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Abstract Bromodomain PHD-finger transcription factor (BPTF) is the largest subunit of the nucleosome
remodeling factor and plays an important role in chromatin remodeling for gene activation through its association
with histone acetylation or methylation. BPTF is also involved in oncogene transcription in diverse progressions of
cancers. Despite clinical trials for inhibitors of bromodomain and extra-terminal family proteins in human
cancers, no potent and selective inhibitor targeting the BPTF bromodomain has been discovered. In this study, we
identified a potential inhibitor, namely, C620-0696, by computational docking modeling to target bromodomain.
Results of biolayer interferometry revealed that compound C620-0696 exhibited high binding affinity to the BPTF
bromodomain. Moreover, C620-0696 was cytotoxic in BPTF with a high expression of non-small-cell lung cancer
(NSCLC) cells. It suppressed the expression of the BPTF target gene c-MYC, which is known as an oncogenic
transcriptional regulator in various cancers. C620-0696 also partially inhibited the migration and colony
formation of NSCLC cells owing to apoptosis induction and cell cycle blockage. Thus, our study presents an
effective strategy to target a bromodomain factor-mediated tumorigenesis in cancers with small molecules,
supporting further exploration of the use of these inhibitors in oncology.
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Introduction

Lung cancer is the most common cause of death all over
the world, with non-small-cell lung cancer (NSCLC)
accounting for 78% of all related deaths [1]. Genetic
changes of driver genes have been identified in NSCLC,
including KRAS, EGFR, ALK, ROS1, BRAF, and HER2
[2]. Other than genomic changes, epigenetics is a current
challenge and a new therapeutic option; it has heritable
changes without DNA sequence alteration and appears to
be crucial in various diseases, including cancer, inflamma-

tion, and metabolic disease [3]. Epigenetic alterations, such
as changes in DNA methylation, histone modifications,
and chromatin organization (e.g., nucleosome remodel-
ing), affect gene expression and cellular gene function as
well as play an important role in the onset and progression
of cancers [4–8]. Targeting epigenetic regulators, such as
DNA methylation and histone deacetylase inhibitor, to
treat human cancers has proven to be successful [9–13].
Bromodomains are readers that can recognize acetyl-lysine
marks in histone tails, which serve a key role in
transcriptional activation by binding to specific histone
modification sites and recruiting different transcription
machineries [14–17]. In addition, evaluations into many
small molecule inhibitors of bromodomain and extra-
terminal family proteins (i.e., BRD2, 3, 4) are underway in
clinical therapeutics [18], exhibiting potent anti-tumor
effects in cancers, such as hematologic malignancies, lung
cancer, breast cancer, and colon cancer [19–22]. Thus,
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epigenetic therapy has gradually become a potential
treatment solution.
Bromodomain PHD-finger transcription factor (BPTF)

mainly regulates gene transcription and mediates histone
modification essential for the development of key tissues in
chromatin remodeling [23–25]. A high BPTF expression is
significantly associated with tumor progression in color-
ectal cancer [26] and promotes tumor cell proliferation and
metastasis in melanoma [27,28]. BPTF can also repress T-
cell-mediated anticancer immunity by regulating the
expression of the major histocompatibility locus genes in
two tumor models [29]. c-MYC is an oncogene that plays a
key role in cancer pathogenesis by regulating the
transcriptional program influencing cell proliferation [30–
32]. c-MYC transcription is associated with histone lysine
acetylation. Therefore, inhibiting the acetyl-lysine recog-
nition domains has become a potential therapeutic strategy
[33–36]. The bromodomain of BPTF is known to
specifically recognize histone H4 acetylated lysine 16
(H4K16ac) by binding to acetylated lysine residues, which
perform the essential regulation of the chromatin structure
in development [37–39]. Knockdown BPTF reduces c-
MYC-driven cell proliferation in mouse embryonic
fibroblasts [40]. The inhibition of bromodomain transcrip-
tion factors is already considered a potential therapeutic
approach in clinical trials [41]. Recently, high BPTF
expression was also verified to be closely associated with
poor prognoses in lung adenocarcinomas, displaying an
essential role in tumor cell growth and survival [42].
However, to date, no selective inhibitor targeting BPTF
bromodomain in human cancers, especially in NSCLC, has
been identified, motivating us to discover potential and
effective molecules to interrupt the BPTF function in
tumorigenesis.
In this study, we investigated a potential and efficacious

inhibitor by targeting the bromodomain for suppressing
tumor growth mediated by high BPTF expression in
NSCLC cells. We performed a molecular docking-based
virtual screening from a small molecule database to screen
BPTF inhibitors. The biolayer interferometry (BLI) assay
found that a potential inhibitor compound, C620-0696,
binds directly to BPTF and exhibits effective cytotoxicity
to BPTF overexpression in NSCLC cell lines.

Materials and methods

Cell culture

A549 and H358 cell lines were obtained from ATCC.
A549 and H358 cells were cultured by RPMI 1640
medium, which was supplemented with 10% fetal bovine
serum and 100 units/mL penicillin and 100 mg/mL
streptomycin. The cells were grown through incubation
at 37 °C with 5% CO2.

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay

All compounds (TopScience, Shanghai, China) were
dissolved in dimethyl sulfoxide (DMSO). A549 and
H358 cells were plated in a 96-well plate, with 3000
cells plated per well. The cells were treated with different
concentrations. After 72 h, 10 mL of MTT solution were
added to each well and incubated at 37 °C for 4 h. Then,
100 mL of the SDS solution (10% SDS and 0.1 mmol/L
HCL) was added to each well and incubated at 37 °C for
another 4 h. Finally, the absorbance of the plate was
measured by an absorbance reader (Tecan, Morrisville,
NC, USA).

Colony formation assay

Cell survival was assessed by colony formation as
previously described. A549 and H358 cells were seeded
onto a 6-well plate, with 500–1000 cells plated per well.
The cells were then exposed to various doses of C620-
0696. After seven days, colonies were fixed with 4%
paraformaldehyde for 15 min and stained with crystal
violet for 10–15 min. Finally, the staining solution was
slowly washed off with water and the cells were air-dried.

Wound healing assay

A549 and H358 cells were seeded onto 6-well plates.
When the cell confluence reached > 90%, scratch wounds
were made by using 200 mL tips to scrape the cell layer
across each plate. Wounded cultures were incubated in the
medium for 48 h and then visualized through an Olympus
inverted microscope to assess the cell migration ability.

Western blot analysis

Total cell proteins were extracted by a RIPA lysis buffer
containing protease (Roche) and phosphatase (Roche)
inhibitors. The primary antibodies of PARP-1, c-MYC,
and cyclin D1 were from Cell Signaling Technology
(Danvers, MA, USA). The primary antibody of GAPDH
was from Santa Cruz (Dallas, TX, USA). The primary
antibody of BPTF was from EMD Millipore Corporation
(Billerica, MA, USA). The secondary antibodies were
from Odyssey (Belfast, ME, USA). LI-COR Odyssey
scanner (Belfast, ME, USA) was used to detect the Western
blot result.

Kinetic binding analysis by BLI

The Octet Red96 system (Forte Bio, Pall) was used to
determine the binding between C620-0696 and BPTF.
BPTF protein was loaded to saturation onto anti-His
capture sensors (ForteBio) and then placed for 2 min in
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wells containing C620-0696 (concentrations: 3.125, 6.25,
12.5, 25, 50, 100, and 200 mmol/L). The baseline and
dissociation steps were carried out in the kinetic buffer as
per the instrument manufacturer’s recommendations.

Molecular docking-based virtual screening

The free BPTF structure was derived from Protein Data
Bank (PDB ID: 2f6n) and prepared with the Protein
Preparation Wizard in Maestro (Schrodinger, NY, USA;
Schrodinger 2015). Given that the structures of BPTF and
BRD4 were highly similar and the structure of the BPTF-
inhibitor complex was unavailable, we first aligned the
BPTF (PDB ID: 2f6n) and BRD4-benzoisoxazoloazepine
3 complex (PDB ID: 5hm0). Next, the grid box in the
BPTF structure was generated on the size and center of
benzoisoxazoloazepine 3. For the ligands, a total of
1 668 608 compounds from ChemDiv and Specs databases
were prepared with a ligand preparation module. Three-
level (HTVS, SP, and XP) molecular docking-based virtual
screening was successively performed using a Glide
module, similar to our previous work [43]. The top 10%
compounds ranked by gscore were clustered into 200
groups. Through visual inspection of the binding poses of
the BPTF inhibitor, 150 compounds were selected for the
experimental validation. All the compounds were pur-
chased from TopScience Company (Shanghai, China).

Statistical analysis

Statistical analysis was conducted using Graph Prism 5.0.
Significant differences between data sets were assessed via
one-way analysis of variance. The descriptive analytical
data were presented as mean � SD.

Results

Compound C620-0696 was identified through its
binding affinity with BPTF.

The BPTF bromodomain can recognize histone H4K16ac
and further repress the c-MYC transcriptional activation. A
report states that BRD4 and BPTF have similar acetylated-
lysine binding pockets that have found an inhibitor of
BPTF bromodomain [44]. In the present study, 150
compounds were obtained through molecular docking-
based virtual screening. To discover the potential inhibitors
that may be able to interact directly with BPTF, we first
conducted BLI assays [44] to assess the binding affinity
between these 150 compounds and BPTF.
The bromodomain was immobilized on the streptavidin

biosensors and then mixed with a different concentration
of each compound at 3.125, 6.25, 12.5, 25, 50, 100 or 200
mmol/L. The results of steady-state analysis showed that

only C620-0696 exhibited a binding affinity for BPTF,
with a KD value of 35.5 mmol/L (Fig. 1B).
Molecular docking was then performed to identify the

binding mode between C620-0696 and BPTF. The
obtained docking score was -9.18 kcal/mol. As shown in
Fig. 1C, the aromatic plane of C620-0696 was inserted into
a hydrophobic pocket composed of residues Pro92,
Asp101, Tyr105, Asn148, and Phe154. When interacting
with the bromodomain of BPTF, C620-0696 formed five
hydrogen bonds with residues Pro92, Asp101, Tyr105, and
Asn148 (Fig. 1C). In addition, C620-0696 formed pai–pai
stacking interactions with Phe154, which further strength-
ened the binding interactions between BPTF and C620-
0696.

C620-0696 is cytotoxic in NSCLC cells with high BPTF
expression

With C620-0696 bound to the BPTF bromodomain, we
further studied its cytotoxic potency in NSCLC cells with
BPTF overexpression. Previous studies have implicated
BPTF overexpression in NSCLC cell lines. Therefore, to
investigate whether C620-0696 could inhibit BPTF
function in vitro, we first selected BPTF highly expressing
in NSCLC cell lines (A549 and H358), compared to the
human bronchial epithelial cell (BEAS-2B), as the cell
models for this study (Fig. 2A). C620-0696 was found to
inhibit cell viability with an IC50 of 11.2 and 6.72 mmol/L
at 72 h of treatment (Fig. 2B – 2D). These results indicated
that C620-0696 exhibits a significantly cytotoxic effect on
NSCLC with high BPTF expression.

C620-0696 inhibits the migratory capacity of NSCLC
cells

Compound C620-0696 showed cytotoxicity in A549 and
H358 cells. Thus, we wanted to evaluate the impact of
C620-0696 on cell migration and cellular processes in
NSCLC. We also employed the wound healing assay to
assess the directional cell motility. The results clearly
indicated that over time A549 and H358 cells migrated
slower under C620-0696 treatment compared with the
control cells (Fig. 3), supporting the finding that the
inhibition of BPTF challenges the migratory capacity of
NSCLC cells.

C620-0696 inhibits the colony formation of NSCLC
cells

Colony formation assay was conducted to test if C620-
0696 could affect the growth behavior of A549 and H358
cells. A significant loss in colony formation was observed
in A549 and H358 cells treated with C620-0696 (Fig. 4).
These results suggested that C620-0696 blocks cell growth
and proliferation.
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Fig. 1 (A) Chemical structure of C620-0696. (B) Determination of the binding affinity of the BPTF bromodomain with C620-0696 by
BLI assay. The binding affinity (KD) of the bromodomain for C620-0696 was determined by the rate constants of Kon = 4.78 � 102

L$mol–1$s–1 and Koff = 1.70 � 10–2 s–1. (C) The detailed binding mode between C620-0696 and the BPTF bromodomain. Green dashed
lines represent hydrogen bonds.

Fig. 2 (A) BPTF expression was analyzed by Western blot in BEAS-2B, A549, and H358 cell lines. (B, C) Cell viability was measured
in A549 and H358 cells treated with C620-0696 at 3, 6, 9, 12 mmol/L for 72 h. (D) The IC50 value was calculated in A549 and H358 cells
treated with C620-0696. All data were presented as mean � SD. *P < 0.05, **P < 0.01, and ***P < 0.001.
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Fig. 3 (A, C) Motility of C620-0696-treated cells or control cells captured after 24 and 48 h post injury, respectively. Dashed yellow
lines show the images of a representative wound (10�). (B, D) Rate of wound healing of A549 and H358 cells. All data were presented as
mean � SD. *P < 0.05.

Fig. 4 (A, B) A549 and H358 cells of colony formation assay data after treatment with C620-0696 (Control, 1, 1.5, and 3 mmol/L ).
(C, D) Statistical analysis of colony formation assay. All data were presented as mean � SD. *P < 0.05, **P < 0.01, and ***P < 0.001.
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C620-0696 induces apoptosis and suppresses cell cycle
in NSCLC cells

BPTF knockdown was previously reported as capable of
restricting cell proliferation and inducing apoptosis in lung
cancer [42]. To ascertain whether the induction of
apoptosis also contributed to C620-0696-mediated growth
inhibition in NSCLC cells, we detected cleaved Poly
(ADP-ribose) polymerase 1 (PARP-1) in C620-0696-
treated H358 cells. C620-0696 up to 9 mmol/L significantly
increased the levels of cleaved PARP-1 (Fig. 5). It also
reduced the expression of cyclin D1 related to cell cycle in
H358 cells and suppressed the expression of an oncogenic
transcriptional regulator c-MYC (Fig. 5), which is a BPTF
target gene in tumorigenesis. These data suggested that
C620-0696 may inhibit BPTF transcriptional regulation of
its target oncogenic genes, thereby leading to cell apoptosis
induction and cell cycle suppression in NSCLC.

Discussion

Targeting epigenetic regulators such as DNA methylation
and histone deacetylase inhibitor to treat human cancers
has been proven to be successful [9,10]. Researchers
reported that a combined treatment with DNA methyl-
transferase and histone deacetylase inhibitors could pro-
long the survival of patients with NSCLC [45].
Meanwhile, bromodomain as a reader can recognize
acetyl-lysine sites and transcription activities [18]. In the
past few years, researchers have found some small
molecule bromodomain inhibitors, such as JQ1, RVX-
208, and OTX015, some of which are under phase I/II
clinical trials [14,15,18,22]. Therefore, identifying an
effective inhibitor that targets the bromodomain is of
value. As a transcription factor, BPTF plays a key role in
transcriptional modification and has high expression in
many human cancers, especially lung adenocarcinomas

[23,46]. Compared with normal cells, BPTF is highly
expressed in NSCLC cell lines and tumor tissues [42].
BPTF is a new lung adenocarcinoma susceptibility locus
and is associated with lung premalignance [47,48].
However, effective BPTF inhibitors have not been
discovered fully yet. Recently, researchers reported
uncovering the first BPTF small molecule inhibitor AU1
through protein-observed fluorine NMR [44]. The report
provides suitable ligands for developing BPTF inhibitors.
In this work, we identified C620-0696 as a BPTF

bromodomain inhibitor through virtual screening. C620-
0696 exhibited a high binding affinity to the bromodomain
of BPTF by using BLI, which has a KD value of
35.5 mmol/L. These results suggested that C620-0696 is a
potent inhibitor targeting the bromodomain of chromatin-
remodeling factor BPTF. In addition, cell cytotoxicity in
A549 and H358 cells was found to be induced after
treatment with C620-0696, but the AU1 did not show the
cytotoxic effect in A549 and H358 cells [44]. These results
showed that C620-0696 has good cytotoxic effect. Many
studies have found that BPTF overexpression is associated
with cancer cell proliferation and apoptosis suppression in
various tumors [28,30,42]. In our study, we found that
C620-0696 induces cell death by increasing the level of
PARP-1 and the expression of cyclin D1, resulting in cell
cycle arrest. It likewise inhibits migratory capacity and
colony formation in NSCLC cells by inhibiting the BPTF
bromodomain.
C620-0696 could also inhibit the binding between the

BPTF bromodomain and H4K16ac, which could repress c-
MYC transcription activation. The inhibition of the
interaction between bromodomain and acetylated lysine
reduces the c-MYC target gene level and transcription
inhibition of the c-MYC gene itself [33,40]. Decreasing the
c-MYC expression can lead to the resistance of cancer cell
apoptosis and cell cycle progress [31,49]. In sum, our
result demonstrates that C620-0696 is a potent inhibitor of
BPTF bromodomain.

Fig. 5 (A) H358 cells were treated with C620-0696 at Control, 3, 6, and 9 mmol/L for 24 h. Western blot was used to detect the
expression levels of PARP-1, c-MYC, and cyclin D1, while GAPDH was used as the loading control. (B) Statistical analysis of colony
formation assay. All data were presented as mean � SD. *P < 0.05, **P < 0.01.
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