Please wait a minute...

Frontiers of Mathematics in China

Front. Math. China    2017, Vol. 12 Issue (4) : 843-858     DOI: 10.1007/s11464-016-0603-2
Discrete α-Yamabe flow in 3-dimension
Huabin GE1, Shiguang MA2()
1. Institute of Mathematics, Beijing Jiaotong University, Beijing 100044, China
2. Department of Mathematics and LPMC, Nankai University, Tianjin 300071, China
Download: PDF(190 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

We generalize the discrete Yamabe flow to αorder. This Yamabe flow deforms the α-order curvature to a constant. Using this new flow, we manage to find discrete α-quasi-Einstein metrics on the triangulations of S 3.

Keywords α-Yamabe flow      α-quasi Einstein metric      ball packing metric     
Corresponding Authors: Shiguang MA   
Issue Date: 06 July 2017
 Cite this article:   
Huabin GE,Shiguang MA. Discrete α-Yamabe flow in 3-dimension[J]. Front. Math. China, 2017, 12(4): 843-858.
E-mail this article
E-mail Alert
Articles by authors
Huabin GE
Shiguang MA
1 CooperD, RivinI. Combinatorial scalar curvature and rigidity of ball packings. Math Res Lett, 1996, 3: 51–60
doi: 10.4310/MRL.1996.v3.n1.a5
2 GeH, JiangW. On the deformation of discrete conformal factors on surfaces. Calc Var Partial Differential Equations (to appear)
doi: 10.1007/s00526-016-1070-z
3 GeH, XuX. Discrete quasi-Einstein metrics and combinatorial curvature flows in 3-dimension. Adv Math, 2014, 267: 470–497
doi: 10.1016/j.aim.2014.09.011
4 GeH, XuX. A combinatorial Yamabe problem on two and three dimensional manifolds. arXiv: 1504.05814 [math.DG]
5 GeH, XuX. 2-dimensional combinatorial Calabi flow in hyperbolic background geometry. Differential Geom Appl, 2016, 47: 86–98
doi: 10.1016/j.difgeo.2016.03.011
6 GeH, XuX. A discrete Ricci flow on surfaces with hyperbolic background geometry. Int Math Res Not IMRN,
doi: 10.1093/imrn/rnw142
7 GeH, XuX. α-curvatures and α-flows on low dimensional triangulated manifolds. Calc Var Partial Differential Equations, 2016, 55(1): Art 12 (16 pp)
8 GlickensteinD. A combinatorial Yamabe flow in three dimensions. Topology, 2005, 44(4): 791–808
doi: 10.1016/
Full text