Please wait a minute...

Frontiers of Medicine

Front. Med.    2018, Vol. 12 Issue (6) : 645-657     https://doi.org/10.1007/s11684-018-0645-9
REVIEW |
Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota
Ruiting Han, Junli Ma, Houkai Li()
Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
Download: PDF(267 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Non-alcoholic fatty liver disease (NAFLD) is one of the most common metabolic diseases currently in the context of obesity worldwide, which contains a spectrum of chronic liver diseases, including hepatic steatosis, non-alcoholic steatohepatitis and hepatic carcinoma. In addition to the classical “Two-hit” theory, NAFLD has been recognized as a typical gut microbiota-related disease because of the intricate role of gut microbiota in maintaining human health and disease formation. Moreover, gut microbiota is even regarded as a “metabolic organ” that play complementary roles to that of liver in many aspects. The mechanisms underlying gut microbiota-mediated development of NAFLD include modulation of host energy metabolism, insulin sensitivity, and bile acid and choline metabolism. As a result, gut microbiota have been emerging as a novel therapeutic target for NAFLD by manipulating it in various ways, including probiotics, prebiotics, synbiotics, antibiotics, fecal microbiota transplantation, and herbal components. In this review, we summarized the most recent advances in gut microbiota-mediated mechanisms, as well as gut microbiota-targeted therapies on NAFLD.

Keywords gut microbiota      NAFLD      obesity      insulin resistance      bile acids      probiotic     
Corresponding Authors: Houkai Li   
Just Accepted Date: 27 July 2018   Online First Date: 04 September 2018    Issue Date: 03 December 2018
 Cite this article:   
Ruiting Han,Junli Ma,Houkai Li. Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota[J]. Front. Med., 2018, 12(6): 645-657.
 URL:  
http://journal.hep.com.cn/fmd/EN/10.1007/s11684-018-0645-9
http://journal.hep.com.cn/fmd/EN/Y2018/V12/I6/645
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ruiting Han
Junli Ma
Houkai Li
Fig.1  A schematic illustration of the role of gut microbiota in NAFLD development. FIAF, fasting induced adipose factor; LPL, lipoprotein lipase; SCFAs, short chain fatty acids; GPRs, G protein-coupled receptors GPR41 and GPR43; PYY, peptide YY; GLP-1, glucagon-like peptide 1; FFA, free fatty acid; ZO-1\Occludin, two tight junction proteins; LPS, lipopolysaccharides; TLR, Toll like receptor; CD14, monocyte differentiation antigen; NF-κB, nuclear factor-κB; JNK, Jun N-terminal kinase; TNF-α, tumor-necrosis factor α; IL, interleukin; TMA, trimethylamine; FMO1 and FMO3, flavin monooxygenases 1 and 3; TMAO, trimethylamine oxide; TGR5, G protein-coupled receptor; FXR, farnesoid X receptor; and BA, bile acids.
1 Martinez KB, Leone V, Chang EB. Microbial metabolites in health and disease: navigating the unknown in search of function. J Biol Chem 2017; 292(21): 8553–8559
https://doi.org/10.1074/jbc.R116.752899 pmid: 28389566
2 Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. Minireview: Gut microbiota: the neglected endocrine organ. Mol Endocrinol 2014; 28(8): 1221–1238
https://doi.org/10.1210/me.2014-1108 pmid: 24892638
3 Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD, Wang J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464(7285): 59–65
https://doi.org/10.1038/nature08821 pmid: 20203603
4 Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, O’Connor M, Harnedy N, O’Connor K, Henry C, O’Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, O’Toole PW. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 2011; 108(Suppl 1): 4586–4591
https://doi.org/10.1073/pnas.1000097107 pmid: 20571116
5 He X, Ji G, Jia W, Li H. Gut microbiota and nonalcoholic fatty liver disease: insights on mechanism and application of metabolomics. Int J Mol Sci 2016; 17(3): 300
https://doi.org/10.3390/ijms17030300 pmid: 26999104
6 Bordalo Tonucci L, Dos Santos KM, De Luces Fortes Ferreira CL, Ribeiro SM, De Oliveira LL, Martino HS. Gut microbiota and probiotics: focus on diabetes mellitus. Crit Rev Food Sci Nutr 2017; 57(11): 2296–2309
https://doi.org/10.1080/10408398.2014.934438 pmid: 26499995
7 Kvit KB, Kharchenko NV. Gut microbiota changes as a risk factor for obesity. Wiad Lek 2017; 70(2): 231–235
pmid: 28511167
8 Valsecchi C, Carlotta Tagliacarne S, Castellazzi A. Gut microbiota and obesity. J Clin Gastroenterol 2016; 50(Suppl 2): S157–S158
9 Sanduzzi Zamparelli M, Compare D, Coccoli P, Rocco A, Nardone OM, Marrone G, Gasbarrini A, Grieco A, Nardone G, Miele L. The metabolic role of gut microbiota in the development of nonalcoholic fatty liver disease and cardiovascular disease. Int J Mol Sci 2016; 17(8): E1225
https://doi.org/10.3390/ijms17081225 pmid: 27483246
10 Lambert JE, Parnell JA, Eksteen B, Raman M, Bomhof MR, Rioux KP, Madsen KL, Reimer RA. Gut microbiota manipulation with prebiotics in patients with non-alcoholic fatty liver disease: a randomized controlled trial protocol. BMC Gastroenterol 2015; 15(1): 169
https://doi.org/10.1186/s12876-015-0400-5 pmid: 26635079
11 Mahana D, Trent CM, Kurtz ZD, Bokulich NA, Battaglia T, Chung J, Müller CL, Li H, Bonneau RA, Blaser MJ. Antibiotic perturbation of the murine gut microbiome enhances the adiposity, insulin resistance, and liver disease associated with high-fat diet. Genome Med 2016; 8(1): 48
https://doi.org/10.1186/s13073-016-0297-9 pmid: 27124954
12 Sze MA, Schloss PD. Looking for a signal in the noise: revisiting obesity and the microbiome. MBio 2016; 7(4): e01018-16
https://doi.org/10.1128/mBio.01018-16
13 Loomba R, Sanyal AJ. The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol 2013; 10(11): 686–690
https://doi.org/10.1038/nrgastro.2013.171 pmid: 24042449
14 Wree A, Broderick L, Canbay A, Hoffman HM, Feldstein AE. From NAFLD to NASH to cirrhosis—new insights into disease mechanisms. Nat Rev Gastroenterol Hepatol 2013; 10(11): 627–636
https://doi.org/10.1038/nrgastro.2013.149 pmid: 23958599
15 Liu W, Baker RD, Bhatia T, Zhu L, Baker SS. Pathogenesis of nonalcoholic steatohepatitis. Cell Mol Life Sci 2016; 73(10): 1969–1987
https://doi.org/10.1007/s00018-016-2161-x pmid: 26894897
16 Hoefert B. Über die bakterienbefunde im duodenalsaft von gesunden und kranken. Zschr Klin Med 1921; 92: 221–235 (In German)
17 Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, Fearnside J, Tatoud R, Blanc V, Lindon JC, Mitchell SC, Holmes E, McCarthy MI, Scott J, Gauguier D, Nicholson JK. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci USA 2006; 103(33): 12511–12516
https://doi.org/10.1073/pnas.0601056103 pmid: 16895997
18 Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology 1998; 114(4): 842–845
https://doi.org/10.1016/S0016-5085(98)70599-2 pmid: 9547102
19 Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444(7122): 1022–1023
https://doi.org/10.1038/4441022a pmid: 17183309
20 Cani PD, Delzenne NM. The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des 2009; 15(13): 1546–1558
https://doi.org/10.2174/138161209788168164 pmid: 19442172
21 Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490(7418): 55–60
https://doi.org/10.1038/nature11450 pmid: 23023125
22 Delzenne NM, Cani PD, Everard A, Neyrinck AM, Bindels LB. Gut microorganisms as promising targets for the management of type 2 diabetes. Diabetologia 2015; 58(10): 2206–2217
https://doi.org/10.1007/s00125-015-3712-7 pmid: 26224102
23 Escobedo G, López-Ortiz E, Torres-Castro I. Gut microbiota as a key player in triggering obesity, systemic inflammation and insulin resistance. Rev Invest Clin 2014; 66(5): 450–459
pmid: 25695388
24 Mehal WZ. The Gordian Knot of dysbiosis, obesity and NAFLD. Nat Rev Gastroenterol Hepatol 2013; 10(11): 637–644
https://doi.org/10.1038/nrgastro.2013.146 pmid: 23958600
25 Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, Jurczak MJ, Camporez JP, Shulman GI, Gordon JI, Hoffman HM, Flavell RA. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012; 482(7384): 179–185
https://doi.org/10.1038/nature10809 pmid: 22297845
26 DiBaise JK, Zhang H, Crowell MD, Krajmalnik-Brown R, Decker GA, Rittmann BE. Gut microbiota and its possible relationship with obesity. Mayo Clin Proc 2008; 83(4): 460–469
https://doi.org/10.4065/83.4.460 pmid: 18380992
27 Wieland A, Frank DN, Harnke B, Bambha K. Systematic review: microbial dysbiosis and nonalcoholic fatty liver disease. Aliment Pharmacol Ther 2015; 42(9): 1051–1063
https://doi.org/10.1111/apt.13376 pmid: 26304302
28 Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI. A core gut microbiome in obese and lean twins. Nature 2009; 457(7228): 480–484
https://doi.org/10.1038/nature07540 pmid: 19043404
29 Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004; 101(44): 15718–15723
https://doi.org/10.1073/pnas.0407076101 pmid: 15505215
30 Dutton S, Trayhurn P. Regulation of angiopoietin-like protein 4/fasting-induced adipose factor (Angptl4/FIAF) expression in mouse white adipose tissue and 3T3-L1 adipocytes. Br J Nutr 2008; 100(1): 18–26
https://doi.org/10.1017/S0007114507882961 pmid: 18081944
31 Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 2007; 104(3): 979–984
https://doi.org/10.1073/pnas.0605374104 pmid: 17210919
32 Hong YH, Nishimura Y, Hishikawa D, Tsuzuki H, Miyahara H, Gotoh C, Choi KC, Feng DD, Chen C, Lee HG, Katoh K, Roh SG, Sasaki S. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 2005; 146(12): 5092–5099
https://doi.org/10.1210/en.2005-0545 pmid: 16123168
33 Polyzos SA, Kountouras J, Zavos C. Nonalcoholic fatty liver disease: the pathogenetic roles of insulin resistance and adipocytokines. Curr Mol Med 2009; 9(3): 299–314
https://doi.org/10.2174/156652409787847191 pmid: 19355912
34 Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, Gordon JI. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA 2008; 105(43): 16767–16772
https://doi.org/10.1073/pnas.0808567105 pmid: 18931303
35 Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 2006; 40(3): 235–243
https://doi.org/10.1097/00004836-200603000-00015 pmid: 16633129
36 Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, Kobayashi M, Hirasawa A, Tsujimoto G. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci USA 2011; 108(19): 8030–8035
https://doi.org/10.1073/pnas.1016088108 pmid: 21518883
37 Yadav H, Lee JH, Lloyd J, Walter P, Rane SG. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J Biol Chem 2013; 288(35): 25088–25097
https://doi.org/10.1074/jbc.M113.452516 pmid: 23836895
38 Leung C, Rivera L, Furness JB, Angus PW. The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol 2016; 13(7): 412–425
https://doi.org/10.1038/nrgastro.2016.85 pmid: 27273168
39 Kant P, Hull MA. Excess body weight and obesity—the link with gastrointestinal and hepatobiliary cancer. Nat Rev Gastroenterol Hepatol 2011; 8(4): 224–238
https://doi.org/10.1038/nrgastro.2011.23 pmid: 21386810
40 Pagano G, Pacini G, Musso G, Gambino R, Mecca F, Depetris N, Cassader M, David E, Cavallo-Perin P, Rizzetto M. Nonalcoholic steatohepatitis, insulin resistance, and metabolic syndrome: further evidence for an etiologic association. Hepatology 2002; 35(2): 367–372
https://doi.org/10.1053/jhep.2002.30690 pmid: 11826410
41 Cani PD, Delzenne NM. Gut microflora as a target for energy and metabolic homeostasis. Curr Opin Clin Nutr Metab Care 2007; 10(6): 729–734
https://doi.org/10.1097/MCO.0b013e3282efdebb pmid: 18089955
42 Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL, Petersen KF, Kibbey RG, Goodman AL, Shulman GI. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature 2016; 534(7606): 213–217
https://doi.org/10.1038/nature18309 pmid: 27279214
43 Fialho A, Fialho A, Thota P, McCullough AJ, Shen B. Small intestinal bacterial overgrowth is associated with non-alcoholic fatty liver disease. J Gastrointestin Liver Dis 2016; 25(2): 159–165 doi:10.15403/jgld.2014.1121.252.iwg
pmid: 27308646
44 Wu WC, Zhao W, Li S. Small intestinal bacteria overgrowth decreases small intestinal motility in the NASH rats. World J Gastroenterol 2008; 14(2): 313–317
https://doi.org/10.3748/wjg.14.313 pmid: 18186574
45 Wigg AJ, Roberts-Thomson IC, Dymock RB, McCarthy PJ, Grose RH, Cummins AG. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor α in the pathogenesis of non-alcoholic steatohepatitis. Gut 2001; 48(2): 206–211
https://doi.org/10.1136/gut.48.2.206 pmid: 11156641
46 Saito T, Hayashida H, Furugen R. Comment on: Cani et al. (2007) Metabolic endotoxemia initiates obesity and insulin resistance: Diabetes 56:1761–1772. Diabetes 2007; 56(12): e20 DOI:10.2337/db07-1181
47 Brun P, Castagliuolo I, Di Leo V, Buda A, Pinzani M, Palù G, Martines D. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 2007; 292(2): G518–G525
https://doi.org/10.1152/ajpgi.00024.2006 pmid: 17023554
48 Bluemel S, Williams B, Knight R, Schnabl B. Precision medicine in alcoholic and nonalcoholic fatty liver disease via modulating the gut microbiota. Am J Physiol Gastrointest Liver Physiol 2016; 311(6): G1018–G1036
https://doi.org/10.1152/ajpgi.00245.2016 pmid: 27686615
49 Kessoku T, Imajo K, Honda Y, Kato T, Ogawa Y, Tomeno W, Higurashi T, Yoneda M, Shimakawa M, Tanaka Y, Kawahara T, Saito S, Haruki U, Wada K, Nakajima A, Tanaka Y. Characteristics of fecal microbiota in Japanese patients with nonalcoholic fatty liver disease: a connection among gut-permeability, endotoxin and NAFLD. Gastroenterology 2017; 152(5): S1200
https://doi.org/10.1016/S0016-5085(17)33997-5
50 Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56(7): 1761–1772
https://doi.org/10.2337/db06-1491 pmid: 17456850
51 Bilzer M, Roggel F, Gerbes AL. Role of Kupffer cells in host defense and liver disease. Liver Int 2006; 26(10): 1175–1186
https://doi.org/10.1111/j.1478-3231.2006.01342.x pmid: 17105582
52 Stams AJ, Plugge CM. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 2009; 7(8): 568–577
https://doi.org/10.1038/nrmicro2166 pmid: 19609258
53 Kim JJ, Sears DD. TLR4 and Insulin Resistance. Gastroenterol Res Pract 2010; 2010: 212563
https://doi.org/10.1155/2010/212563
54 Farrell GC. Signalling links in the liver: knitting SOCS with fat and inflammation. J Hepatol 2005; 43(1): 193–196
https://doi.org/10.1016/j.jhep.2005.04.004 pmid: 15913829
55 Alisi A, Manco M, Devito R, Piemonte F, Nobili V. Endotoxin and plasminogen activator inhibitor-1 serum levels associated with nonalcoholic steatohepatitis in children. J Pediatr Gastroenterol Nutr 2010; 50(6): 645–649
https://doi.org/10.1097/MPG.0b013e3181c7bdf1 pmid: 20400911
56 Creely SJ, McTernan PG, Kusminski CM, Fisher M, Da Silva NF, Khanolkar M, Evans M, Harte AL, Kumar S. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab 2007; 292(3): E740–E747
https://doi.org/10.1152/ajpendo.00302.2006 pmid: 17090751
57 Li Z, Yang S, Lin H, Huang J, Watkins PA, Moser AB, Desimone C, Song XY, Diehl AM. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology 2003; 37(2): 343–350
https://doi.org/10.1053/jhep.2003.50048 pmid: 12540784
58 Senn JJ, Klover PJ, Nowak IA, Zimmers TA, Koniaris LG, Furlanetto RW, Mooney RA. Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem 2003; 278(16): 13740–13746
https://doi.org/10.1074/jbc.M210689200 pmid: 12560330
59 Rahman K, Desai C, Iyer SS, Thorn NE, Kumar P, Liu Y, Smith T, Neish AS, Li H, Tan S, Wu P, Liu X, Yu Y, Farris AB, Nusrat A, Parkos CA, Anania FA. Loss of junctional adhesion molecule A promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol. Gastroenterology 2016; 151(4):733–746
https://doi.org/10.1053/j.gastro.2016.06.022
60 Corbin KD, Zeisel SH. Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression. Curr Opin Gastroenterol 2012; 28(2): 159–165
https://doi.org/10.1097/MOG.0b013e32834e7b4b pmid: 22134222
61 Zeisel SH. Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr 2006; 26(1): 229–250
https://doi.org/10.1146/annurev.nutr.26.061505.111156 pmid: 16848706
62 Zeisel SH, Wishnok JS, Blusztajn JK. Formation of methylamines from ingested choline and lecithin. J Pharmacol Exp Ther 1983; 225(2): 320–324
pmid: 6842395
63 al-Waiz M, Mikov M, Mitchell SC, Smith RL. The exogenous origin of trimethylamine in the mouse. Metabolism 1992; 41(2): 135–136
https://doi.org/10.1016/0026-0495(92)90140-6 pmid: 1736035
64 Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472(7341): 57–63
https://doi.org/10.1038/nature09922 pmid: 21475195
65 Martínez-del Campo A, Bodea S, Hamer HA, Marks JA, Haiser HJ, Turnbaugh PJ, Balskus EP. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria. MBio 2015; 6(2): e00042-15
https://doi.org/10.1128/mBio.00042-15 pmid: 25873372
66 Sherriff JL, O’Sullivan TA, Properzi C, Oddo JL, Adams LA. Choline, its potential role in nonalcoholic fatty liver disease, and the case for human and bacterial genes. Adv Nutr 2016; 7(1): 5–13
https://doi.org/10.3945/an.114.007955 pmid: 26773011
67 Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor AA. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 2011; 140(3): 976–986
https://doi.org/10.1053/j.gastro.2010.11.049 pmid: 21129376
68 Betrapally NS, Gillevet PM, Bajaj JS. Changes in the intestinal microbiome and alcoholic and nonalcoholic liver diseases: causes or effects? Gastroenterology 2016; 150(8):1745–1755
https://doi.org/10.1053/j.gastro.2016.02.073 pmid: 26948887
69 Matsubara T, Li F, Gonzalez FJ. FXR signaling in the enterohepatic system. Mol Cell Endocrinol 2013; 368(1-2): 17–29
https://doi.org/10.1016/j.mce.2012.05.004 pmid: 22609541
70 Brighton CA, Rievaj J, Kuhre RE, Glass LL, Schoonjans K, Holst JJ, Gribble FM, Reimann F. Bile acids trigger GLP-1 release predominantly by accessing basolaterally located g protein-coupled bile acid receptors. Endocrinology 2015; 156(11): 3961–3970
https://doi.org/10.1210/en.2015-1321 pmid: 26280129
71 Claudel T, Staels B, Kuipers F. The farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol 2005; 25(10): 2020–2030
https://doi.org/10.1161/01.ATV.0000178994.21828.a7 pmid: 16037564
72 Polyzos SA, Kountouras J, Mantzoros CS. Adipose tissue, obesity and non-alcoholic fatty liver disease. Minerva Endocrinol 2017; 42(2): 92–108
https://doi.org/10.23736/s0391-1977.16.02563-3 pmid: 27711029
73 Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. EMBO J 2006; 25(7): 1419–1425
https://doi.org/10.1038/sj.emboj.7601049 pmid: 16541101
74 Hylemon PB, Zhou H, Pandak WM, Ren S, Gil G, Dent P. Bile acids as regulatory molecules. J Lipid Res 2009; 50(8): 1509–1520
https://doi.org/10.1194/jlr.R900007-JLR200 pmid: 19346331
75 Kim I, Ahn SH, Inagaki T, Choi M, Ito S, Guo GL, Kliewer SA, Gonzalez FJ. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res 2007; 48(12): 2664–2672
https://doi.org/10.1194/jlr.M700330-JLR200 pmid: 17720959
76 Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology 2017; 152(7):1679–1694
https://doi.org/DOI:10.1053/j.gastro.2017.01.055
77 Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 2003; 72(1): 137–174
https://doi.org/10.1146/annurev.biochem.72.121801.161712 pmid: 12543708
78 Stacey M, Webb M. Studies on the antibacterial properties of the bile acids and some compounds derived from cholanic acid. Proc R Soc Med 1947; 134(877): 523–537
https://doi.org/10.1098/rspb.1947.0029 pmid: 20265566
79 Lorenzo-Zúñiga V, Bartolí R, Planas R, Hofmann AF, Viñado B, Hagey LR, Hernández JM, Mañé J, Alvarez MA, Ausina V, Gassull MA. Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats. Hepatology 2003; 37(3): 551–557
https://doi.org/10.1053/jhep.2003.50116 pmid: 12601352
80 Ogata Y, Nishi M, Nakayama H, Kuwahara T, Ohnishi Y, Tashiro S. Role of bile in intestinal barrier function and its inhibitory effect on bacterial translocation in obstructive jaundice in rats. J Surg Res 2003; 115(1): 18–23
https://doi.org/10.1016/S0022-4804(03)00308-1 pmid: 14572768
81 Jamar G, Estadella D, Pisani LP. Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions. Biofactors 2017; 43(4): 507–516
https://doi.org/10.1002/biof.1365 pmid: 28504479
82 Zhu Y, Li F, Guo GL. Tissue-specific function of farnesoid X receptor in liver and intestine. Pharmacol Res 2011; 63(4): 259–265
https://doi.org/10.1016/j.phrs.2010.12.018 pmid: 21211565
83 Hirokane H, Nakahara M, Tachibana S, Shimizu M, Sato R. Bile acid reduces the secretion of very low density lipoprotein by repressing microsomal triglyceride transfer protein gene expression mediated by hepatocyte nuclear factor-4. J Biol Chem 2004; 279(44): 45685–45692
https://doi.org/10.1074/jbc.M404255200 pmid: 15337761
84 Ma J, Zhou Q, Li H. Gut microbiota and nonalcoholic fatty liver disease: insights on mechanisms and therapy. Nutrients 2017; 9(10): 1124
https://doi.org/10.3390/nu9101124
85 Yoo JY, Kim SS. Probiotics and prebiotics: present status and future perspectives on metabolic disorders. Nutrients 2016; 8(3): 173
https://doi.org/10.3390/nu8030173 pmid: 26999199
86 Sanders ME. Probiotics: definition, sources, selection, and uses. Clin Infect Dis 2008; 46(Suppl 2):S58–61
https://doi.org/DOI: 10.1086/523341
87 Ferolla SM, Armiliato GN, Couto CA, Ferrari TC. Probiotics as a complementary therapeutic approach in nonalcoholic fatty liver disease. World J Hepatol 2015; 7(3): 559–565
https://doi.org/10.4254/wjh.v7.i3.559 pmid: 25848479
88 Qamar AA. Probiotics in nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and cirrhosis. J Clin Gastroenterol 2015; 49(Suppl 1): S28–S32
https://doi.org/10.1097/MCG.0000000000000347 pmid: 26447961
89 Fukushima M, Yamada A, Endo T, Nakano M. Effects of a mixture of organisms, Lactobacillus acidophilus or Streptococcus faecalis on delta6-desaturase activity in the livers of rats fed a fat- and cholesterol-enriched diet. Nutrition 1999; 15(5): 373–378
https://doi.org/10.1016/S0899-9007(99)00030-1 pmid: 10355850
90 Nguyen TD, Kang JH, Lee MS. Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. Int J Food Microbiol 2007; 113(3): 358–361
https://doi.org/10.1016/j.ijfoodmicro.2006.08.015 pmid: 17140690
91 Okubo H, Sakoda H, Kushiyama A, Fujishiro M, Nakatsu Y, Fukushima T, Matsunaga Y, Kamata H, Asahara T, Yoshida Y, Chonan O, Iwashita M, Nishimura F, Asano T. Lactobacillus casei strain Shirota protects against nonalcoholic steatohepatitis development in a rodent model. Am J Physiol Gastrointest Liver Physiol 2013; 305(12): G911–G918
https://doi.org/10.1152/ajpgi.00225.2013 pmid: 24113768
92 Wagnerberger S, Spruss A, Kanuri G, Stahl C, Schröder M, Vetter W, Bischoff SC, Bergheim I. Lactobacillus casei Shirota protects from fructose-induced liver steatosis: a mouse model. J Nutr Biochem 2013; 24(3): 531–538
https://doi.org/10.1016/j.jnutbio.2012.01.014 pmid: 22749137
93 Kawano M, Miyoshi M, Ogawa A, Sakai F, Kadooka Y. Lactobacillus gasseri SBT2055 inhibits adipose tissue inflammation and intestinal permeability in mice fed a high-fat diet. J Nutr Sci 2016; 5: e23
https://doi.org/10.1017/jns.2016.12 pmid: 27293560
94 Fazeli H, Moshtaghian J, Mirlohi M, Shirzadi M. Reduction in serum lipid parameters by incorporation of a native strain of Lactobacillus plantarum A7 in mice. Iranian J Diabetes Lipid Disord 2010; 9: 1–7
95 Wang Y, Xu N, Xi A, Ahmed Z, Zhang B, Bai X. Effects of Lactobacillus plantarum MA2 isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet. Appl Microbiol Biotechnol 2009; 84(2): 341–347
https://doi.org/10.1007/s00253-009-2012-x pmid: 19444443
96 Li C, Nie SP, Zhu KX, Ding Q, Li C, Xiong T, Xie MY. Lactobacillus plantarum NCU116 improves liver function, oxidative stress and lipid metabolism in rats with high fat diet induced non-alcoholic fatty liver disease. Food Funct 2014; 5(12): 3216–3223
https://doi.org/10.1039/C4FO00549J pmid: 25317840
97 Aoki R, Kamikado K, Suda W, Takii H, Mikami Y, Suganuma N, Hattori M, Koga Y. A proliferative probiotic Bifidobacterium strain in the gut ameliorates progression of metabolic disorders via microbiota modulation and acetate elevation. Sci Rep 2017; 7: 43522
https://doi.org/10.1038/srep43522 pmid: 28252037
98 Ren T, Huang C, Cheng M. Dietary blueberry and bifidobacteria attenuate nonalcoholic fatty liver disease in rats by affecting SIRT1-mediated signaling pathway. Oxid Med Cell Longev 2014; 2014:469059
https://doi.org/DOI:10.1155/2014/469059
99 Plaza-Díaz J, Ruiz-Ojeda FJ, Vilchez-Padial LM, Gil A. Evidence of the anti-inflammatory effects of probiotics and synbiotics in intestinal chronic diseases. Nutrients 2017; 9(6): E555
https://doi.org/10.3390/nu9060555 pmid: 28555037
100 Chen J, Wang R, Li XF, Wang RL. Bifidobacterium adolescentis supplementation ameliorates visceral fat accumulation and insulin sensitivity in an experimental model of the metabolic syndrome. Br J Nutr 2012; 107(10): 1429–1434
https://doi.org/10.1017/S0007114511004491 pmid: 21914236
101 Cano PG, Santacruz A, Trejo FM, Sanz Y. Bifidobacterium CECT 7765 improves metabolic and immunological alterations associated with obesity in high-fat diet-fed mice. Obesity (Silver Spring) 2013; 21(11): 2310–2321
https://doi.org/10.1002/oby.20330 pmid: 23418126
102 Xu RY, Wan YP, Fang QY, Lu W, Cai W. Supplementation with probiotics modifies gut flora and attenuates liver fat accumulation in rat nonalcoholic fatty liver disease model. J Clin Biochem Nutr 2012; 50(1): 72–77
https://doi.org/10.3164/jcbn.11-38 pmid: 22247604
103 Fedorak RN, Feagan BG, Hotte N, Leddin D, Dieleman LA, Petrunia DM, Enns R, Bitton A, Chiba N, Paré P, Rostom A, Marshall J, Depew W, Bernstein CN, Panaccione R, Aumais G, Steinhart AH, Cockeram A, Bailey RJ, Gionchetti P, Wong C, Madsen K. The probiotic VSL#3 has anti-inflammatory effects and could reduce endoscopic recurrence after surgery for Crohn’s disease. Clin Gastroenterol Hepatol 2015; 13(5):928–935
https://doi.org/10.1016/j.cgh.2014.10.031
104 Dhiman RK, Rana B, Agrawal S, Garg A, Chopra M, Thumburu KK, Khattri A, Malhotra S, Duseja A, Chawla YK. Probiotic VSL#3 reduces liver disease severity and hospitalization in patients with cirrhosis: a randomized, controlled trial. Gastroenterology 2014; 147(6):1327–37
https://doi.org/DOI:10.1053/j.gastro.2014.08.031
105 Wong RK, Yang C, Song GH, Wong J, Ho KY. Melatonin regulation as a possible mechanism for probiotic (VSL#3) in irritable bowel syndrome: a randomized double-blinded placebo study. Dig Dis Sci 2015; 60(1): 186–194
https://doi.org/10.1007/s10620-014-3299-8 pmid: 25092036
106 Mencarelli A, Cipriani S, Renga B, Bruno A, D’Amore C, Distrutti E, Fiorucci S. VSL#3 resets insulin signaling and protects against NASH and atherosclerosis in a model of genetic dyslipidemia and intestinal inflammation. PLoS One 2012; 7(9): e45425
https://doi.org/10.1371/journal.pone.0045425 pmid: 23029000
107 Ma X, Hua J, Li Z. Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells. J Hepatol 2008; 49(5): 821–830
https://doi.org/10.1016/j.jhep.2008.05.025 pmid: 18674841
108 Mei L, Tang Y, Li M, Yang P, Liu Z, Yuan J, Zheng P. Co-administration of cholesterol-lowering probiotics and anthraquinone from Cassia obtusifolia L. Ameliorate non-alcoholic fatty liver. PLoS One 2015; 10(9): e0138078
https://doi.org/10.1371/journal.pone.0138078 pmid: 26375281
109 Xue L, He J, Gao N, Lu X, Li M, Wu X, Liu Z, Jin Y, Liu J, Xu J, Geng Y. Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci Rep 2017; 7: 45176
https://doi.org/10.1038/srep45176 pmid: 28349964
110 Kim DH, Kim H, Jeong D, Kang IB, Chon JW, Kim HS, Song KY, Seo KH. Kefir alleviates obesity and hepatic steatosis in high-fat diet-fed mice by modulation of gut microbiota and mycobiota: targeted and untargeted community analysis with correlation of biomarkers. J Nutr Biochem 2017; 44: 35–43
https://doi.org/10.1016/j.jnutbio.2017.02.014 pmid: 28384519
111 Karahan N, Işler M, Koyu A, Karahan AG, Başyığıt Kiliç G, Cırış IM, Sütçü R, Onaran I, Cam H, Keskın M. Effects of probiotics on methionine choline deficient diet-induced steatohepatitis in rats. Turk J Gastroenterol 2012; 23(2): 110–121
https://doi.org/10.4318/tjg.2012.0330 pmid: 22706738
112 Ji YS, Kim HN, Park HJ, Lee JE, Yeo SY, Yang JS, Park SY, Yoon HS, Cho GS, Franz CM, Bomba A, Shin HK, Holzapfel WH. Modulation of the murine microbiome with a concomitant anti-obesity effect by Lactobacillus rhamnosus GG and Lactobacillus sakei NR28. Benef Microbes 2012; 3(1): 13–22
https://doi.org/10.3920/BM2011.0046 pmid: 22348905
113 Kobyliak N, Falalyeyeva T, Bodnar P, Beregova T. Probiotics supplemented with omega-3 fatty acids are more effective for hepatic steatosis reduction in an animal model of obesity. Probiotics Antimicrob Proteins 2017; 9(2): 123–130
https://doi.org/10.1007/s12602-016-9230-1 pmid: 27660157
114 Alisi A, Bedogni G, Baviera G, Giorgio V, Porro E, Paris C, Giammaria P, Reali L, Anania F, Nobili V. Randomised clinical trial: The beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2014; 39(11): 1276–1285
https://doi.org/10.1111/apt.12758 pmid: 24738701
115 Famouri F, Shariat Z, Hashemipour M, Keikha M, Kelishadi R. Effects of probiotics on non-alcoholic fatty liver disease in obese children and adolescents: a randomized clinical trial. J Pediatr Gastroenterol Nutr 2017; 64(3):413– 417
https://doi.org/10.1097/mpg.0000000000001422
116 Vajro P, Mandato C, Licenziati MR, Franzese A, Vitale DF, Lenta S, Caropreso M, Vallone G, Meli R. Effects of Lactobacillus rhamnosus strain GG in pediatric obesity-related liver disease. J Pediatr Gastroenterol Nutr 2011; 52(6): 740–743
https://doi.org/10.1097/MPG.0b013e31821f9b85 pmid: 21505361
117 Roberfroid M. Prebiotics: the concept revisited. J Nutr 2007; 137(3 Suppl 2): 830S–837S
https://doi.org/10.1093/jn/137.3.830S pmid: 17311983
118 Parnell JA, Raman M, Rioux KP, Reimer RA. The potential role of prebiotic fibre for treatment and management of non-alcoholic fatty liver disease and associated obesity and insulin resistance. Liver Int 2012; 32(5): 701–711
https://doi.org/10.1111/j.1478-3231.2011.02730.x pmid: 22221818
119 Daubioul CA, Horsmans Y, Lambert P, Danse E, Delzenne NM. Effects of oligofructose on glucose and lipid metabolism in patients with nonalcoholic steatohepatitis: results of a pilot study. Eur J Clin Nutr 2005; 59(5): 723–726
https://doi.org/10.1038/sj.ejcn.1602127 pmid: 15770222
120 Fan JG, Xu ZJ, Wang GL. Effect of lactulose on establishment of a rat non-alcoholic steatohepatitis model. World J Gastroenterol 2005; 11(32): 5053–5056
https://doi.org/10.3748/wjg.v11.i32.5053 pmid: 16124065
121 Salminen S, Salminen E. Lactulose, lactic acid bacteria, intestinal microecology and mucosal protection. Scand J Gastroenterol Suppl 1997; 32(sup222): 45–48
https://doi.org/10.1080/00365521.1997.11720717 pmid: 9145446
122 Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Neyrinck A, Lambert DM, Muccioli GG, Delzenne NM. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009; 58(8): 1091–1103
https://doi.org/10.1136/gut.2008.165886 pmid: 19240062
123 Matsumoto K, Ichimura M, Tsuneyama K, Moritoki Y, Tsunashima H, Omagari K, Hara M, Yasuda I, Miyakawa H, Kikuchi K. Fructo-oligosaccharides and intestinal barrier function in a methionine-choline-deficient mouse model of nonalcoholic steatohepatitis. PLoS One 2017; 12(6): e0175406
https://doi.org/10.1371/journal.pone.0175406 pmid: 28632732
124 Neyrinck AM, Possemiers S, Verstraete W, De Backer F, Cani PD, Delzenne NM. Dietary modulation of clostridial cluster XIVa gut bacteria (Roseburia spp.) by chitin-glucan fiber improves host metabolic alterations induced by high-fat diet in mice. J Nutr Biochem 2012; 23(1): 51–59
https://doi.org/10.1016/j.jnutbio.2010.10.008 pmid: 21411304
125 Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PG, Neyrinck AM, Bindels LB, de Vos WM, Gibson GR, Thissen JP, Delzenne NM. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 2013; 62(8): 1112–1121
https://doi.org/10.1136/gutjnl-2012-303304 pmid: 23135760
126 Micka A, Siepelmeyer A, Holz A, Theis S, Schön C. Effect of consumption of chicory inulin on bowel function in healthy subjects with constipation: a randomized, double-blind, placebo-controlled trial. Int J Food Sci Nutr 2017; 68(1): 82–89
https://doi.org/10.1080/09637486.2016.1212819 pmid: 27492975
127 Poesen R, Evenepoel P, de Loor H, Delcour JA, Courtin CM, Kuypers D, Augustijns P, Verbeke K, Meijers B. The influence of prebiotic arabinoxylan oligosaccharides on microbiota derived uremic retention solutes in patients with chronic kidney disease: a randomized controlled trial. PLoS One 2016; 11(4): e0153893
https://doi.org/10.1371/journal.pone.0153893 pmid: 27100399
128 Tarantino G, Finelli C. Systematic review on intervention with prebiotics/probiotics in patients with obesity-related nonalcoholic fatty liver disease. Future Microbiol 2015; 10(5): 889–902
https://doi.org/10.2217/fmb.15.13 pmid: 26000656
129 de Vrese M, Schrezenmeir J. Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol 2008; 111: 1–66
https://doi.org/10.1007/10_2008_097 pmid: 18461293
130 Sáez-Lara MJ, Robles-Sanchez C, Ruiz-Ojeda FJ, Plaza-Diaz J, Gil A. Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: a review of human clinical trials. Int J Mol Sci 2016; 17(6): E928
https://doi.org/10.3390/ijms17060928 pmid: 27304953
131 Furrie E, Macfarlane S, Kennedy A, Cummings JH, Walsh SV, O’neil DA, Macfarlane GT. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut 2005; 54(2): 242–249
https://doi.org/10.1136/gut.2004.044834 pmid: 15647189
132 Cortez-Pinto H, Borralho P, Machado J, Lopes MT, Gato IV, Santos AM, Guerreiro AS. Microbiota modulation with synbiotic decreases liver fibrosis in a high fat choline deficient diet mice model of non-alcoholic steatohepatitis (NASH). GE Port J Gastroenterol 2016; 23(3): 132–141
https://doi.org/10.1016/j.jpge.2016.01.004 pmid: 28868449
133 Mofidi F, Poustchi H, Yari Z, Nourinayyer B, Merat S, Sharafkhah M, Malekzadeh R, Hekmatdoost A. Synbiotic supplementation in lean patients with non-alcoholic fatty liver disease: a pilot, randomised, double-blind, placebo-controlled, clinical trial. Br J Nutr 2017; 117(5): 662–668
https://doi.org/10.1017/S0007114517000204 pmid: 28345499
134 Ferolla SM, Couto CA, Costa-Silva L, Armiliato GN, Pereira CA, Martins FS, Ferrari ML, Vilela EG, Torres HO, Cunha AS, Ferrari TC. Beneficial effect of synbiotic supplementation on hepatic steatosis and anthropometric parameters, but not on gut permeability in a population with nonalcoholic steatohepatitis. Nutrients 2016; 8(7): E397
https://doi.org/10.3390/nu8070397 pmid: 27367724
135 Hwang I, Park YJ, Kim YR, Kim YN, Ka S, Lee HY, Seong JK, Seok YJ, Kim JB. Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity. FASEB J 2015; 29(6): 2397–2411
https://doi.org/10.1096/fj.14-265983 pmid: 25713030
136 Gangarapu V, Ince AT, Baysal B, Kayar Y, Kılıç U, Gök Ö, Uysal Ö, Şenturk H. Efficacy of rifaximin on circulating endotoxins and cytokines in patients with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 2015; 27(7): 840–845
https://doi.org/10.1097/MEG.0000000000000348 pmid: 26043290
137 Aroniadis OC, Brandt LJ. Fecal microbiota transplantation: past, present and future. Curr Opin Gastroenterol 2013; 29(1): 79–84
https://doi.org/10.1097/MOG.0b013e32835a4b3e pmid: 23041678
138 Cohen NA, Maharshak N. Novel indications for fecal microbial transplantation: update and review of the literature. Dig Dis Sci 2017; 62(5): 1131–1145
https://doi.org/10.1007/s10620-017-4535-9 pmid: 28315032
139 Jegatheesan P, Beutheu S, Ventura G, Sarfati G, Nubret E, Kapel N, Waligora-Dupriet AJ, Bergheim I, Cynober L, De-Bandt JP. Effect of specific amino acids on hepatic lipid metabolism in fructose-induced non-alcoholic fatty liver disease. Clin Nutr 2016; 35(1): 175–182
https://doi.org/10.1016/j.clnu.2015.01.021 pmid: 25736031
140 Herman MA, Samuel VT. The sweet path to metabolic demise: fructose and lipid synthesis. Trends Endocrinol Metab 2016; 27(10): 719–730
https://doi.org/10.1016/j.tem.2016.06.005 pmid: 27387598
141 Clarke SF, Murphy EF, O’Sullivan O, Lucey AJ, Humphreys M, Hogan A, Hayes P, O’Reilly M, Jeffery IB, Wood-Martin R, Kerins DM, Quigley E, Ross RP, O’Toole PW, Molloy MG, Falvey E, Shanahan F, Cotter PD. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 2014; 63(12): 1913–1920
https://doi.org/10.1136/gutjnl-2013-306541 pmid: 25021423
142 Denou E, Marcinko K, Surette MG, Steinberg GR, Schertzer JD. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. Am J Physiol Endocrinol Metab 2016; 310(11): E982–E993
https://doi.org/10.1152/ajpendo.00537.2015 pmid: 27117007
143 Matsumoto M, Inoue R, Tsukahara T, Ushida K, Chiji H, Matsubara N, Hara H. Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Biosci Biotechnol Biochem 2008; 72(2): 572–576
https://doi.org/10.1271/bbb.70474 pmid: 18256465
144 Hua W, Ding L, Chen Y, Gong B, He J, Xu G. Determination of berberine in human plasma by liquid chromatography-electrospray ionization-mass spectrometry. J Pharm Biomed Anal 2007; 44(4): 931–937
https://doi.org/10.1016/j.jpba.2007.03.022 pmid: 17531424
145 Zhang X, Zhao Y, Zhang M, Pang X, Xu J, Kang C, Li M, Zhang C, Zhang Z, Zhang Y, Li X, Ning G, Zhao L. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS One 2012; 7(8): e42529
https://doi.org/10.1371/journal.pone.0042529 pmid: 22880019
146 Li C, He JZ, Zhou XD, Xu X. Berberine regulates type 2 diabetes mellitus related with insulin resistance. China J Chin Materia Medica (Zhongguo Zhongyao Zazhi) 2017; 42: 2254–2260 (in Chinese)
https://doi.org/10.19540/j.cnki.cjcmm.20170307.014 pmid: 28822177
147 Xu JH, Liu XZ, Pan W, Zou DJ. Berberine protects against diet-induced obesity through regulating metabolic endotoxemia and gut hormone levels. Mol Med Rep 2017; 15(5): 2765–2787
https://doi.org/10.3892/mmr.2017.6321 pmid: 28447763
148 Lin P, Lu J, Wang Y, Gu W, Yu J, Zhao R. Naturally occurring stilbenoid TSG reverses non-alcoholic fatty liver diseases via gut-liver axis. PLoS One 2015; 10(10): e0140346
https://doi.org/10.1371/journal.pone.0140346 pmid: 26474417
149 Hussain A, Yadav MK, Bose S, Wang JH, Lim D, Song YK, Ko SG, Kim H. Daesiho-Tang is an effective herbal formulation in attenuation of obesity in mice through alteration of gene expression and modulation of intestinal microbiota. PLoS One 2016; 11(11): e0165483
https://doi.org/10.1371/journal.pone.0165483 pmid: 27812119
150 Yin X, Peng J, Zhao L, Yu Y, Zhang X, Liu P, Feng Q, Hu Y, Pang X. Structural changes of gut microbiota in a rat non-alcoholic fatty liver disease model treated with a Chinese herbal formula. Syst Appl Microbiol 2013; 36(3): 188–196
https://doi.org/10.1016/j.syapm.2012.12.009 pmid: 23453736
Related articles from Frontiers Journals
[1] So Jung Yang, Hun-Sung Kim, Kun-Ho Yoon. Analyzing the distinguishing factors that affect childhood obesity in South Korea[J]. Front. Med., 2018, 12(6): 707-716.
[2] Eun Young Lee, Kun-Ho Yoon. Epidemic obesity in children and adolescents: risk factors and prevention[J]. Front. Med., 2018, 12(6): 658-666.
[3] Xiaojiao Zheng, Shouli Wang, Wei Jia. Calorie restriction and its impact on gut microbial composition and global metabolism[J]. Front. Med., 2018, 12(6): 634-644.
[4] Cynthia Rajani, Wei Jia. Bile acids and their effects on diabetes[J]. Front. Med., 2018, 12(6): 608-623.
[5] Tiange Wang, Min Xu, Yufang Bi, Guang Ning. Interplay between diet and genetic susceptibility in obesity and related traits[J]. Front. Med., 2018, 12(6): 601-607.
[6] Chenyang Wang, Qiurong Li, Jieshou Li. Gut microbiota and its implications in small bowel transplantation[J]. Front. Med., 2018, 12(3): 239-248.
[7] Meng Dong, Jun Lin, Wonchung Lim, Wanzhu Jin, Hyuek Jong Lee. Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia[J]. Front. Med., 2018, 12(2): 130-138.
[8] Tianhua Xu, Zitong Sheng, Li Yao. Obesity-related glomerulopathy: pathogenesis, pathologic, clinical characteristics and treatment[J]. Front. Med., 2017, 11(3): 340-348.
[9] Rahim Ullah, Yan Su, Yi Shen, Chunlu Li, Xiaoqin Xu, Jianwei Zhang, Ke Huang, Naveed Rauf, Yang He, Jingjing Cheng, Huaping Qin, Yu-Dong Zhou, Junfen Fu. Postnatal feeding with high-fat diet induces obesity and precocious puberty in C57BL/6J mouse pups: a novel model of obesity and puberty[J]. Front. Med., 2017, 11(2): 266-276.
[10] Lixia Gan,Wei Xiang,Bin Xie,Liqing Yu. Molecular mechanisms of fatty liver in obesity[J]. Front. Med., 2015, 9(3): 275-287.
[11] Juan Zheng,Shih-Lung Woo,Xiang Hu,Rachel Botchlett,Lulu Chen,Yuqing Huo,Chaodong Wu. Metformin and metabolic diseases: a focus on hepatic aspects[J]. Front. Med., 2015, 9(2): 173-186.
[12] Shuwen Qian,Haiyan Huang,Qiqun Tang. Brown and beige fat: the metabolic function, induction, and therapeutic potential[J]. Front. Med., 2015, 9(2): 162-172.
[13] Jianping Ye. Beneficial metabolic activities of inflammatory cytokine interleukin 15 in obesity and type 2 diabetes[J]. Front. Med., 2015, 9(2): 139-145.
[14] Tao Wang,Weiping Jia,Cheng Hu. Advancement in genetic variants conferring obesity susceptibility from genome-wide association studies[J]. Front. Med., 2015, 9(2): 146-161.
[15] Jichun Yang, Jihong Kang, Youfei Guan. The mechanisms linking adiposopathy to type 2 diabetes[J]. Front Med, 2013, 7(4): 433-444.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed