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Abstract Regeneration carries the idea of regrowing partially or completely a missing organ. Repair, on the other
hand, allows restoring the function of an existing but failing organ. The recognition that human lungs can both
repair and regenerate is quite novel, the concept has not been widely used to treat patients. We present evidence
that the human adult lung does repair and regenerate and introduce different ways to harness this power. Various
types of lung stem cells are capable of proliferating and differentiating upon injury driving the repair/regeneration
process. Injury models, primarily in mice, combined with lineage tracing studies, have allowed the identification of
these important cells. Some of these cells, such as basal cells, broncho-alveolar stem cells, and alveolar type 2 cells,
rely on fibroblast growth factor (FGF) signaling for their survival, proliferation and/or differentiation. While pre-
clinical studies have shown the therapeutic benefits of FGFs, a recent clinical trial for acute respiratory distress
syndrome (ARDS) using intravenous injection of FGF7 did not report the expected beneficial effects. We discuss
the potential reasons for these negative results and propose the rationale for new approaches for future clinical
trials, such as delivery of FGFs to the damaged lungs through efficient inhalation systems, which may be more
promising than systemic exposure to FGFs. While this change in the administration route presents a challenge, the
therapeutic promises displayed by FGFs are worth the effort.
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Some organs, such as the liver, were
already recognized to regenerate since
antiquity

Regeneration was initially a theological term synonymous
with rebirth. Interestingly, the concept of regeneration was
already embedded in Greek mythology. Prometheus, an
immortal god, who illegally gave fire and skill of
metalwork to humans, was condemned to a very unusual
punishment by the god Zeus. Attached firmly to a rock,
each day Zeus sent an eagle to eat his liver, which would
then regrow during the night only to be again eaten the next

day. This torture, which was meant to be repeated over a
long period of time, suggests that the liver possesses an
immense capacity to regenerate. This possibility was
confirmed by modern medicine; liver surgeries can lead to
the removal of up to 90% of the liver, with full regrowth
within several months, depending on both the age and
other collateral morbidities of patients [1].
In science, the term regeneration carries the idea of

functionally replacing or restoring a missing or failed
organ, respectively. Most living species have, to various
degrees, the possibility to regenerate. For example, the
salamander can fully regrow a missing leg or tail, and this
model has been extensively used to understand the
molecular mechanisms involved in such a process [2]. In
humans, regrowing a missing arm or a leg is regarded as
impossible. However, this regenerative power is still
present, to a certain extent, at the level of our fingers,
most precisely at their tips. Stem cells located just below
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the nail bed can, upon sectioning of the finger’s tip where
the third phalange is located, assemble to form a functional
structure, called the blastema. Such a structure contributes
to the missing tissue and drives the regeneration process,
allowing regrowth of the missing phalange [3]. However,
proper regrowth by the blastema of the surrounding
vascular, muscle, and nervous tissue is not evident. It is
essential to note that the capacity to regrow our fingertips
appears to be restricted mostly to early infancy. In general,
adults do not display this regenerative capacity, and one of
the underlying reasons could be that the stem cells
responsible for the regrowth are either no longer functional
or/and the stromal niche, which is a critical component
maintaining the stem cell pool, is impaired. Modern
science has added to the list of organs or tissues that harbor
significant regenerative power. These include the skin, gut,
and blood. Until recently, it was believed that organs such
as the brain and the lung did not have regenerative
capacity.

Can human lungs regenerate?

The recognition that human lungs can regenerate is quite
novel. While it was previously known that rodents’ lungs
could regenerate after pneumonectomy [4], no reports were
available to show that this was also the case in humans. In
mice, the removal of the left lung leads to the rapid
compensatory growth of the right lung, thereby allowing
the overall lung function to reach near baseline levels (pre-
operative values) within three weeks [5]. Using FDG-PET
(positron-emission tomography) and micro-CT (computer-
ized tomography) scanning to investigate metabolic
activity during compensatory lung growth following
pneumonectomy, it was shown that after left pneumonect-
omy, the right lung progressively enlarged over the first
three weeks [6]. The accessory (also called cardiac) lobe
displayed the greatest size increase. PET/CT imaging was
used to monitor metabolic activity within the individual
lobes. In the cardiac lobe, 18FDG uptake (glucose analog
tracer 2-deoxy-2-[18F]fluoro-d-glucose) was significantly
increased in the accessory lobe at day 14 relative to
preoperative values (P < 0.05). Interestingly, the 18FDG
uptake in the other three right lobes (cranial, medial, and
caudal) did not significantly change at any time point.
Thus, compensatory growth after murine pneumonectomy
occurs mostly in the accessory lobe.
After these studies in mice, a seminal paper by Butler

and colleagues was published [7], demonstrating that,
indeed, compensatory lung growth is also possible in
humans. They reported the case of a 33-year-old woman
diagnosed with lung adenocarcinoma in 1995. Her
treatment involved a right-sided pneumonectomy to
remove the tumor. As expected, the removal of the right
lung led to a severe reduction in her lung function.

However, follow-up examinations over the next 15 years
indicated that she progressively recovered almost full lung
capacity. This patient had an initial FEV1 (forced
expiratory volume, an essential measure of pulmonary
function) of 35% and FVC (forced vital capacity, defined
as the amount of air that can be forcibly exhaled from the
lungs after taking the deepest breath possible) of 49% after
pneumonectomy.
During the 15 years post-operation, a progressive,

constant improvement was observed. The patient’s
spirometry resulted in a final FEV1 of 60% and FVC of
73% (interestingly, based on aging alone, during these 15
years a 10% decline of her lung function should have been
observed). Annual surveillance CT scans indicated that the
size of her remaining left lung was more substantial than
before. Estimation of acinar-airway dimensions by mag-
netic resonance imaging suggested an increase in the
number of alveoli, rather than the enlargement of pre-
existing alveoli. Following this evidence that the human
lung is capable of regeneration, a critical question
remained: how are we going to integrate this vital function
in the treatment of lung disease. From a clinical point of
view, this relatively new concept is still not widely used to
design innovative therapies to treat patients.

Repairing damaged lungs ex vivo may offer
a solution for the lack of suitable lungs for
transplants

One aspect linked to the newly accepted concept that
human lungs can regenerate is that part of this regeneration
process should also involve a tonic repair process of the
existing but failing lung. A recent publication has
investigated the repair potential of low-quality (damaged)
donor lungs, which are usually considered non-suitable for
transplantation [8]. Lung transplantation is considered the
last therapeutic option for devastating end-stage lung
disease. Many progresses have been made to enhance post-
transplant survival. These include inducing immune
tolerance and preventing infections. However, a key aspect
of successful lung transplantation is the quality of the
donor lung to prevent primary graft dysfunction [9]. One
crucial challenge to improve the quality of the donor lungs
has been the time window available to treat the lungs after
removal from the deceased donors. A recent report
described an elegant method to maintain a fully functional
lung outside the body for over 36–56 h [8]. An advanced
support system, involving a relatively old technique called
cross-circulation, allowed the lungs previously damaged
by ischemia/reperfusion to functionally recover, making
them acceptable for lung transplants. Cross-circulation was
a surgical procedure frequently used in the 1950s to allow
the exchange of blood flow between two patients. Applied
in the context of this study, this approach, which made use
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of the swine model, permitted long-term support of the
lungs outside the body. A first priority in this study was to
provide the right temperature to the explanted lung in order
to mimic the conditions existing in the chest cavity. To that
end, the researchers developed innovative solutions such
as a humidification system with ambient temperature
control and a re-circulating warm water organ basin. This
system also prevented the outer surface of the lung from
drying out, thereby keeping the integrity of the lung. They
also improved the blood flow into and out of the lungs
during cross-circulation by developing new components
and techniques allowing height and hydrostatic pressure
adjustments and feedback-regulated pressure-controlled
flow. In addition to delivering to the lungs critical systemic
and metabolic factors, this approach allowed therapeutic
interventions, which aimed to restore lung function. Stem
cells were used to replace defective cells with new
therapeutic cells derived from the transplant recipient.
Drug cocktails were also applied to improve the repair
process. The authors also established image-guided
techniques for the delivery of drugs and cells in specific
regions of the lung without the need for repeated biopsies.

Balancing lung regeneration and lung
function: the welcome use of extracellular
corporeal membrane oxygenation (ECMO)

One particular challenge, when faced with severe lung
diseases such as pneumonia, is that the lungs undergo
drastic remodeling, with massive infiltration of immune
cells in the parenchyma associated with large areas of
alveolar destruction (emphysema), as well as fibrotic foci.
It is clear that keeping the lungs functioning in these
conditions is difficult, and may not be compatible with an
efficient repair process. The use of extracellular corporeal
membrane oxygenation (ECMO) in this context has
proven to be efficient for patients undergoing massive
lung failure [10]. In ECMO, blood from the patient is
drawn through a catheter and run through a device that
adds oxygen and removes the carbon dioxide and then
returns the blood to the patient. During this time, the
patient is exposed to a low-level ventilator, thereby
allowing the lungs to move. This setting prevents the
deleterious mechanical stress induced by a high-level
ventilator and high oxygen concentration (the standard
therapy for ARDS, when the patient is responsive). This
delicate technique, which has been defined as the
equivalent of dialysis for the lung, calls for the intervention
of a multidisciplinary team, and bypasses the use of the
lungs, allowing them to “rest” while the endogenous
process of repair is taking place. Patients remain typically
on ECMO for ten days, but this time can be prolonged
based on their overall health conditions.
Again, the critical process at work to repair/regenerate

the lungs in both in vitro and in vivo settings is the fact that
stem cells are present in the adult lung. The next section
will describe the different types of stem cells present in the
adult lung, which are key to the repair process.

Key adult endogenous stem cells needed
for regeneration

As the adult lung is relatively quiescent compared to other
organs, such as the skin or the gut, it has been challenging
to detect proliferative cells that could be playing the role of
stem cells. The use of injury models, primarily in mice,
combined with lineage tracing experiments, has allowed
the identification of these cells. It has been reported that
most of the epithelial cells can proliferate and differentiate
into different epithelial cells following injury. These
include, in the conducting airway, the basal cells [11],
club cells [12–14], and variant of club cells [13,15], at the
exception of the ciliated cells. In the respiratory airway,
these cells include the alveolar type 2 (AT2) cells [16,17],
the alveolar type 1 (AT1) cells [18,19], the broncho-
alveolar stem cells (BASCs) [20], and the lineage negative
epithelial progenitor (LNEP) cells [21]. Fig.1 shows the
position of these cells along the proximal-distal axis of the
human lung. Table 1 summarizes what is known about
these cells (for an extensive review see [22]). It is
important to mention that while the human equivalent of
these mouse epithelial stem cells have been identified, it is
difficult to functionally validate these cells in human
in vivo. Most of the approaches to test the property of these
stem cells (self-renewal and differentiation) have been
carried out using organoids (mixture of epithelial “stem”

cells and mesenchymal cells grown in Matrigel, see [23]).
There is therefore no direct testing of their stem cell
capabilities by transplanting these cells in damaged human
lungs with the goal to investigate their capacity to integrate
into injured areas as well as proliferate and differentiate.
Therefore, this important functional validation for these
cells in human is still missing.

Some adult stem cells rely on Fgf signaling
for their survival, proliferation and/or
differentiation

Fibroblast growth factors (Fgfs) belong to a large super-
family of signaling molecules. Among them, the members
of the Fgf7 subgroup, consisting of Fgf-1, -3, -7, -10 and
-22, act via the Fgf receptor (Fgfr) 2b expressed mostly by
epithelial cells [24]. Fgf signaling is mediated via the
activation of PI3K- and MAPK-signaling pathways and/or
activation of phospholipase C γ (Plc-γ). Fgfr2b-signaling
leads to the growth, survival, and differentiation of
epithelial cells. Fgf10/Fgfr2b signaling is critical for
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Fig. 1 Different populations of cells are located along the proximal-distal axis on the human lung (adapted from [23]).

Table 1 Key stem cells for regeneration in lung
Stem cells Markers Differentiation capabilities Lineage-tracing Reference

Bronchial and alveolar lineages

Broncho-alveolar stem cells
(BASCs)

Sftoc, Scgb1a1 BASCs, club, AT2 Sftpc-Dre-ERT2 and Scgb1a1-
CreERT2 with a new
reporter cassette

[20]

Basal cells Trp63, Krt5, Krt14, Ngfr, Pdn Basal, club, ciliated, AT1, AT2 Krt14-CreERT2 [11]

Lineage negative epithelial
progenitor cells (LNEPs)

Integrin α6, integrin β4 LNEP, club, ciliated, AT1, AT2 Sftpc-CreERT2 [21]

Bronchial lineages

Club cells Scgb1a1, Cyp2f2 high Club, ciliated, basal Scgb1a1-CreERT2 [12–14]

Variant of club cells Scgb1a1, Cyp2f2 low Club, ciliated, basal Scgb1a1-CreERT2,
Upk3a-CreERT2

[13,15]

Basal cells Trp63, Krt5, Krt14, Ngfr, Pdn Basal, club, ciliated Krt5-CreERT2, Krt14-CreERT2 [61,65]

Alveolar lineages

AT2 Sftpc AT2, AT1 Sftpc-CreERT2 [16,17]

AT1 Hopx, Aqp5, Pdpn AT1, AT2 Hopx-CreERT2 [18,19]
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murine lung development, while Fgf7 is dispensable [25–
27]. There is strong evidence that Fgf signaling is key to
control the formation of different epithelial lung lineages
during ontogenesis. Fgf10, for example, elicits, in a dose-
dependent manner, the formation of the alveolar epithelial
lineage. During early development, Fgf10 has been
previously described to maintain the undifferentiated status
of the stem cells expressing both (sex determining region
Y)-box9 (Sox9) and the inhibitor of DNA binding 2 (Id2)
in the distal lung epithelium. Upon inhibition of Fgf10
activity, these cells acquire the expression of Sox2, a
marker of the bronchiolar lineage [28]. The use of Id2-
CreERT2 driver mice to lineage-trace these cells demon-
strated that they give rise to all the cells in the alveolar and
bronchiolar lineages. Our results also indicated that Fgf10
could play an important role not only in the proliferation
but also in the differentiation of the epithelial progenitor
cells toward the AT2 lineage [28]. In particular, we
reported that there is an unbalanced alveolar population as
the percentile of AT2 cells is decreased while the percentile
of AT1 cells is increased. We also show that the expression
of the AT2 cell signature is decreased in Fgf10 hetero-
zygous AT2 cells [29]. Interestingly, Fgf10 hypomorphic
lungs, displaying 20% of the normal Fgf10 expression
present in wild type (WT) lungs, also show a pronounced
defect in AT2 cells, further supporting a role for Fgf10 in
AT2 lineage formation [29]. The role of Fgf10 on adult
AT2 cells is therefore particularly promising. Interestingly,
Fgf10 overexpression in the adult lung leads to BASC
amplification [30]. It is possible that Fgf10 could directly
act on BASCs, as evidenced by single-cell RNA sequen-
cing showing that Fgfr2 expression is enriched in these
cells [20,31]. Lineage tracing of BASCs, combined with
single cell RNA-seq in the context of either naphthalene or
bleomycin injury, should allow the identification of the
different relevant pathways activated in these cells during
the repair process. Basal cells can be specifically labeled
using the nerve growth factor receptor (Ngfr). This gene
was drastically reduced in the Fgf10 hypomorphic lungs
[29], suggesting that Fgf10 was instrumental for the
formation of the basal cells. Indeed, the blockade of Fgfr2b
ligands, or the activation of Fgf10 signaling, led to the
almost complete reduction of basal cells, or their
expansion, respectively [30,32].

Adult epithelial stem cells exist in the
context of specific stromal niches

Different stromal niches are associated with various types
of epithelial stem cells in the distal lung (Fig. 2).
Previously, we proposed that the airway smooth muscle
cells (ASMCs) represent a niche for the variant of club
cells. In this model, following injury, the ASMCs respond
to Wnt signaling from the epithelium and start expressing

Fgf10, which will subsequently act on the variant of club
cells present in the epithelium, thus facilitating their
proliferation [30,32]. We propose that this model should be
revisited, as many other cell types are intertwined with the
ASMCs, such as glioma-associated oncogene homolog 1
(Gli1)-positive cells [33]. It has been proposed that upon
injury, sonic hedgehog (Shh) expression from the epithe-
lium is decreased, thereby allowing the expansion of the
target cells (Gli1-positive). The role of these cells in the
context of repair is not clear. In regard to the other types of
stem cells present in the distal region of the lung, the
BASCs interact with still to be defined stromal cells, while
the LNEP interact with stem cell antigen (Sca) 1-positive
resident stromal cells. Finally, the AT2 cells interact with
lipofibroblasts (LIFs). Interestingly, all these stromal
niches express Fgf10, suggesting that this growth factor
could be crucial for the repair process. Lung stromal cells
expressing platelet-derived growth factor receptor α
(PDGFRα) are instrumental for AT2 cell growth in vitro
using alveolospheres. Lineage-labeled AT2 cells isolated
by FACS were mixed with primary PDGFRα-positive lung
stromal cells and placed in 3D culture (Matrigel). In these
conditions, these AT2 cells gave rise to self-renewing
“alveolospheres,” which contained both AT2s and cells
expressing multiple AT1 markers [16]. This stromal
population included LIFs, lipid droplet containing cells
that expressed adipose related protein (ADRP), and
PDGFRα [34–36]. LIF normally reside close to AT2s.
LIF may therefore constitute a stromal niche for AT2 stem
cells in the murine lung. A similar dynamic exists between
AT2 and mesenchymal cells in the human lung. More
recently, the Morrisey laboratory showed that these AT2
supportive cells co-express axis inhibition protein 2

Fig. 2 Key epithelial stem cells and their associated stromal
niches involved in repair/regeneration in the distal part of the
human lung.
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(Axin2), PDGFRα, and Fgf7 [37]. These cells may be
different from the PDGFRα-positive Fgf10-positive LIFs,
which our research group is focusing on.
LIFs are lipid-containing alveolar interstitial fibroblasts.

These cells are becoming increasingly recognized as an
important component of the AT2 stem cell niche in the
rodent lung. Although the function of LIFs was initially
described to assist AT2 cells in surfactant production,
recent evidence suggests that these cells are also crucial for
survival and growth of epithelial stem cells. We have
recently investigated their cellular origin, as well as the
pathways controlling their formation, during lung devel-
opment.
A population of lipid-droplet-containing stromal cells

emerges in the developing mouse lung between embryonic
day 15.5 and E16.5 [34]. This is associated with the
upregulation, in the lung mesenchyme, of three important
genes involved in lipogenesis, namely, Adrp (a marker of
mature LIFs), peroxisome proliferator-activated receptor γ
(Pparγ) (master switch of lipogenesis) and Fgf10 (pre-
viously shown to identify a subpopulation of lipofibroblast
progenitors). In addition, while only a subpopulation of
total embryonic LIFs derives from Fgf10pos progenitor
cells, the knockdown of Fgfr2b ligand activity in vivo, as
well as the reduction in Fgf10 expression, led to a global
reduction in the expression levels of LIF markers at E18.5.
The analysis of Fgfr1b knockouts, as well as mutants with
conditional partial inactivation of Fgfr2b in the lung
mesenchyme, shows that both receptors are involved in
LIFs formation, suggesting a possible compensation
between these two receptors. We also reported the
expression of FGF10 and ADRP in human fetal lungs
over time. We proposed that Fgf10 signaling plays a key
role in the formation of LIFs during late lung development.
One important pathological process to consider is what is
happening to the stromal niche when the corresponding
epithelial stem cells are damaged, either acutely or
chronically. In the context of acute damage to the AT2
cells using bleomycin (resulting in lung fibrosis), we
previously reported that the LIFs give rise to activated
myofibroblasts (MYFs) [38]. We also reported, using
in vivo lineage tracing tools, that lineage-labeled activated
MYFs give rise to LIFs during the resolution of fibrosis
[38]. Please see a comprehensive review of the role of
mesenchymal stem cells in fibrosis formation [39].

FGF10 deficiency is associated with human
lung disease

Two human syndromes, namely, the aplasia of lacrimal and
salivary glands (ALSG) and the lacrimo-auriculo-dento-
digital syndrome (LADD), are associated with hetero-
zygous mutations in the human FGF10 or FGFR2B genes,
respectively [40,41]. In particular, IVC, FEV1, and the

corresponding FEV1/IVC ratio were significantly lower in
patients with loss of FGF10 functional heterozygosity
compared to both non-carrier siblings and predicted
reference values [42]. These data are consistent with the
diagnostic of chronic obstructive pulmonary disease. In
humans, exposure to inflammation is known to increase the
risk of developing broncho-pulmonary dysplasia (BPD)
[43]. BPD develops in babies born prematurely and is
characterized by impaired alveolar development. Consis-
tent with the presence of high inflammation in the lungs of
babies with BPD, it has been demonstrated that interac-
tions between nuclear factor kB (NF-kB), specificity
protein 1 (Sp1), and Sp3 led to inhibition of Fgf10
expression [44]. Fgf10 inhibition is mediated by activation
of Toll-like receptors 2 and 4 (Tlr2 or Tlr4), and a decrease
in FGF10 concentration is found in lung samples from
children with BPD [45]. The molecular mechanisms
linking inflammatory signaling and FGF10, an important
developmental gene that might play a role in BPD
pathogenesis, are still elusive.

Pre-clinical (rodent) models indicating that
recombinant FGF10 can be used to repair
and regenerate human lungs

We previously reported that canonical wingless-related
integration site (Wnt)-signaling works downstream of Fgf
signaling [28,46,47]. Interestingly, exposure to bleomycin
in mice displaying an epithelial-specific deletion of β-
catenin-signaling (β-catenin is downstream of both Fgf-
and Wnt-signaling) led to increased fibrosis [48]. In the
mouse model, previous studies focused primarily on the
beneficial effect of treatment with Palifermin, a truncated
form of keratinocyte growth factor (KGF, also known as
FGF-7) [49,50]. While KGF demonstrated an apparent
protective effect, genetic Fgf10 overexpression post-
bleomycin injury resulted in increased survival, as well
as prevention and accelerated resolution of lung fibrosis in
mice [51]. Interestingly, established IPF therapies which
target tyrosine kinases (e.g., nintedanib), would also inhibit
FGF signaling, and this may lead to detrimental effects.
There is, therefore, an urgent need to define the role of
endogenous FGF signaling in IPF.
Because of the beneficial effects of exogenous Fgfr2b

ligands on lung repair, we hypothesized that endogenous
Fgfr2b ligands play an essential role in repair following
bleomycin injury. However, we found that the expression
of Fgfr2b ligands and receptors were decreased after
bleomycin injury in wild type mice [52]. In the same study,
we reported that inhibition of the activity of endogenous
Fgfr2b ligands during bleomycin-induced lung injury did
not lead to significantly increased fibrosis or decreased
survival. These results do not negate the potential benefit
of exogenously stimulating developmental pathways to
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protect against lung fibrosis.
Fgf10 is also involved in the regeneration of the

bronchial lung epithelium after naphthalene injury [30].
We recently published that Fgf10-Hippo epithelial-
mesenchymal crosstalk maintains and recruits lung basal
stem cells in the conducting airways [32]. In this paper, we
showed that, while transient Fgf10 expression by ASMCs
is critical for proper airway epithelial regeneration in
response to injury, sustained Fgf10 secretion by the ASMC
niche, in response to chronic integrin-like kinase (Ilk)/
Hippo inactivation, results in pathological changes in
airway architecture. Fgf10/Fgfr2b signaling may, there-
fore, be an interesting therapeutic target to treat chronic
lung diseases.
Influenza virus (IV)-mediated pneumonia often leads to

severe damage to the lung epithelium and impairment of
respiratory functions. We have previously described the
importance of Fgf signaling in enhancing stem/progenitor
cell-mediated regenerative responses. Importantly, we
have reported that a highly pathogenic IV preferentially
infects an epithelial cell subset characterized by high
proliferative capacity and defined by EpCamhighCD24low

integrin(α6)high. These cells are also positive for Sca1 and
are highly enriched in the lung stem cell pool previously
characterized by the signature integrin (β4)+CD200+. We
used 3-dimensional organoid cultures derived from these
epithelial stem/progenitor cells (EpiSPC), and in vivo
infection models including transgenic mice, to show that
their proliferation and the maintenance of the epithelial
barrier after IV-induced injury required Fgfr2b signaling.
IV-infected EpiSPC displayed decreased renewal capacity
due to the IV-induced blockade of β-catenin-dependent
Fgfr2b signaling. Therapeutic application of FGF10
intratracheally led to increased recruitment of non-infected
EpiSPC for tissue regeneration and was associated with
enhanced proliferative potential, restoration of alveolar
barrier function, and increased survival following IV
pneumonia [53]. Furthermore, Fgf10 delivery to the distal
lung may represent a putative therapy to enhance
regeneration in the context of acute respiratory distress.

FGF7 clinical trial for acute respiratory
distress syndrome (ARDS): lessons learnt
for future clinical trials

Mortality linked to ARDS remains unacceptably high,
underscoring the fact that no efficient pharmacological
therapy exists despite intense basic and clinical research.
FGF7 seemed initially to be perfectly suited for ARDS
treatment. Various pre-clinical studies in animals demon-
strated its efficacy in enhancing the repair mechanisms
following experimental acute lung injury [54]. Interest-
ingly, FGF7 expression in human lungs is suppressed in
early ARDS [55]. In addition, it was shown that FGF7

enhances alveolar epithelial sodium ion (Na+) transport
processes, thereby allowing the efficient clearance of
alveolar edema [56], which is required for the survival of
patients with ARDS. Moreover, in a recent clinical trial, 36
healthy volunteers received intravenously-administered
FGF7 (60 mg/kg per day), or placebo for three days before
inhalation of lipopolysaccharide (LPS) to trigger acute
lung injury [57]. The analysis of the bronchoalveolar
lavage fluid samples of these patients collected 6 h after
LPS inhalation indicated that pre-treatment with FGF7
increased the concentrations of anti-inflammatory cyto-
kines and markers of alveolar epithelial type II cell
proliferation. These data suggest that systemic exposure to
FGF7 is well tolerated and, most importantly, has an effect
on the alveolar epithelium. Interestingly, FGF7 was also
efficient in treating patients with oral mucositis as a
consequence of radiotherapy and chemotherapy [58]. This
was likely the rationale to use the same concentration,
frequency, and duration of FGF7 treatment in a recent
clinical trial aiming to characterize, in patients with ARDS,
the impact of intravenously-administered FGF7 [59]. In the
prospective, double-blind, randomized, allocation-con-
cealed, placebo-controlled phase 2 KARE trial, 60 patients
with moderate-to-severe ARDS were included. The
oxygenation index at day 7 was assessed as the primary
outcome. This readout is a reliable predictor of therapy
success in ARDS, as it takes into consideration both gas
exchange and respiratory mechanics. The study demon-
strated that FGF7 did not ameliorate any of the primary
clinical and physiologic outcomes assessed. Even though
the trial was not properly designed to evaluate secondary
readouts such as the duration of ventilation, mortality, or
the length of intensive-care unit stay, the results do suggest
that these secondary outcomes became worse in the
experimental group receiving FGF7. The authors con-
cluded that FGF7 should not be used for the treatment of
ARDS patients.
It is to be noted that in the context of this study,

conclusions about the negative impact of FGF7 on the
clinical outcomes are difficult to assess as the trial was not
designed to assess the secondary readouts and also because
the mortality in the placebo group was surprisingly lower
than expected for this patient cohort. The lack of effects of
FGF7 on ARDS patients could be due to different reasons.
First, there is no evidence that the dose and route of FGF7
administration used in this trial were optimal to act on the
damaged alveolar epithelium. In addition, in the human
LPS inhalation clinical study [57], the alveolar epithelium
was healthy at the time of FGF7 treatment, while the
diseased lungs in ARDS patients likely displayed both
under-ventilated and non-ventilated lung areas. This may
have had a negative impact in the context of FGF7
treatment as the damaged areas are likely less perfused
than healthy regions of the lung. It is therefore possible that
the level of FGF7 in these areas was too low to trigger a
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clear biological effect within the time frame of the trial. In
addition, systemic concentrations of FGF7 may have been
too high, triggering some of the negative effects observed
during the trial.
It is worth to mention that in most animal pre-clinical

studies assessing the effect of FGF7 in acute lung injury,
the growth factor was supplied directly to the lungs either
by inhalation or instillation. The translation to the human
situation may not be easy; even though drug inhalation for
patients with ARDS might be useful when targeting
macrophages [60], it is not clear whether poorly or non-
ventilated areas can be effectively reached. Failure to do so
could be the underlying cause behind the failure in clinical
trials for ARDS of various promising pharmacological
treatments. In the future, optimizing delivery protocols to
deliver efficiently the drugs at the alveolar level will be
crucial.

Looking toward the future: rationale to use
FGF10 instead of FGF7 for clinical trials

While FGF7 was historically thought to be a potent FGF to
enhance the repair/regeneration process, FGF10 has
emerged as a more relevant growth factor for clinical use
for different reasons. First, evidence in mice shows that
Fgf10, and not Fgf7, is the growth factor used by the lung
for its development. Fgf10 inactivation leads to lung
agenesis, while Fgf7 null mice have no distinct lung
phenotype [26,62]. Second, Fgf10 is the endogenous
growth factor used by the lung to act on key epithelial stem
cells (basal cells, a variant of club cells, epiSPC and AT2)
for the regeneration process. Third, even though FGF7 and
FGF10 can act via the same receptor, they elicit different
biological responses (proliferation vs. migration, respec-
tively). The molecular bases for this difference were first
reported by our research group [63]. Fourth, FGF10 does
not induce directly epithelial proliferation but works by
modulating cell-cell and cell-extracellular matrix adhesion
[28]. Therefore, FGF10 may be safer to use compared to
FGF7 in the clinical context. Indeed, our recently
published data indicate that in early development, the
transcription of G protein-coupled receptor class C group 5
member A (Gprc5a), a gene coding a G protein-coupled
receptor acting as an anti-oncogene, is induced by Fgf10.
Inactivation of Gprc5a in mice leads to lung adenocarci-
noma [64]. So Fgf10, via the induction of Gprc5a, as well
as other genes previously described in Jones et al. [28] may
prevent cancer formation.
In conclusion, with the recent evidence that the human

lung both repairs and regenerates and with the character-
ization of the crucial corresponding stem cells, fibroblast
growth factors are ideally suited to act on these cells to
promote repair and regeneration. In the future, clinical
trials must be tailored to allow local delivery to the

damaged lungs.
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