Please wait a minute...

Frontiers of Mathematics in China

Front. Math. China    2017, Vol. 12 Issue (4) : 787-803     DOI: 10.1007/s11464-016-0616-x
RESEARCH ARTICLE |
A class of simple Lie algebras attached to unit forms
Jinjing CHEN1, Zhengxin CHEN2()
1. School of Mathematical Sciences, Xiamen University, Xiamen 361000, China
2. School of Mathematics and Computer Science & FJKLMAA, Fujian Normal University, Fuzhou 350117, China
Download: PDF(213 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let n≥3.The complex Lie algebra, which is attached to a unit form q(x1,x2,,xn)=i=1nxi2+1ijn(1)jixixj and defined by generators and generalized Serre relations, is proved to be a finite-dimensional simple Lie algebra of type An,and realized by the Ringel-Hall Lie algebra of a Nakayama algebra of radical square zero. As its application of the realization, we give the roots and a Chevalley basis of the simple Lie algebra.

Keywords Nakayama algebras      finite-dimensional simple Lie algebras      Ringel-Hall Lie algebras     
Corresponding Authors: Zhengxin CHEN   
Issue Date: 06 July 2017
 Cite this article:   
Jinjing CHEN,Zhengxin CHEN. A class of simple Lie algebras attached to unit forms[J]. Front. Math. China, 2017, 12(4): 787-803.
 URL:  
http://journal.hep.com.cn/fmc/EN/10.1007/s11464-016-0616-x
http://journal.hep.com.cn/fmc/EN/Y2017/V12/I4/787
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jinjing CHEN
Zhengxin CHEN
1 AsashibaH. Realization of simple Lie algebras via Hall algebras of tame hereditary algebras. J Math Soc Japan, 2004, 56: 889–905
doi: 10.2969/jmsj/1191334090
2 AsashibaH. Domestic canonical and simple Lie algebras. Math Z, 2008, 259: 713–754
doi: 10.1007/s00209-007-0246-9
3 BarotM, KussinD, LenzingH. The Lie algebra associated to a unit form. J Algebra, 2006, 296: 1–17
doi: 10.1016/j.jalgebra.2005.11.017
4 ChenZ. Canonical algebras of type (n1, n2, n3) and Kac-Moody algebras. Comm Algebra, 2014, 42(8): 3297–3324
doi: 10.1080/00927872.2013.781613
5 ChenZ, LinY. Tubular algebras and affine Kac-Moody algebras. Sci China Ser A, 2007, 50(4): 521–532
doi: 10.1007/s11425-007-0020-9
6 DingM, XiaoJ, XuF. Realizing enveloping algebras via varieties of modules. Acta Math Sin (Engl Ser), 2010, 26: 29–48
doi: 10.1007/s10114-010-9070-y
7 FrenkelI, MalkinA, VybornovM. Affine Lie algebras and tame quiver. Selecta Math, 2001, 7: 1–56
doi: 10.1007/PL00001397
8 HappelD. Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. London Math Soc Lecture Note Ser, Vol 119. Cambridge: Cambridge Univ Press, 1988
doi: 10.1017/CBO9780511629228
9 HappelD, SeidelU. Piecewise hereditary Nakayama algebras. Algebr Represent Theory, 2010, 13: 693–704
doi: 10.1007/s10468-009-9169-y
10 HappelD, ZachariaD. A homological characterization of piecewise hereditary algebras. Math Z, 2008, 260: 177–185
doi: 10.1007/s00209-007-0268-3
11 LinY, PengL. Elliptic Lie algebras and tubular algebras. Adv Math, 2005, 196: 487–530
doi: 10.1016/j.aim.2004.09.006
12 PengL. Intersection matrix Lie algebras and Ringel-Hall Lie algebras of tilted algebras. In: Proc 9th Inter Conf Representations of Algebra. Beijing: Beijing Normal Univ Press, 2002, 98–108
13 PengL, XiaoJ. Root categories and simple Lie algebras. J Algebra, 1997, 198: 19–56
doi: 10.1006/jabr.1997.7152
14 PengL, XiaoJ. Triangulated categories and Kac-Moody algebras. Invent Math, 2000, 140: 563–603
doi: 10.1007/s002220000062
15 PengL, XuM. Symmetrizable intersection matrices and their root systems. arXiv: 0912.1024v1
16 RiedtmannC. Lie algebras generated by indecomposables. J Algebra, 1997, 198: 19–56
17 RingelC M. Hall algebras. Topics in Algebra, Banach Center Publ, 1990, 26: 433–447
18 RingelC M. Hall polynominals for the representation-finite hereditary algebras. Adv Math, 1990, 84(2): 137–178
doi: 10.1016/0001-8708(90)90043-M
19 RingelC M. Lie algebras arising in representation theory. In: Representations of Algebras and Related Topics (Kyoto, 1990). London Math Soc Lecture Note Ser, Vol 168. Cambridge: Cambridge Univ Press, 1992, 284–291
doi: 10.1017/CBO9780511661853.010
20 SerreJ P. Complex Semisimple Lie Algebras. New York: Spinger-Verlag, 1987
doi: 10.1007/978-1-4757-3910-7
21 SlodowyP. Beyond Kac-Moody algebras and inside. In: Britten D J, Lemire F W, Moody R V, eds. Lie Algebras and Related Topics. Canad Math Soc Conf Proc, Vol 5. Providence: Amer Math Soc, 1986, 361–371
22 XiaoJ, XuF, ZhangG. Derived categories and Lie algebras. arXiv: math/0604564v1
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed