2017). Thus a healthy lifestyle
is an effective mode of intervention to prevent T2DM.
Regular aerobic and resistance exercise have been shown
to improve the metabolic disturbance of diabetes and its
complications by inducing glycemic control, insulin
sensitivity, body composition and controlling blood
pressure and lipid profile [137–139]. Moe et al. found
that inactive people with diabetes had three times the risk
of cardiovascular death compared with those without
diabetes, but the increased risk was diminished by
increasing physical exercise [140]. Indeed, the activity of
some antioxidants, such as MnSOD and GPx, are rapidly
increased through short-term endurance exercise [141]. In
addition, depending on the status of diabetes individuals
including age, comorbidities and other specific conditions,
dietary intervention by avoiding transfat, saturated fat,
cholesterol while increasing the intake of fiber, ω-3 fatty
acids and plant pigments (resveratrol, cyanidins, curcumin,
theaflavins, quercetin) can be a beneficial approach for
preventing the progression of diabetes [142].

Novel antioxidant delivery systems

Some dietary antioxidants, such as catalase, vitamin C, and
lipoic acid, have poor solubility, permeability, and stability
in conventional delivery systems, which may result in
disappointing outcomes in clinical trials [11]. Recently, a
number of novel drug delivery systems (NDDS) have been
reported to improve the solubility, permeability, and
stability of antioxidants including microparticles, nano-
particles, and liposomes. Microparticulate drug delivery
system can promote the entry of antioxidants with poor
membrane permeability (such as SOD) into cells. Poly-
ketals are a new family of acid-degradable polymers with
ketal linkages in their backbones that are being developed
for intracellular drug delivery. Poly (cyclohexane-1,4-diyl
acetone dimethylene ketal) (PCADK) which degrades into
acetone, a compound recognized as safe by the FDA and
1,4-cyclohexanedimethanol which has an excellent toxi-
city profile have been used to encapsulate SOD and form
SOD-PCADK microparticles. Using a cell-based assay
(TIB-186 macrophages), they found that SOD-PCADK
microparticles caused a 60% reduction in superoxide
production whereas free SOD had little effect [143].
NDDS-coated antioxidants boost antioxidative efficiency
not only in cell-based experiments, but also in animals.
Nanoparticles are another NDDS which can increase the
bioavailability of antioxidants. For instance, biodegradable
curcumin encapsulated nanoparticles were found to delay
the progression of cataracts in a diabetic rat model [144].
Another study suggests that curcumin also has higher
antioxidative capacity when encapsulated into liposomes
(artificial lipid bilayer vesicles) [145], although their shelf

Table 2 Therapeutic antioxidative strategies for diabetes
Antioxidative strategies Main functions References

Lifestyle interventions

Exercise Increases muscle mitochondrial oxidative capacity and enhances NO bioavailability [161]

Dietary Decreases uptake of free fatty acids [142]

NDDS

Microparticle Promotes the entry of antioxidants with poor membrane permeability [143]

Nanoparticle Increases the bioavailability of antioxidants [144]

Liposome Improves antioxidative capacity of antioxidants [145]

Agents targeting ROS sources

MitoQ-TPP Prevents mitochondrial oxidative damage [162]

TEMPOL Prevents mitochondrial oxidative damage and improves tissue oxygenation [163]

GKT137831 Inhibits the activation of caspase-3 and cell death resulted from high glucose [148]

Agents targetingredox modification

Bardoxolone methyl Regulates the Nrf2/Keap1/ARE pathway through Keap1 post-translational modification [150]

tBHQ Regulates the Nrf2/Keap1/ARE pathway through Keap1 post-translational modification [151]

Selenocompounds Modifies PKC C-terminal catalytic domain and inhibits cellular PKC activity [152]

NO, nitric oxide; NDDS, novel drug delivery systems; ROS, reactive oxygen species; Nrf2, nuclear factor E2-ralated factor 2; Keap1, Kelch-like ECH-
associated protein 1; ARE, antioxidant response element; tBHQ, tert-butylhydro-quinone; PKC, protein kinase C.
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life is poor [118]. Taken together, NDDS have great
potential for enhancing the effects of antioxidants in the
treatment of diabetes. NDDS can also deliver antioxidants
to the designated intracellular position, which may provide
novel insight into non-selectivity of antioxidants. How-
ever, controlling antioxidant intake may be another major
challenge in limiting antioxidant access to clinical
applications.

Drugs targeting ROS sources

Diminishing the generation of ROS is the fundamental
strategy to alleviate oxidative stress. A large number of
clinical trials targeting ROS sources are currently in
progress for diabetes and diabetic complications. MitoQ-
TPP and TEMPOL are two mitochondrial-targeted anti-
oxidants which diminish oxidative stress and blood
pressure to alleviate vascular prognosis in patients with
diabetes [146,147]. Furthermore, suppressing non-mito-
chondrial sources, particularly using NOX inhibitors, has
also emerged as a potential treatment for diabetic
complications. Several NOX inhibitors have been
reported, including GKT137831, GKT136901, APX-115,
and VAS2870. To date only GKT137831 has been used in
clinical trials to alleviate diabetic nephropathy. However,
phase II trials were disappointing due to failure to reduce
albuminuria. In vitro, GKT137831 inhibited the activation
of caspase-3 and cell death resulted from high glucose in
cultured human retinal cells [148]. A possible mechanism
is that GKT137831 can competitively inhibit NOX due to
its similar structure [149]. Thus GKT137831 has potential
as a therapeutic drug for diabetic retinopathy by reducing
NOX-induced ROS production.

Promising drugs targeting redox modification

The redox modification of some proteins (IKKβ, PKC, and
Keap1) involved in diabetes plays a critical role in the
pathogenesis of diabetes and related complications.
Inhibiting or changing the redox modification of proteins
may be a promising therapeutic method for diabetes and
diabetic end-organ damage. It has been reported that
bardoxolone methyl (CDDO-Me/RTA 402), a synthetic
derivative of oleanolic acid, has shown potent efficacy in a
short-term clinical trial in patients with T2DM by
modifying the cysteine residues of Keap1 [150]. This
study suggest that it is feasible to alleviate diabetes by
regulating the Nrf2/Keap1/ARE pathway by manipulating
Keap1 post-translational modification. Consistent with this
idea, Zhong et al. found that tert-butylhydro-quinone
(tBHQ), a synthetic preservative, inhibits the development
of diabetic retinopathy by modification of the Keap1
cysteine residues [151]. In addition to Keap1 post-
translational modification, PKC redox modification is

also associated with diabetic complications. Various
chemopreventive antioxidants (selenocompounds, curcu-
min, and vitamin E) can modify the reactive cysteines
within the PKC C-terminal catalytic domain and then
inhibit cellular PKC activity [152]. Some studies suggest
that selenocompounds can induce the inactivation of PKC
to prevent tumor progression [153,154], although to date
there is no report about the relationship between
antioxidant-induced post-translational modification of
PKC and diabetic complications. Nevertheless, regulation
of PKC redox modification could have potential in the
treatment of diabetic complications.

Conclusions and perspectives

Diabetes is characterized by hyperglycemia which leads to
the overproduction of free radicals (ROS/RNS) and further
increases oxidative stress due to the imbalance between
ROS/RNS and antioxidants. In turn, multiple studies have
suggested that oxidative stress plays a major role in the
progression of diabetes involved with pancreatic β-cell
dysfunction, insulin resistance, and diabetic complications.
Thus, the therapeutic strategy of targeting oxidative stress
has been shown to have great potential for the treatment of
diabetes and diabetic complications. Although antidiabetic
attempts with antioxidants, such as vitamin C/E supple-
mentation and SOD-like mimics, these therapeutic
approaches have been unsatisfactory possibly due to
poor solubility, permeability, and stability. It is therefore
necessary to develop novel delivery systems to improve
the efficiency of antioxidants. In addition, precise
therapeutic intervention is essential to inhibit ROS
generation from mitochondria or non-mitochondrial
sources. Recent studies suggest that the redox modification
of some critical proteins (such as IKKβ, PKC, and Keap1)
are implicated in the pathogenesis and progression of
diabetes and diabetic end-organ damage. Therapeutic
strategies targeting post-translational modification of
these proteins have shown a perspective potential in the
treatment of diabetes. Controlling oxidative stress clearly
has potential in the treatment of diabetes. However, it is
necessary to develop novel antioxidant delivery
approaches and precise drug targeting of ROS sources
and redox modifications to prevent and retard the
pathogenesis and progression of diabetes and diabetic
complications.
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