Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2015, Vol. 1 Issue (1) : 27 -35
Research |
Architecture and Software Design for a Service Robot in an Elderly-Care Scenario
Norman Hendrich(),Hannes Bistry,Jianwei Zhang
Computer Science Department, University of Hamburg, Hamburg D-22527, Germany

Systems for ambient assisted living (AAL) that integrate service robots with sensor networks and user monitoring can help elderly people with their daily activities, allowing them to stay in their homes and live active lives for as long as possible. In this paper, we outline the AAL system currently developed in the European project Robot-Era, and describe the engineering aspects and the service-oriented software architecture of the domestic robot, a service robot with advanced manipulation capabilities. Based on the robot operating system (ROS) middleware, our software integrates a large set of advanced algorithms for navigation, perception, and manipulation. In tests with real end users, the performance and acceptability of the platform are evaluated.

Keywords service robots      ambient assisted living      manipulation and grasping      user study     
Corresponding Authors: Norman Hendrich   
Just Accepted Date: 31 March 2015   Issue Date: 02 July 2015
E-mail this article
E-mail Alert
Articles by authors
Norman Hendrich
Hannes Bistry
Jianwei Zhang
Cite this article:   
Norman Hendrich,Hannes Bistry,Jianwei Zhang. Architecture and Software Design for a Service Robot in an Elderly-Care Scenario[J]. Engineering, 2015, 1(1): 27 -35 .
URL:     OR
1   I. Conrad, S. Glende, L. Krezdorn, L. Trieste, G. Turchetti. D9.4, Second report on services, business and marketing models for Robot-Era services, project report, 2015,
2   F. Cavallo, M. Aquilano, M. C. Carrozza, P. Dario. Robot-era project: The vision of 3D service robotics. Gerontechnology, 2012, 11(2): 364
3   F. Marcellini,  Report on the robotic services analysis with respect to elderly users, project report, 2012,
4   N. J. Nilsson. Shakey the Robot (Technical Note 323). Menlo Park, California: SRI International, Artificial Intelligence Center, 1984
5   R. Brooks. A robust layered control system for a mobile robot. IEEE J. Robot. Autom., 1986, 2(1): 14–23
6   T. H. J. Collett, B. A. MacDonald, B. P. Gerkey. Player 2.0: Toward a practical robot programming framework. In: Proceedings of Australasian Conference on Robotics and Automation (ACRA 05). IEEE, 2005: 1–9
7   G. Metta, P. Fitzpatrick, L. Natale. YARP: Yet another robot platform. Int. J. Adv. Robot. Syst., 2006, 3(1): 43–48
8   M. Quigley,  ROS: An open-source Robot Operating System. In: International Conference on Robotics and Automation (ICRA) Workshop on Open-Source Software, 2009
9   E. Einhorn, T. Langner, R. Stricker, C. Martin, H. M. Gross. MIRA-middleware for robotic applications. In: Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012), 2012: 2591–2598
10   R. D. Schraft, J. Neugebauer, C. Schaeffer, T. May. Care-O-bot®: Ein technisches Hilfssystem für unterstützungs- und pflegebedürftige Personen im häuslichen Bereich. In: H. Wörn, R. Dillmann, D. Henrich, eds. Autonome Mobile Systeme 14. Berlin, Heidelberg: Springer, 1998: 234–244
11   M. Hans, B. Graf. Robotic home assistant Care-O-bot II. In: E. Prassler, , eds. Advances in Human-Robot Interaction. Berlin, Heidelberg: Springer, 2004: 371–384
12   C. Parlitz, M. Hägele, P. Klein, J. Seifert, K. Dautenhahn. Caro-O-bot 3—Rationale for human-robot interaction design. In: Proceedings of 39th International Symposium on Robotics (ISR), 2008: 275–280
13   M. Hans, W. Baum. Concept of a hybrid architecture for Care-O-bot. In: Proceedings of 10th IEEE International Workshop on Robot and Human Interactive Communication. IEEE, 2001: 407–411
14   T. Morita, H. Iwata, S. Sugano. Development of human symbiotic robot: WENDY. In: Proceedings of 1999 IEEE International Conference on Robotics and Automation, vol. 4. IEEE, 1999: 3183–3188
15   Willow Garage Inc. Robot for research and innovation.
16   S. Cousins. ROS on the PR2 [ROS Topics]. Robot. Autom. Mag., IEEE, 2010, 17(3): 23–25
17   A. Hermann,  Hardware and software architecture of the bimanual mobile manipulation robot HoLLiE and its actuated upper body. In: Proceedings of 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2013: 286–292
18   MetraLabs GmbH. Scitos G5 mobile platform.
19   F. Cavallo. Improving domiciliary robotic services by integrating the ASTRO robot in an AmI infrastructure. In: F. Röhrbein, G. Veiga, C. Natale, eds. Gearing Up and Accelerating Cross—Fertilization between Academic and Industrial Robotics Research in Europe. Springer, 2014: 267–282
20   Schunk Gmbh & Co. KG. Powerball lightweight arm LWA 4P.
21   Kinova Robotics, Kinova Jaco Research Edition.
22   Schunk Gmbh & Co. KG. Dextrous lightweight arm LWA 4D.
23   BionicRobotics GmbH. Bionic robotics: Biorob arm.
24   Universal Robots. UR5 arm.
25   V. Maheu, J. Frappier, P. S. Archambault, F. Routhier. Evaluation of the JACO robotic arm: Clinico-economic study for powered wheelchair users with upper-extremity disabilities. In: Proceedings of 2011 IEEE International Conference on Rehabilitation Robotics (ICORR). IEEE, 2011: 1–5
26   A. Saffiotti, M. Broxvall. PEIS ecologies: Ambient intelligence meets autonomous robotics. In: Proceedings of the International Conference on Smart Objects and Ambient Intelligence, 2005: 277–281
27   M. Broxvall, M. Gritti, A. Saffiotti, B. S. Beo, Y. J. Cho. PEIS ecology: Integrating robots into smart environments. In: Proceedings of 2006 IEEE International Conference on Robotics and Automation (ICRA), 2006: 212–218
28   M. Di Rocco,  A planner for ambient assisted living: From high-level reasoning to low-level robot execution and back. In: AAAI Spring Symposium “Qualitative Representations for Robots”, 2014: 10–17
29   N. Hendrich, H. Bistry, B. Adler, J. Zhang. User-driven software design for an elderly care service robot. In: Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare, 2014: 142–149
30   I. Sucan. Universal robot description format.
31   E. Marder-Eppstein, V. Pradeep. ROS actionlib.
32   D. G. Lowe. Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2. IEEE, 1999: 1150–1157
33   E. Olson. AprilTag: A robust and flexible visual fiducial system. In: Proceedings of 2011 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2011: 3400–3407
34   J. R. Lewis, J. Sauro. The factor structure of the system usability scale. In: M. Kurosu, ed. Human Centered Design. Berlin, Heidelberg: Springer, 2009: 94–103
35   S. McLellan, A. Muddimer, S. C. Peres. The effect of experience on System Usability Scale ratings. J. Usability Stud., 2012, 7(2): 56–67
36   F. Cavallo, D8.2 Report on results obtained in the first cycle of the Robot-Era experimentation, project report, 2014.
[1] Ben A. Wender, M. Granger Morgan, K. John Holmes. Enhancing the Resilience of Electricity Systems[J]. Engineering, 2017, 3(5): 580 -582 .
[2] Lance A. Davis. Climate Agreement—Revisited[J]. Engineering, 2017, 3(5): 578 -579 .
[3] Joe A. Sestak Jr.. High School Students from 157 Countries Convene to Address One of the 14 Grand Challenges for Engineering: Access to Clean Water[J]. Engineering, 2017, 3(5): 583 -584 .
[4] Holger Krueger. Standardization for Additive Manufacturing in Aerospace[J]. Engineering, 2017, 3(5): 585 .
[5] Michael Powalla, Stefan Paetel, Dimitrios Hariskos, Roland Wuerz, Friedrich Kessler, Peter Lechner, Wiltraud Wischmann, Theresa Magorian Friedlmeier. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2[J]. Engineering, 2017, 3(4): 445 -451 .
[6] Maggie Bartolomeo. Third Global Grand Challenges Summit for Engineering[J]. Engineering, 2017, 3(4): 434 -435 .
[7] Luis Ribeiro e Sousa, Tiago Miranda, Rita Leal e Sousa, Joaquim Tinoco. The Use of Data Mining Techniques in Rockburst Risk Assessment[J]. Engineering, 2017, 3(4): 552 -558 .
[8] Jin-Xun Liu, Peng Wang, Wayne Xu, Emiel J. M. Hensen. Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts[J]. Engineering, 2017, 3(4): 467 -476 .
[9] Jian-Feng Chen. Green Chemical Engineering for a Better Life[J]. Engineering, 2017, 3(3): 279 .
[10] Dejiang Zhang, Shijie Xu, Shichao Du, Jingkang Wang, Junbo Gong. Progress of Pharmaceutical Continuous Crystallization[J]. Engineering, 2017, 3(3): 354 -364 .
[11] Praewpilin Kangvansura, Ly May Chew, Chanapa Kongmark, Phatchada Santawaja, Holger Ruland, Wei Xia, Hans Schulz, Attera Worayingyong, Martin Muhler. Effects of Potassium and Manganese Promoters on Nitrogen-Doped Carbon Nanotube-Supported Iron Catalysts for CO2 Hydrogenation[J]. Engineering, 2017, 3(3): 385 -392 .
[12] Mu Xiao, Songcan Wang, Supphasin Thaweesak, Bin Luo, Lianzhou Wang. Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation[J]. Engineering, 2017, 3(3): 365 -378 .
[13] Lei Xu, Jinhui Peng, Hailong Bai, C. Srinivasakannan, Libo Zhang, Qingtian Wu, Zhaohui Han, Shenghui Guo, Shaohua Ju, Li Yang. Application of Microwave Melting for the Recovery of Tin Powder[J]. Engineering, 2017, 3(3): 423 -427 .
[14] Francesca Macedonio, Enrico Drioli. Membrane Engineering for Green Process Engineering[J]. Engineering, 2017, 3(3): 290 -298 .
[15] Shridhar S. Bagali, Bychapur S. Gowrishankar, Aashis S. Roy. Optimization, Kinetics, and Equilibrium Studies on the Removal of Lead(II) from an Aqueous Solution Using Banana Pseudostem as an Adsorbent[J]. Engineering, 2017, 3(3): 409 -415 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
Today's visits ;Accumulated visits . 京ICP备11030251号-2